Mathematical modeling of reactive multicomponent fluid systems

Dieter Bothe

Mathematical Modeling and Analysis Center for Smart Interfaces Technical University Darmstadt

Mini-Course on Mathematical Fluid Dynamics Waseda University, December 13-16, 2010

Work in Progress, jointly with Wolfgang Dreyer (WIAS Berlin)

向下 イヨト イヨト

Part I : Single Phase Fluid Mixtures

Contents of Part I

- 1 Introduction
- 2 The Maxwell-Stefan Equations Modeling
- 3 Partial and Mixture Balances
- 4 Constitutive Modeling
- 5 The Maxwell-Stefan Equations Analysis

Multicomponent Fluid Mixtures

atmospheric chemistry

average composition of dry atmosphere

nitrogen N ₂	78.084 %
oxygen O_2	20.946 %
argon <i>Ar</i>	0.934 %
carbon <i>CO</i> 2	383 ppm
dioxide	
neon <i>Ne</i>	18.18 ppm
helium <i>He</i>	5.24 ppm
methane <i>CH</i> 4	1.7 ppm
krypton <i>Kr</i>	1.14 ppm
hydrogen <i>H</i> 2	0.55ppm

real air contains water vapor, typically about 1 % or more

Example 1 - Spray Combustion

Spray combustion

Mixture fraction, velocity and temperature around a burning jet

Example 1 - Chemical Reaction Mechanism

Reduced Methane-Air reaction mechanism

		Omicti	-0	-4	18	E
1/	$II = O_2$	- 199	0 + 01	20.4.304	0.0	10900
. 1h	0.1.01		$0_2 \pm 11$	1.575 ± 10^{13}	0.0	0.000
2f	$10 + B_2$	-	011 = 11	1.8 × 10 ¹⁰	1.0.	8836
24	-00E = 10		$O = H_{1}$	9.0 ± 10^{9}	1.0	6760
-1/	$H_{0} + OB$		$0_2 O + B$	£37.V10 ⁶	-10	- 392.04
55	$H_1O + B$	1911	$\Theta_2 \rightarrow DH$	319-9-10	1.1	38588
4/	00 + 10	-	$H_{I}\Omega = 0$	$5.0 = 10^9$	1.1	
-IA	$H_I 0 = 0$	-	011 - 011	5.9 ± 10^{91}	1.1	12929
10	$H=O_3\to M^{\mu}$	-	$IIO_2 = M^4$	2.1 ± 10^{17}	0.5	0
0	$II \simeq IIO_2$	-	300 ± 001	-1.5 ± 10^{14}	0.0	004
7.	14 + 110g	-	$H_2 = O_2$	2.5×10^{13}	0.6	7780
*	$OH = HO_2$	-	$H_2 Q = O_2$	2.0×10^{11}	0.41	Date
97	00 - 00	100	$DO_2 + H$	4.51-9-107	1.3	n758
:98	£0 ₂ + 11	-+-	00 + 01	147 8 10	14	22337
10f	CH ₄)+MP	-	$-CH_{1} + H'(+M)^{k}$	8.1 × 1014	0.0	104000
105	CHA HIDA MP	and the	$CH_{4} \rightarrow M^{p}$	$5.20 + 10^{12}$	0,6	~110
111	CIL: + 11	- 194 -	-7016 # 116	2.2×10^{47}	1.0	8750
116	$UH_3 = H_2$	-	$U\Pi_4 = \Pi$	9.57 x DF	3.0	8754
1'11	-CIL + OII	144	-THE + HEO	1.0 x 10 ^p	2.1	2400
125	$CH_{1} = H_{2}O$	- 101	CR4 + 00	342-9-107	2.1	17422
11	$\Omega H \chi + \Omega$		$CH_{f}\Omega = H$	$5.8 = 10^{12}$	- 0.0	
11.	$-CH_2O = 0$		HCO + Hy	2.5 ± 10^{11}	9.0	3894
11	CllyO + OH	-	IICO - II2O	3.0 ± 10^{17}	0.0	1195
10	11CO + 11	-14	1:0 + 16	-10.0 ± 10 ¹²	0.0	0
12	HCG = M		$M = H + 00^{\circ}$	1.6-5.2614	0.0	1420
11	$U\Pi_0 = O_0$	-	LHIO + D	7.0×10^{12}	0.0	25652
19	$CH_{1}O = B$	-	$CB_{2}O = B_{1}$	2.0 + 1015	0.0	87
291	$C\dot{H}_{I}G = M$	- 199	$CD_2O = U + M$	24×10^{11}	0.11	28512
21	$110_2 + 110_2$	-	$H_2O_2 + O_2$.	2.0 ± 10^{12}	0.0	- 0
111	$H_2O_2 + M$	144	011 + 011 + 11	1.3 ÷ 10 ¹⁷	0,0	-43500
	OH + OH + M	144	$H_2O_2 = M$	9.90 × 10 ¹⁴	0(0	~3070
21/	$0_2 0_2 = 0 0$		$H_2O + HO_2$	$1.0 \div 10_{15}$	0.0	1500
126	$\Pi_2 O = \Pi O_2$	-	$H_2O_2 = 10H$	540-7.10 ₁₁	UU	12711
38	$-UH + H + M^{\mu}$	- 224	$H_2O = M^{e_1}$	$2.2 + 10^{22}$	2.0	19
5	11 + 11 - 34*	- 191	$11_2 + 34^{0}$	1.7 ± 10^{15}	-1.0	- 0

Example 2 - Microreactor

Reactive flow in a microchannel

Example 3 - Physical Mass Transfer

Mass transfer from rising bubbles

Oxygen concentration around a rising air bubble

gas bubble: O_2, N_2, CO_2 , water vapor

ambient liquid: water, O_2, N_2, CO_2

Example 4 - Reactive Mass Transfer

Reactive mass transfer into a settling droplet

pH-value inside the settling droplet

(Loading bubble column)

droplet (initially): NaOH, water, phenolphthalein

ambient liquid: toluol, acetic acid

Experiments M. Kraume, TU Berlin

Introduction

2 The Maxwell-Stefan Equations - Modeling

3 Partial and Mixture Balances

- 4 Constitutive Modeling
- 5 The Maxwell-Stefan Equations Analysis

個 と く ヨ と く ヨ と

Origin of the Maxwell-Stefan Equations

The starting point:

- James Clerk Maxwell: On the dynamical theory of gases, Phil. Trans. R. Soc. **157**, 49-88 (1866).
- Josef Stefan: Über das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen, Sitzber. Akad. Wiss. Wien **63**, 63-124 (1871).

"It is a striking symptom of the common ignorance in this field that not one of the phenomenological schemes which are fit to describe the general case of diffusion is widely known" - L. Onsager (1945) taken from *Multicomponent Mass Transfer*, R. Taylor, R. Krishna, Wiley 1993.

Continuum Mechanical Reactive Flow Model

Simple continuum mechanical model for an *isothermal* fluid mixture: Navier-Stokes equations

$$\partial_t \varrho + \operatorname{div}\left(\varrho \mathbf{v}\right) = \mathbf{0}$$

$$\varrho \partial_t \mathbf{v} + \varrho (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p = \eta \Delta \mathbf{v} + \varrho \mathbf{b}$$

 ϱ mixture mass density, ${\bf v}$ mixture velocity, p pressure, η mixture viscosity, ${\bf b}$ external force

Species equations

$$\partial_t c_i + \operatorname{div} (c_i \mathbf{v} + \mathbf{J}_i) = r_i^{\operatorname{tot}},$$

 c_i molar concentrations, r_i^{tot} total reaction rates, $\mathbf{J}_i = c_i(\mathbf{v}_i - \mathbf{v})$ the relative mass flux with \mathbf{v}_i the individual species velocity

- the model only applies for ideally dilute species
- the model is not closed

Constitutive flux models

Standard flux model

Fickian diffusion:

 $\mathbf{J}_i = -D_i \operatorname{grad} c_i$

linear, decoupled relationship between individual fluxes and driving forces

 $\hookrightarrow \textbf{Reaction-Diffusion System:}$

$$\partial_t c_i - D_i \Delta c_i = r_i^{\rm tot}$$

• Neglects non-ideal solution effects

 $x_i := c_i/c_{ ext{tot}}$ the molar fractions

Cross Diffusion Effects

Classical experiment by Duncan and Toor 1962 on ternary diffusion

initial composition: left bulb N_2 : CO_2 (1:1), right bulb N_2 : H_2 (1:1)

Anomalous Diffusion

Typical phenomena in ternary systems

Thermodynamics of Irreversible Processes (TIP)

Constitutive law for isobaric isothermal multicomponent diffusion:

$$\mathbf{J}_i = -\sum_{j=1}^n D_{ij} \operatorname{grad} c_j$$

with binary diffusivities $D_{ij} = D_{ij}(\mathbf{c})$.

Properties of $[D_{ij}]$ from irreversible thermodynamics:

- [D_{ij}] is symmetric (Onsager reciprocal relations)
- [*D_{ij}*] is *positive semidefinite* (entropy inequality)

Quasilinear RD-system which - probably after reduction - satisfies parabolicity assumption sufficient for (local in time) well-posedness.

Thermodynamics of Irreversible Processes (TIP)

Difficulties:

- Individual $D_{ij}(\mathbf{c})$ can be *negative*
- Dependence of D_{ij} on **c** is not given
- Unclear whether solutions will stay non-negative

Maxwell-Stefan Approach to Multicomponent Diffusion

Force balance:

driving force = frictional force

Ansatz: frictional forces between species A_i and A_j are proportional to relative velocity and to the molar fractions $x_i = c_i/c_{tot}$, i.e.

frictional force = $f_{ij} x_i x_j (\mathbf{v}_i - \mathbf{v}_j)$

exchange of momentum

Let \mathbf{d}_i denote the total driving force for species A_i . Then:

$$\mathbf{d}_i = -\sum_{j \neq i} f_{ij} \, x_i \, x_j (\mathbf{v}_i - \mathbf{v}_j) = -\sum_{j \neq i} \frac{x_j \, \mathbf{J}_i - x_i \, \mathbf{J}_j}{c_{\text{tot}} \oplus_{ij}}$$

with the so-called *Maxwell-Stefan diffusivities* $\oplus_{ij} = 1/f_{ij}$.

◆ロ → ◆母 → ◆ 目 → ◆ 目 → ◆ の へ ()

Thermodynamical Driving Forces

Driving force for isobaric isothermal diffusion:

$$\mathbf{d}_i = \frac{x_i}{RT} \operatorname{grad} \mu_i$$

with temperature T, universal gas constant R, chemical potential μ_i . Chemical potential:

$$\mu_i = \frac{\partial g}{\partial c_i} = \mu_i^0 + RT \ln a_i$$

with the activity a_i . The activities are given by $a_i = \gamma_i c_i$, where the *activity coefficients* $\gamma_i = \gamma_i(\mathbf{c})$ model deviations from ideal solution.

Generalizations to pressure & temperature diffusion, electro-migration:

$$\mathbf{d}_i = \frac{\mathbf{x}_i}{RT} \operatorname{grad} \mu_i + \dots$$

コト (四) (注) (主) (日) つへ(

Maxwell-Stefan Equations

The simplest case of isobaric isothermal MS-diffusion:

$$\mathbf{v} = 0, \qquad \partial_t c_i + \operatorname{div} \mathbf{J}_i = r_i^{\operatorname{tot}},$$

$$(\mathbf{d}_i =) \quad \frac{x_i}{RT} \operatorname{grad} \mu_i = -\sum_{j \neq i} \frac{x_j \mathbf{J}_i - x_i \mathbf{J}_j}{c_{\operatorname{tot}} \oplus_{ij}}, \qquad (MS)$$

$$\sum_i \mathbf{J}_i = 0.$$

イロト イヨト イヨト イヨト

Remark. The Maxwell-Stefan diffusivities \oplus_{ij} are (assumed to be) nonnegative, constant & symmetric!

In this case $\sum_{i} \mathbf{d}_{i} = 0$ necessarily holds due to $\oplus_{ij} = \oplus_{ji}$.

Maxwell-Stefan Equations - Criticism

Problems and open issues:

- rigorous derivation of the Maxwell-Stefan equations
- proper coupling to the mass and momentum balance
- extension to non-isobaric, non-isothermal situation
- extension to chemically reacting fluid mixtures

Aim: thermodynamically consistent mathematical modeling of reacting fluid mixtures, based on rational thermodynamic mixture theories due to Truesdell, Gurtin, I. Müller and others

Introduction

2 The Maxwell-Stefan Equations - Modeling

3 Partial and Mixture Balances

4 Constitutive Modeling

5 The Maxwell-Stefan Equations - Analysis

(ロ) 《聞) 《臣) 《臣) 三 二 のの()

Chemically Reacting Fluid Mixture

Fluid composed of N chemically reacting components A_1, \ldots, A_N with N_R chemical reactions between the A_i :

$$\alpha_1^{a} A_1 + \ldots + \alpha_N^{a} A_N \to \beta_1^{a} A_1 + \ldots + \beta_N^{a} A_N \quad \text{ for } a = 1, \ldots, N_R$$

with stoichiometric coefficients $\alpha_i^a, \beta_i^a \in \mathbf{N}_0$

Let R_a be the (molar) rate of reaction a and set $\nu_i^a := \beta_i^a - \alpha_i^a$. Then

$$r_i = \sum_{a=1}^{N_R} M_i \nu_i^a R_a$$
 with M_i the molar mass of species A_i

is the total rate of change of mass of component A_i

Mass conservation in individual reactions: $\sum_i M_i \nu_i^a = 0 \quad \forall a$

▲ロト ▲圖 ▼ ▲ 画 ▼ ▲ 画 ▼ ろんの

Partial Balances of Mass, Momentum and Energy

Continuum mechanical balances of the fluid components A_i

$$\begin{array}{ll} \textbf{mass} : \partial_t \varrho_i + \operatorname{div} \left(\varrho_i \mathbf{v}_i \right) = r_i \\ \textbf{mom.} : \partial_t (\varrho_i \mathbf{v}_i) + \operatorname{div} \left(\varrho_i \mathbf{v}_i \otimes \mathbf{v}_i - \sigma_i \right) = \mathbf{f}_i + \varrho_i \mathbf{b}_i \\ \textbf{energy} : \partial_t (\varrho_i e_i + \frac{\varrho_i}{2} \mathbf{v}_i^2) + \operatorname{div} \left((\varrho_i e_i + \frac{\varrho_i}{2} \mathbf{v}_i^2) \mathbf{v}_i - \mathbf{v}_i \sigma_i + \tilde{\mathbf{q}}_i \right) = h_i + \varrho_i \mathbf{b}_i \cdot \mathbf{v}_i \\ \textbf{mass conservation:} \qquad \sum_i r_i = 0 \\ \textbf{momentum conservation:} \qquad \sum_i \mathbf{f}_i = 0 \\ \textbf{energy conservation:} \qquad \sum_i h_i = 0 \end{array}$$

Note: power due to external forces is $\rho_i \mathbf{b}_i \cdot \mathbf{v}_i$, while internal forces (mechanical and chemical interactions) contribute to the heat flux

Notations: Individual Quantities

- ρ_i individual mass density
- \mathbf{v}_i individual velocity field
- r_i mass production rate for A_i due to chemical reactions
- σ_i partial stresses
- **f**_i rate of momentum exchange
- \mathbf{b}_i body force acting on A_i
- e_i internal energy density for species i
- $\tilde{\mathbf{q}}_i$ individual heat fluxes
- *h_i* rate of energy exchange

Overall Strategy

Strategy for deriving consistent multicomponent diffusion fluxes:

- Class-III model as starting point (without closure)
- erive mixture model, keeping structural information from the individual balances
- ${f 3}$ evaluate the 2nd law to obtain a framework for closure laws
- It corresponding closure laws for class-II model
- I reduce to class-I model, using separation of time-scales

Non-Conservative Form of Momentum Balance

partial momentum balances: (nonconservative form)

$$\varrho_i \big(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i \big) - \operatorname{div} \sigma_i = \mathbf{f}_i - r_i \mathbf{v}_i + \varrho_i \mathbf{b}_i$$

The acceleration along a path of the *i*-component fluid particles, i.e. $\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i$ is an objective vector [see below].

In particular, $\mathbf{f}_i - r_i \mathbf{v}_i$ is also objective, hence \mathbf{f}_i is split according to

$$\mathbf{f}_i = \mathbf{F}_i + r_i \mathbf{v}_i^*$$

 \mathbf{F}_i are objective vectors denoting thermo-mechanical interactions, whereas $r_i \mathbf{v}_i^*$ is due to mass production. Note that in reactive collisions, momentum is transferred between different species. Hence

$$\varrho_i \big(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i \big) - \operatorname{div} \sigma_i = \mathbf{F}_i + r_i (\mathbf{v}_i^* - \mathbf{v}_i) + \varrho_i \mathbf{b}_i$$

▲ロト ▲圖 ▼ ▲ 画 ▼ ▲ 画 ▼ ろんの

Partial Balances of Internal Energy

auxiliary computation:

$$\partial_t \left(\varrho_i \frac{\mathbf{v}_i^2}{2} \right) + \operatorname{div} \left(\varrho_i \frac{\mathbf{v}_i^2}{2} \mathbf{v}_i \right) = \frac{\mathbf{v}_i^2}{2} r_i + \varrho_i \mathbf{v}_i \cdot \left(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i \right)$$

energy:
$$\partial_t (\varrho_i e_i + \frac{\varrho_i}{2} \mathbf{v}_i^2) + \operatorname{div} ((\varrho_i e_i + \frac{\varrho_i}{2} \mathbf{v}_i^2) \mathbf{v}_i - \mathbf{v}_i \sigma_i + \tilde{\mathbf{q}}_i) = \varrho_i \mathbf{b}_i \cdot \mathbf{v}_i + h_i$$

mom.: $\varrho_i (\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i) - \operatorname{div} \sigma_i = \mathbf{F}_i + r_i (\mathbf{v}_i^* - \mathbf{v}_i) + \varrho_i \mathbf{b}_i$

partial balance of internal energy:

$$\partial_t(\varrho_i e_i) + \operatorname{div}\left(\varrho_i e_i \mathbf{v}_i - \mathbf{v}_i \sigma_i + \tilde{\mathbf{q}}_i\right) = h_i - \mathbf{v}_i \cdot \left(\operatorname{div}\sigma_i + \mathbf{F}_i + r_i(\mathbf{v}_i^* - \frac{\mathbf{v}_i}{2})\right)$$
$$\Rightarrow \partial_t(\varrho_i e_i) + \operatorname{div}\left(\varrho_i e_i \mathbf{v}_i + \tilde{\mathbf{q}}_i\right) = \nabla \mathbf{v}_i : \sigma_i + h_i - \mathbf{v}_i \cdot \left(\mathbf{F}_i + r_i(\mathbf{v}_i^* - \frac{\mathbf{v}_i}{2})\right)$$

Balance of total mass, momentum and internal energy

definition of mixture quantities

$$\varrho := \sum_{i} \varrho_{i}, \quad \varrho \mathbf{v} := \sum_{i} \varrho_{i} \mathbf{v}_{i} \Rightarrow \text{ barycentric velocitiy } \mathbf{v}$$

 $\mathbf{u}_i := \mathbf{v}_i - \mathbf{v}$ diffusion velocities, $\mathbf{j}_i := \varrho_i \mathbf{u}_i$ diffusive mass fluxes

$$\sigma := \sum_i \left(\sigma_i - arrho_i \mathbf{u}_i \otimes \mathbf{u}_i
ight) \;\; \mathsf{mixture \; stress \; tensor}$$

$$\varrho \mathbf{b} := \sum_{i} \varrho_i \mathbf{b}_i$$
 total external force

$$\varrho e := \sum_i \varrho_i e_i$$
 total internal energy

$$\mathbf{q} := \sum_{i} \mathbf{q}_{i}$$
 with $\mathbf{q}_{i} = \tilde{\mathbf{q}}_{i} + \varrho_{i} e_{i} \mathbf{u}_{i} - \mathbf{u}_{i} \sigma_{i}$

mixture modeling meta principle: the mixture equations resemble partial balances, but for mixture quantities instead of individual ones.

Balance of total mass, momentum and internal energy

continuity equation:

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = 0$$
 (recall $\sum_i r_i = 0$)

mixture momentum balance:

$$\partial_t \rho \mathbf{v} + \operatorname{div} (\rho \mathbf{v} \otimes \mathbf{v} - \sigma) = \rho \mathbf{b}$$
 (recall $\sum_i \mathbf{f}_i = 0$)

mixture energy balance:

$$\partial_t(\varrho \mathbf{e}) + \operatorname{div}\left(\varrho \mathbf{e}\mathbf{v} + \mathbf{q}\right) = \nabla\mathbf{v} : \sum_i \sigma_i$$
$$-\sum_i \mathbf{u}_i \cdot \left(\mathbf{F}_i + r_i(\mathbf{v}_i^* - \mathbf{v}_i) + \operatorname{div}\sigma_i + \frac{r_i}{2}\mathbf{u}_i\right)$$
$$(\operatorname{recall}\sum_i h_i = 0, \sum_i \mathbf{F}_i + r_i\mathbf{v}_i^* = 0)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

- 2 The Maxwell-Stefan Equations Modeling
- 3 Partial and Mixture Balances
- 4 Constitutive Modeling
- 5 The Maxwell-Stefan Equations Analysis

Constitutive Modeling

Variables: $\rho_1, \ldots, \rho_N, \mathbf{v}_1, \ldots, \mathbf{v}_N, \rho_N$ required are constitutive equations (models) for

$$R_a$$
, \mathbf{u}_i (or \mathbf{j}_i), σ_i , \mathbf{F}_i , \mathbf{q} , $r_i(\mathbf{v}_i^* - \mathbf{v}_i)$

Below we always assume **non-polar fluids**, i.e. the partial moments of momentum are conserved. Hence the stresses σ_i are symmetric. Define the partial pressures by $p_i := -\frac{1}{3}trace(\sigma_i) \Rightarrow \sigma_i = -p_i\mathbf{l} + \sigma_i^o$ Preliminary information on equilibria: necessary conditions are

$$R_a = 0, \quad \mathbf{u}_i = 0, \quad \sigma_i^o = 0, \quad p_i = \tilde{p}_i(\varrho e, \varrho_1, \dots, \varrho_N), \quad \mathbf{q} = 0$$

Note: the condition on p_i means that pressure contributions due to compressibility (bulk viscosity) vanish at equilibria

Constitutive Modeling

Universal Principles:

- material frame indifference
- entropy principle
- ad 1. objectivity, frame indifference & form invariance
- ad 2. The second law of thermodynamics

Notation: a solution of the PDE-system is called a *thermodynamic process*

回 と く ヨ と く ヨ と

2

Objectivity

Assume 3+1 dimensional Euclidean space-time

Euclidean transformation: $(\mathbf{x},t) \rightarrow (\mathbf{x}^*,t^*)$, where

$$\mathbf{x}^* = \mathbf{c}(t) + \mathbf{Q}(t)\mathbf{x}$$
 with $\mathbf{Q}(t)\mathbf{Q}(t)^\mathsf{T} = \mathbf{I}, \qquad t^* = t + lpha$

idea: an Euclidean observer can measure distances and time intervals **objectivity**: specific behavior under a Euclidean transformation as

- objective scalar: $a^* = a$
- objective vector: $\mathbf{a}^* = \mathbf{Q}(t)\mathbf{a}$
- objective tensor: $\mathbf{A}^* = \mathbf{Q}(t)\mathbf{A}\mathbf{Q}(t)^{\mathsf{T}}$

Below we always let $\alpha = 0$.

Objectivity

Examples. (a) the position **x** is **not** objective, but displacement is:

$$\mathbf{x}^* - \mathbf{y}^* = \mathbf{c}(t) + \mathbf{Q}(t)\mathbf{x} - (\mathbf{c}(t) + \mathbf{Q}(t)\mathbf{y}) = \mathbf{Q}(t)(\mathbf{x} - \mathbf{y})$$

(b) the velocity **v** is **not** objective:

$$\mathbf{v}^*(\mathbf{x}^*,t^*) = \mathbf{Q}(t)\mathbf{v}(\mathbf{x},t) + \dot{\mathbf{c}}(t) + \mathbf{\Omega}(t)(\mathbf{x}^* - \mathbf{c}(t))$$

with the spin tensor $\mathbf{\Omega}(t) := \dot{\mathbf{Q}}(t)\mathbf{Q}(t)^{\mathsf{T}}$.

(c) relative velocities are objective:

$$\mathbf{v}^*(\mathbf{x}^*, t^*) - \mathbf{w}^*(\mathbf{x}^*, t^*) = \mathbf{Q}(t)(\mathbf{v}(\mathbf{x}, t) - \mathbf{w}(\mathbf{x}, t))$$

(d) acceleration is **not** objective:

$$\mathbf{a}^* = \mathbf{Q}\mathbf{a} + \ddot{\mathbf{c}} + (\dot{\mathbf{\Omega}} - \mathbf{\Omega}^2)(\mathbf{x}^* - \mathbf{c}) + 2\mathbf{\Omega}(\mathbf{v} - \dot{\mathbf{c}})$$

unless $\ddot{\textbf{c}}=0$ and $\dot{\textbf{Q}}=0,$ i.e. unless the transformation is a Galilean transformation

Material Frame Indifference

The principle of material frame indifference consists of two parts:

frame indifference

The constitutive mappings are observer-invariant, but they may depend on the motion of the material w.r. to an arbitrary chosen frame of reference

Ø form invariance

Different uniform motions of the material (rigid body motions) do not influence the material properties

Example: stress in a fluid. Constitutive mapping (for instance):

$$\sigma = \mathbf{S}(\operatorname{grad} \mathbf{v}), \qquad \sigma^* = \mathbf{S}^*(\operatorname{grad}^* \mathbf{v}^*)$$

Since stress is an objective tensor, the relation $\sigma^* = \mathbf{Q}\sigma\mathbf{Q}^{\mathsf{T}}$ always holds. Given **S**, this determines **S**^{*} for any Euclidean transformation. If also $\mathbf{S} = \mathbf{S}^*$ holds, then **S** satisfies the principle of material frame indifference.

The Second Law of Thermodynamics

The second law comprises the following postulates:

- There is an entropy/entropy-flux pair (ρs, Φ) as a material dependent quantity, satisfying the principle of material frame indifference (ρs is an objective scalar, Φ is an objective vector).
- 2 The pair $(\varrho s, \Phi)$ satisfies the balance equation

$$\partial_t(\varrho s) + \operatorname{div}(\varrho s \mathbf{v} + \Phi) = \zeta,$$

where the entropy production ζ satisfies $\zeta \ge 0$ for every thermodynamic process. Equilibria are characterized by $\zeta = 0$.

③ The entropy production has the form $\zeta = \sum_{m} \mathbf{F}_{m} \mathbf{D}_{m}$, where the so-called fluxes \mathbf{F}_{m} and driving forces \mathbf{D}_{m} vanish at equilibria.

Definition. We define the absolute temperature *T* and chemical potentials μ_i by $\frac{1}{T} := \frac{\partial h}{\partial \rho e}, \quad \frac{\mu_i}{T} := -\frac{\partial h}{\partial \rho_i}$

where h is the material function for the entropy ρs

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�(
Entropy Production

Assumption. We here restrict the dependence of the entropy in the way that $\rho s = h(\rho e, \rho_1, \dots, \rho_N)$.

Note: If further dependencies on all \mathbf{u}_i are included, these would drop out as a consequence of the 2^{nd} law.

Starting point for evaluation of the 2^{nd} law: entropy balance in the form

$$\partial_t(\varrho s) + \varrho s \operatorname{div} \mathbf{v} + \mathbf{v} \cdot \nabla(\varrho s) + \operatorname{div} \Phi = \zeta$$

Using $\rho s = h(\rho e, \rho_1, \dots, \rho_N)$, a straight forward computation yields

$$\begin{aligned} \zeta &= \frac{1}{T} \left(\partial_t (\varrho e) + \operatorname{div} (\varrho e \mathbf{v}) \right) - \sum_i \frac{\mu_i}{T} \left(\partial_t \varrho_i + \operatorname{div} (\varrho_i \mathbf{v}_i) \right) \\ &+ \frac{1}{T} \left(\varrho s T - \varrho e + \sum_i \varrho_i \mu_i \right) \operatorname{div} \mathbf{v} + \sum_i \frac{\mu_i}{T} \operatorname{div} (\varrho_i \mathbf{u}_i) + \operatorname{div} \Phi \end{aligned}$$

The Free Energy (or Helmholtz potential)

It is common to change for T to become an independent variable. By definition of T, μ_i , the total differential of $\rho s = h(\rho e, \rho_1, \dots, \rho_N)$ is:

$$d(\varrho s) = \frac{1}{T}d(\varrho e) - \sum_{i} \frac{\mu_{i}}{T}d\varrho_{i} \Rightarrow \quad d(\varrho e) = Td(\varrho s) + \sum_{i} \mu_{i}d\varrho_{i}$$

T becomes an independent variable by Legendre transformation:

$$\begin{split} \varrho e - \varrho s T &=: \varrho \psi \qquad \text{(the free energy)} \\ \Rightarrow \quad d(\varrho \psi) = d(\varrho e) - d(\varrho s T) = -\varrho s \, dT + \sum_{i} \mu_{i} d\varrho_{i} \\ \text{Hence:} \ \varrho \psi = \varrho \psi (T, \varrho_{1}, \dots, \varrho_{N}), \ \partial_{T} (\varrho \psi) = -\varrho s, \ \partial_{\varrho_{i}} (\varrho \psi) = \mu_{i} \end{split}$$

Note for later use:

$$\nabla(\varrho\psi) = \partial_{\mathcal{T}}(\varrho\psi)\nabla T + \sum_{i} \partial_{\varrho_{i}}(\varrho\psi)\nabla\varrho_{i} = -\varrho s\nabla T + \sum_{i} \mu_{i}\nabla\varrho_{i}$$

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ ● □ ● のへの

Entropy Production with viscosity and chemistry

Entropy production in terms of the free energy $\varrho \psi = \varrho e - \varrho s T$:

$$\begin{aligned} \zeta &= \operatorname{div} \left(\boldsymbol{\Phi} - \frac{\mathbf{q}}{T} + \sum_{i} \frac{\varrho_{i} \mathbf{u}_{i} \mu_{i}}{T} \right) - \frac{1}{T} \left(\boldsymbol{p} + \varrho \psi - \sum_{i} \varrho_{i} \mu_{i} \right) \operatorname{div} \mathbf{v} \\ &- \sum_{i} \mathbf{u}_{i} \cdot \left(\varrho_{i} \nabla \frac{\mu_{i}}{T} + \frac{1}{T} (\mathbf{F}_{i} + r_{i} (\mathbf{v}_{i}^{*} - \mathbf{v}_{i}) - \nabla p_{i} + \operatorname{div} \sigma_{i}^{o}) \right) \\ &- \frac{1}{T} \sum_{a=1}^{N_{R}} R_{a} \sum_{i=1}^{N} \left(\mu_{i} + \frac{1}{2} \mathbf{u}_{i}^{2} \right) M_{i} \nu_{i}^{a} + \sum_{i} \sigma_{i}^{o} : \mathbf{D}^{o} + \mathbf{q} \cdot \nabla \frac{1}{T}, \end{aligned}$$

where \mathbf{D}^{o} denotes the symmetric, traceless part of $\nabla \mathbf{v}$ Employ the second law to obtain

- the entropy flux
- 2 the Gibbs-Duhem equation (in the form of an Euler relation)
- I restrictions for constitutive equations for all dissipative mechanisms

Case 1: no viscosity, no chemistry

Now $\zeta \geq 0$ for any thermodynamic process necessarily requires:

ad 1. the entropy flux is given by

$$\Phi = \frac{\mathbf{q}}{T} - \sum_{i} \frac{\varrho_i \mathbf{u}_i \mu_i}{T}$$

ad 2. the Gibbs-Duhem equation holds, i.e.

$$p + \varrho \psi - \sum_{i} \varrho_{i} \mu_{i} = 0$$

Note: the latter implication requires some knowledge on the variables which are allowed for the constitutive equations. One needs that ζ is linear in div **v**. This also holds in the general case, but requires more arguments.

$$\Rightarrow \qquad \zeta = -\sum_{i} \mathbf{u}_{i} \cdot \left(\varrho_{i} \nabla \frac{\mu_{i}}{T} + \frac{1}{T} (\mathbf{F}_{i} - \nabla p_{i}) \right) + \mathbf{q} \cdot \nabla \frac{1}{T}$$

(日) 《母》 《母》 《母》 《日

Case 1: no viscosity, no chemistry

Note: the heat flux \mathbf{q} contains two terms with diffusion velocities, which leads to some ambiguity in the decomposition into a sum of products

$$\Rightarrow \quad \zeta = -\sum_{i} \mathbf{u}_{i} \cdot \left(\varrho_{i} \nabla \frac{\mu_{i}}{T} - \frac{1}{T} \nabla p_{i} - h_{i} \nabla \frac{1}{T} + \frac{1}{T} \mathbf{F}_{i} \right) + \tilde{\mathbf{q}} \cdot \nabla \frac{1}{T}$$

with the partial enthalpies $h_i := \varrho_i e_i + p_i$ and $\tilde{\mathbf{q}} := \sum_i \tilde{\mathbf{q}}_i$.

Hence

$$\zeta = -\sum_{i} \mathbf{u}_{i} \cdot \left(\mathbf{B}_{i} + \frac{1}{T} \mathbf{F}_{i} \right) + \tilde{\mathbf{q}} \cdot \nabla \frac{1}{T}$$

with

$$\mathbf{B}_i := \varrho_i \nabla \frac{\mu_i}{T} - \frac{1}{T} \nabla p_i - h_i \nabla \frac{1}{T}$$

Aim: employ the entropy inequality to obtain constitutive laws for the thermo-mechanical interactions, i.e. for the structure of the F_i

Case 1: no viscosity, no chemistry

Since the \mathbf{B}_i are part of the driving forces, we compute $\sum_i \mathbf{B}_i$

$$\sum_{i} \mathbf{B}_{i} = \sum_{i} \varrho_{i} \nabla \frac{\mu_{i}}{T} - \frac{1}{T} \nabla p - (\varrho e + p) \nabla \frac{1}{T}$$
$$= \frac{1}{T} \Big(\sum_{i} \varrho_{i} \nabla \mu_{i} - \nabla p \Big) + \Big(\sum_{i} \varrho_{i} \mu_{i} - (\varrho e + p) \Big) \nabla \frac{1}{T}$$

The Gibbs-Duhem equation $(p + \varrho \psi - \sum_i \varrho_i \mu_i = 0)$ implies

$$T\sum_{i}\mathbf{B}_{i}=\sum_{i}\varrho_{i}\nabla\mu_{i}-\nabla p-\varrho sT^{2}\nabla\frac{1}{T}$$

Now recall that $\nabla(\varrho\psi) = -\varrho s \nabla T + \sum_i \mu_i \nabla \varrho_i$. Hence

$$T\sum_{i} \mathbf{B}_{i} = \sum_{i} \varrho_{i} \nabla \mu_{i} - \nabla p + \sum_{i} \mu_{i} \nabla \varrho_{i} - \nabla (\varrho \psi) = 0$$

Note: $\sum_{i} \mathbf{B}_{i} = 0$ only results for this decomposition of ζ !

Exploiting the second law

The interaction term necessarily satisfies

$$-\sum_{i=1}^{N} \mathbf{u}_{i} \cdot \left(\mathbf{B}_{i} + \frac{1}{T}\mathbf{F}_{i}\right) \geq 0 \quad \text{and} \quad \sum_{i=1}^{N} \mathbf{B}_{i} = 0, \quad \sum_{i=1}^{N} \mathbf{F}_{i} = 0$$

Hence

$$-\sum_{i=1}^{N-1} (\mathbf{u}_i - \mathbf{u}_N) \cdot \left(\mathbf{B}_i + \frac{1}{T} \mathbf{F}_i \right) \geq 0$$

The standard linear Ansatz for $\mathbf{B}_i + \frac{1}{T}\mathbf{F}_i$ is

$$\mathbf{B}_i + \frac{1}{T}\mathbf{F}_i = -\sum_{j=1}^{N-1} \tau_{ij} \left(\mathbf{u}_j - \mathbf{u}_N \right) \qquad \text{(for } i = 1, \dots, N-1\text{)}$$

with a positive definite matrix $[\tau_{ij}]$. Extension to $N \times N$ format:

$$au_{iN} = -\sum_{j=1}^{N-1} au_{ij} \ (i = 1, \dots, N-1), \quad au_{Nj} = -\sum_{i=1}^{N-1} au_{ij} \ (j = 1, \dots, N)$$

$$\Rightarrow \quad \mathbf{B}_i + \frac{1}{T}\mathbf{F}_i = -\sum_{j=1}^N \tau_{ij} \left(\mathbf{u}_j - \mathbf{u}_N \right) \quad \text{for all } i = 1, \dots, N$$

▲ロ▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣ぬの

Exploiting the second law

Prop. The extended $N \times N$ -matrix $[\tau_{ij}]_1^N$ is positive semi-definite if the $(N-1) \times (N-1)$ -matrix $[\tau_{ij}]_1^{N-1}$ is positive (semi-)definite.

Proof. by the criterion of Sylvester, a quadratic matrix M is positive semi-definite iff the determinant of every upper left sub-matrix is non-negative.

Here: show that $det([\tau_{ij}]_1^N) \ge 0$. Laplace formula:

$$det([\tau_{ij}]_1^N) = \sum_{j=1}^N (-1)^{N+j} \tau_{Nj} det([\tau]_{Nj}),$$

where $[\tau]_{Nj}$ results from deletion of the j^{th} column and N^{th} row. Show by elementary properties of the determinant:

$$\det([\tau]_{Nj}) = (-1)^{N-j} \det([\tau]_{NN})$$

Hence

$$\det([\tau_{ij}]_1^N) = \det([\tau]_{NN}) \sum_{j=1}^N \tau_{Nj} = \ldots = 0$$

・ロト ・回 ・ ・回 ・ ・回 ・ うえの

Symmetry of Interactions

Straight forward computation yields

$$\mathbf{B}_i + rac{1}{T}\mathbf{F}_i = -\sum_{j=1}^N au_{ij} \left(\mathbf{u}_j - \mathbf{u}_N
ight) = \sum_{j=1}^N au_{ij} \left(\mathbf{u}_i - \mathbf{u}_j
ight)$$

Assumption of binary type interactions: (Truesdell)

$$au_{ij} = au_{ij}(arrho_i, arrho_j, T) o 0 \quad \text{if } arrho_i o 0+ \text{ or } arrho_j o 0+$$

This implies symmetry of $[\tau]$: Evaluate $\sum_{i,j} \tau_{ij} (\mathbf{u}_i - \mathbf{u}_j) = 0$. N = 2: $(\tau_{12} - \tau_{21}) (\mathbf{u}_1 - \mathbf{u}_2) = 0$ for any TD process $\Rightarrow \tau_{12} = \tau_{21}$ N = 3: $(\tau_{12} - \tau_{21}) (\mathbf{u}_1 - \mathbf{u}_2) + (\tau_{13} - \tau_{31}) (\mathbf{u}_1 - \mathbf{u}_3) + (\tau_{23} - \tau_{32}) (\mathbf{u}_2 - \mathbf{u}_3) = 0$ $\varrho_3 \to 0 + \Rightarrow \tau_{12} = \tau_{21}; \ \varrho_2 \to 0 + \Rightarrow \tau_{13} = \tau_{31}; \ \varrho_1 \to 0 + \Rightarrow \tau_{23} = \tau_{32}$ N > 3: induction over N.

Exploiting the second law

Ansatz to incorporate both symmetry and binary interactions:

$$au_{ij} = -f_{ij}\varrho_i\varrho_j$$
 with $f_{ij} = f_{ij}(\varrho_i, \varrho_j, T)$

$$\Rightarrow \quad \mathbf{B}_i + \frac{1}{T}\mathbf{F}_i = -\sum_{j=1}^N f_{ij}\varrho_i\varrho_j(\mathbf{u}_i - \mathbf{u}_j) \quad = -\sum_{j=1}^N f_{ij}\varrho_i\varrho_j(\mathbf{v}_i - \mathbf{v}_j)$$

dissipation due to interactions:

$$\begin{aligned} -\sum_{i=1}^{N} \mathbf{u}_{i} \cdot \left(\mathbf{B}_{i} + \frac{1}{T}\mathbf{F}_{i}\right) &= \sum_{i,j=1}^{N} f_{ij}\varrho_{i}\varrho_{j}(\mathbf{u}_{i} - \mathbf{u}_{j}) \cdot \mathbf{u}_{i} \\ &= \frac{1}{2}\sum_{i,j=1}^{N} f_{ij}\varrho_{i}\varrho_{j}(\mathbf{u}_{i} - \mathbf{u}_{j})^{2} \ge 0 \; ! \end{aligned}$$

Hence the f_{ij} are symmetric and non-negative "friction factors"

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances: (nonconservative form)

$$\varrho_i \big(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i \big) + \nabla \rho_i = \mathbf{F}_i + \varrho_i \mathbf{b}_i$$

Employ

$$\frac{1}{T}\mathbf{F}_{i}=-\mathbf{B}_{i}-\sum_{j}f_{ij}\varrho_{i}\varrho_{j}(\mathbf{v}_{i}-\mathbf{v}_{j}),\quad\mathbf{B}_{i}=\varrho_{i}\nabla\frac{\mu_{i}}{T}-\frac{1}{T}\nabla\rho_{i}-h_{i}\nabla\frac{1}{T}$$

This yields the final form of the partial momentum balance in the case without viscosity and chemical reactions as

$$\varrho_i \left(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i \right) = -\varrho_i T \nabla \frac{\mu_i}{T} + T h_i \nabla \frac{1}{T} - T \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j) + \varrho_i \mathbf{b}_i$$
isothermal case:

$$\varrho_i \big(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i \big) = -\varrho_i \nabla \mu_i - T \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j) + \varrho_i \mathbf{b}_i$$

(ロ) 《母) 《臣) 《臣) 《国) 《の

Class - II Model

Resulting model (non reactive, non viscous, symmetric interactions)

mass : $\partial_t \varrho_i + \operatorname{div}(\varrho_i \mathbf{v}_i) = 0$

$$\begin{array}{l} \mathsf{momentum} : \partial_t(\varrho_i \mathbf{v}_i) + \operatorname{div}\left(\varrho_i \mathbf{v}_i \otimes \mathbf{v}_i\right) = -\varrho_i \, T \nabla \frac{\mu_i}{T} + T h_i \nabla \frac{1}{T} \\ &- T \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j) + \varrho_i \mathbf{b}_i \end{array}$$

energy :
$$\partial_t(\varrho e) + \operatorname{div}(\varrho e \mathbf{v} + \mathbf{q}) = \nabla \mathbf{v} : \sum_i \sigma_i - \sum_i \mathbf{u}_i \cdot \mathbf{F}_i$$

constitutive equation for the heat flux:

$$\tilde{\mathbf{q}} = \alpha \nabla \frac{1}{T}$$
 with $\alpha \ge 0 \quad \Rightarrow \quad \tilde{\mathbf{q}} \cdot \nabla \frac{1}{T} \ge 0$

Hence

$$\mathbf{q} = \tilde{\mathbf{q}} + \sum_{i} h_{i} \mathbf{u}_{i} = \alpha \nabla \frac{1}{T} + \sum_{i} h_{i} \mathbf{u}_{i}$$

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ◆ の Q @

Comparison with Existing Models

Partial momentum balances due to P. Kerkhof (TU/e):

$$\begin{aligned} \partial_t(\varrho_i \mathbf{v}_i) + \nabla \cdot (\varrho_i \mathbf{v}_i \otimes \mathbf{v}_i) &= -c_i \nabla_T \hat{\mu}_i + \varrho_i \mathbf{b}_i \\ &- c^{\text{tot}} R T \sum_{j \neq i} \frac{x_i x_j}{\mathbf{D}_{ij}} (\mathbf{v}_i - \mathbf{v}_j) \\ &- c^{\text{tot}} R T \sum_{j \neq i} \frac{x_i x_j}{\mathbf{D}_{ij}} \left(\frac{D_i^T}{\varrho_i} - \frac{D_j^T}{\varrho_j} \right) \nabla \ln T \end{aligned}$$

Result from above (rational thermodynamics):

$$\partial_t(\varrho_i \mathbf{v}_i) + \operatorname{div} (\varrho_i \mathbf{v}_i \otimes \mathbf{v}_i) = - \varrho_i \nabla \mu_i + \varrho_i \mathbf{b}_i - T \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j) - (h_i - \varrho_i \mu_i) \nabla \ln T$$

Note: ∇_T denotes "the gradient taken at constant T", $c_i = \varrho_i/M_i$, $\hat{\mu}_i = M_i \mu_i$. Hence agreement is achieved in the isothermal case

Scale-Reduced Class - I Model

$$\begin{aligned} \varrho_i(\partial_t \mathbf{v}_i + \mathbf{v}_i \cdot \nabla \mathbf{v}_i) &= -\varrho_i T \nabla \frac{\mu_i}{T} + Th_i \nabla \frac{1}{T} + \varrho_i \mathbf{b}_i - T \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j) \\ y_i \times \text{total mom.}: \quad y_i \varrho(\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}) &= -y_i \nabla p + y_i \varrho \mathbf{b} \end{aligned}$$

$$\Rightarrow \varrho_i(\partial_t + \mathbf{v} \cdot \nabla)\mathbf{u}_i + \varrho_i \mathbf{u}_i \cdot \nabla \mathbf{v}_i = y_i \nabla p - \varrho_i \nabla \mu_i + T(h_i - \varrho_i \mu_i) \nabla \frac{1}{T} + \varrho_i (\mathbf{b}_i - \mathbf{b}) - T \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{u}_i - \mathbf{u}_j)$$

Assume quasi-stationarity w.r. to changes in diffusion velocities along mixture trajectories and obey objectivity; set $D_{ij} := R/f_{ij}$ and $\mathbf{j}_i := \varrho_i \mathbf{u}_i$

$$\Rightarrow -\sum_{j\neq i} \frac{y_j j_i - y_i j_j}{D_{ij}} = \frac{y_i}{RT} \nabla \mu_i - \frac{y_i}{\varrho RT} \nabla \rho + \frac{\varrho_i \mu_i - h_i}{\varrho R} \nabla \frac{1}{T} - \frac{y_i}{\varrho RT} (\mathbf{b}_i - \mathbf{b})$$

Notation from Eng. literature: $\nabla \mu_i = \nabla_{p,T} \mu_i + \partial_p \mu_i \nabla p + \partial_T \mu_i \nabla T$.

$$\Rightarrow \mathbf{d}_{i} = \frac{y_{i}}{RT} \nabla_{\mathbf{p}, T} \mu_{i} + \frac{\phi_{i} - y_{i}}{\varrho RT} \nabla \mathbf{p} + \frac{h_{i} - \varrho_{i} s_{i} T - \varrho_{i} \mu_{i}}{\varrho RT} \nabla \ln T - \frac{y_{i}}{RT} (\mathbf{b}_{i} - \mathbf{b})$$

Phenomena: molecular, pressure, thermo- (Sort effect) & forced diffusion

Euler-Maxwell-Stefan Equations

Resulting model (non reactive, non viscous, symmetric interactions)

species :
$$\partial_t \varrho_i + \operatorname{div} (\varrho_i \mathbf{v} + \mathbf{j}_i) = 0$$

momentum : $\partial_t(\varrho \mathbf{v}) + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{v}) = -\nabla p + \varrho \mathbf{b}$

energy :
$$\partial_t(\varrho e) + \operatorname{div}(\varrho e \mathbf{v} + \mathbf{q}) = -p \operatorname{div} \mathbf{v} - \sum_i \mathbf{u}_i \cdot \mathbf{F}_i$$

diff fluxes :
$$\mathbf{d}_i = -\sum_{j \neq i} \frac{y_j \mathbf{j}_i - y_i \mathbf{j}_j}{D_{ij}}, \qquad \sum_i \mathbf{j}_i = 0$$

heat flux : $\mathbf{q} = \alpha \nabla \frac{1}{T} + \sum_{i} h_{i} \mathbf{u}_{i}$

driving f.: $\mathbf{d}_i = \frac{y_i}{RT} \nabla_{\mathbf{p},T} \mu_i + \frac{\phi_i - y_i}{\varrho RT} \nabla \mathbf{p} + \frac{h_i - \varrho_i s_i T - \varrho_i \mu_i}{\varrho RT} \nabla \ln T - \frac{y_i}{RT} (\mathbf{b}_i - \mathbf{b})$

Note: p obeys an EOS $p = p(\varrho_i, T)$; an incompressible version is possible

Case 2: no viscosity, with chemical reactions

With chemical reactions, the entropy production is:

$$\zeta = -\frac{1}{T} \sum_{a=1}^{N_R} R_a \sum_{i=1}^{N} \left(\mu_i + \frac{1}{2} \mathbf{u}_i^2 \right) M_i \nu_i^a + \tilde{\mathbf{q}} \cdot \nabla \frac{1}{T} - \sum_i \mathbf{u}_i \cdot \left(\mathbf{B}_i + \frac{1}{T} (\mathbf{F}_i + r_i (\mathbf{v}_i^* - \mathbf{v}_i)) \right)$$

with the partial enthalpies $h_i := \varrho_i e_i + p_i$, heat flux $\tilde{\mathbf{q}} := \sum_i \tilde{\mathbf{q}}_i$ and

$$\mathbf{B}_i := \varrho_i \nabla \frac{\mu_i}{T} - \frac{1}{T} \nabla p_i - h_i \nabla \frac{1}{T}$$

Furthermore:

 $\sum_i {f B}_i = 0$ as before , $\sum_i ({f F}_i + r_i {f v}_i^*) = 0$ momentum conservation But

$$\sum_{i} (\mathbf{F}_{i} + r_{i} (\mathbf{v}_{i}^{*} - \mathbf{v}_{i})) \neq 0 !$$

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Case 2: no viscosity, with chemical reactions

Way out: another regrouping of the entropy production terms as

$$\begin{aligned} \zeta &= -\frac{1}{T} \sum_{a=1}^{N_R} R_a \sum_{i=1}^{N} \left(\mu_i - \frac{1}{2} \mathbf{u}_i^2 \right) M_i \nu_i^a + \tilde{\mathbf{q}} \cdot \nabla \frac{1}{T} \\ &- \sum_i \mathbf{u}_i \cdot \left(\mathbf{B}_i + \frac{1}{T} (\mathbf{F}_i + r_i (\mathbf{v}_i^* - \mathbf{v})) \right) \end{aligned}$$

Because of $\sum_{i} r_i = 0$ we now have:

$$\sum_i \mathbf{B}_i = 0$$
 and $\sum_i (\mathbf{F}_i + r_i (\mathbf{v}_i^* - \mathbf{v})) = 0$

Hence, as before:

$$\frac{1}{T} \left(\mathbf{F}_i + r_i (\mathbf{v}_i^* - \mathbf{v}) \right) + \mathbf{B}_i = -\sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j) \text{ with } f_{ij} = f_{ji} > 0$$

$$\Rightarrow \quad \mathbf{F}_i + r_i (\mathbf{v}_i^* - \mathbf{v}_i) = -r_i \mathbf{u}_i - T \mathbf{B}_i - T \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j)$$

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆ 臣 → ○○○

Class - II Model with Chemical Reactions

Resulting model (reactive, non viscous, symmetric interactions)

$$\begin{aligned} \mathbf{mass} &: \partial_t \varrho_i + \operatorname{div} \left(\varrho_i \mathbf{v}_i \right) = 0 \\ \mathbf{mom.} &: \partial_t (\varrho_i \mathbf{v}_i) + \operatorname{div} \left(\varrho_i \mathbf{v}_i \otimes \mathbf{v}_i \right) = -\varrho_i T \nabla \frac{\mu_i}{T} + T h_i \nabla \frac{1}{T} + \varrho_i \mathbf{b}_i \\ &- T \sum_j f_{ij} \varrho_i \varrho_j (\mathbf{v}_i - \mathbf{v}_j) - r_i (\mathbf{v}_i - \mathbf{v}) \end{aligned}$$

energy : $\partial_t(\varrho e) + \operatorname{div}(\varrho e \mathbf{v} + \mathbf{q}) = \nabla \mathbf{v} : \sum_i \sigma_i - \sum_i \mathbf{u}_i \cdot (\mathbf{F}_i + r_i(\mathbf{v}_i^* - \mathbf{v}_i))$

constitutive equation for the heat flux (as before):

$$\mathbf{q} = \alpha \nabla \frac{1}{T} + \sum_{i} h_{i} \mathbf{u}_{i}$$

Result: chemical reactions change the partial momentum balance, hence also the relative velocities!

Scale-Reduced Class - I Model with Chemical Reactions

Assuming again quasi-stationarity w.r. to changes in diffusion velocities along mixture trajectories and using objectivity yields:

$$-\sum_{j\neq i} \frac{y_{j}\mathbf{i}_{i}-y_{i}\mathbf{j}_{j}}{D_{ij}} = \frac{y_{i}}{RT} \nabla \mu_{i} - \frac{y_{i}}{\varrho RT} \nabla p + \frac{\varrho_{i}\mu_{i}-h_{i}}{\varrho R} \nabla \frac{1}{T} - \frac{y_{i}}{RT} (\mathbf{b}_{i} - \mathbf{b}) + \frac{r_{i}}{\varrho RT} \mathbf{u}_{i}$$

Eng. literature notation: $\nabla \mu_i = \nabla_{\rho,T} \mu_i + \partial_{\rho} \mu_i \nabla \rho + \partial_T \mu_i \nabla T$.

$$\mathbf{d}_{i} = \frac{y_{i}}{RT} \nabla_{\boldsymbol{p},T} \mu_{i} + \frac{\phi_{i} - y_{i}}{\varrho RT} \nabla \boldsymbol{p} + \frac{h_{i} - \varrho_{i} s_{i} T - \varrho_{i} \mu_{i}}{\varrho RT} \nabla \ln T - \frac{y_{i}}{RT} (\mathbf{b}_{i} - \mathbf{b}) + \frac{r_{i}}{\varrho RT} \mathbf{u}_{i}$$

molecular, pressure, thermo- (Sorét effect), forced & reactive diffusion

Reactive Euler-Maxwell-Stefan Equations

Resulting model (reactive, non viscous, symmetric interactions)

species :
$$\partial_t \varrho_i + \operatorname{div} (\varrho_i \mathbf{v} + \mathbf{j}_i) = r_i$$

mom.: $\partial_t(\rho \mathbf{v}) + \operatorname{div}(\rho \mathbf{v} \otimes \mathbf{v}) = -\nabla p + \rho \mathbf{b}$ (plus an EOS for p)

energy :
$$\partial_t(\varrho e) + \operatorname{div}(\varrho e \mathbf{v} + \mathbf{q}) = -p \operatorname{div} \mathbf{v} - \sum_i \mathbf{u}_i \cdot (\mathbf{F}_i + r_i(\mathbf{v}_i^* - \mathbf{v}_i))$$

diff fluxes :
$$\mathbf{d}_i = -\sum_{j \neq i} \frac{y_j \mathbf{j}_i - y_i \mathbf{j}_j}{D_{ij}}, \qquad \sum_i \mathbf{j}_i = 0$$

heat flux : $\mathbf{q} = \alpha \nabla \frac{1}{T} + \sum_i h_i \mathbf{u}_i$

driving f.: $\mathbf{d}_{i} = \frac{y_{i}}{RT} \nabla_{p,T} \mu_{i} + \frac{\phi_{i} - y_{i}}{\varrho RT} \nabla p + \frac{h_{i} - \varrho_{i} s_{i} T - \varrho_{i} \mu_{i}}{\varrho RT} \nabla \ln T - \frac{y_{i}}{RT} (\mathbf{b}_{i} - \mathbf{b}) + \frac{r_{i}}{\rho RT} \mathbf{u}_{i}$

▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへで

Case 3: shear viscosity and chemical reactions

With chemical reactions and shear viscosity, the entropy production is:

$$\zeta = -\frac{1}{T} \sum_{a=1}^{N_R} R_a \sum_{i=1}^{N} \left(\mu_i - \frac{1}{2} \mathbf{u}_i^2 \right) M_i \nu_i^a + \tilde{\mathbf{q}} \cdot \nabla \frac{1}{T} + \frac{1}{T} \sum_i \sigma_i^o : \mathbf{D}^o - \sum_i \mathbf{u}_i \cdot \left(\mathbf{B}_i + \frac{1}{T} (\mathbf{F}_i + r_i (\mathbf{v}_i^* - \mathbf{v})) \right)$$

with the partial enthalpies $h_i := \varrho_i e_i + p_i$, heat flux $\tilde{\mathbf{q}} := \sum_i \tilde{\mathbf{q}}_i$ and

$$\mathbf{B}_i := \varrho_i \nabla \frac{\mu_i}{T} - \frac{1}{T} \nabla p_i - h_i \nabla \frac{1}{T} + \operatorname{div} \frac{\sigma_i^{\circ}}{T} - \lambda \varrho_i,$$

where $\lambda := \frac{1}{\varrho} \sum_{i} \operatorname{div} \frac{\sigma_{i}^{\circ}}{T}$ acts like a Lagrange multiplier Note: $\sum_{i} \mathbf{u}_{i} \cdot \lambda \varrho_{i} = \lambda \sum_{i} \mathbf{j}_{i} = 0$ for every $\lambda \in \mathbb{R}$ Furthermore, as before:

$$\sum_i \mathbf{B}_i = 0$$
 and $\sum_i (\mathbf{F}_i + r_i (\mathbf{v}_i^* - \mathbf{v})) = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Case 3: no viscosity, with chemical reactions

Consequently, as before:

$$\mathbf{F}_i + r_i(\mathbf{v}_i^* - \mathbf{v}_i) = -r_i\mathbf{u}_i - T\mathbf{B}_i - T\sum_j f_{ij}\varrho_i\varrho_j(\mathbf{v}_i - \mathbf{v}_j)$$

with

$$\mathbf{B}_i := \varrho_i \nabla \frac{\mu_i}{T} - \frac{1}{T} \nabla \rho_i - h_i \nabla \frac{1}{T} + \operatorname{div} \frac{\sigma_i^\circ}{T} - y_i \sum_k \operatorname{div} \frac{\sigma_k^\circ}{T}$$

Assuming again quasi-stationarity and using objectivity yields:

$$-\sum_{j\neq i} \frac{y_{i}\mathbf{j}_{i}-y_{i}\mathbf{j}_{j}}{D_{ij}} = \frac{y_{i}}{RT}\nabla\mu_{i} - \frac{y_{i}}{\varrho RT}\nabla\rho + \frac{\varrho_{i}\mu_{i}-h_{i}}{\varrho R}\nabla\frac{1}{T} - \frac{y_{i}}{RT}(\mathbf{b}_{i}-\mathbf{b}) + \frac{r_{i}}{\varrho RT}\mathbf{u}_{i}$$
$$- \frac{1}{\varrho RT}\left(\sigma_{i}^{o} - y_{i}\sum_{k}\sigma_{k}^{o}\right) : \nabla\ln T + \frac{y_{i}}{\varrho RT}\operatorname{div}\left(\sigma^{0} - \sum_{k}\sigma_{k}^{o}\right)$$

Note: div $(\sigma^0 - \sum_k \sigma_k^o) = div ((\varrho_i \mathbf{u}_i \otimes \mathbf{u}_i)^o)$ is of second order in \mathbf{u}_i This (just) leads to a shear induced correction of the Sorét effect:

$$\mathbf{d}_{i} = \frac{y_{i}}{RT} \nabla_{\boldsymbol{p},T} \mu_{i} + \frac{\phi_{i} - y_{i}}{\varrho RT} \nabla \boldsymbol{p} - \frac{y_{i}}{RT} (\mathbf{b}_{i} - \mathbf{b}) + \frac{r_{i}}{\varrho RT} \mathbf{u}_{i} + \frac{1}{\varrho RT} (h_{i} - \varrho_{i} s_{i} T - \varrho_{i} \mu_{i} - (\sigma_{i}^{o} - y_{i} \sum_{k} \sigma_{k}^{o})) \nabla \ln T$$

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ ● ⑦�?

Reactive Navier-Stokes-Maxwell-Stefan Equations

Resulting model (reactive, shear viscosity, symmetric interactions)

species :
$$\partial_t \varrho_i + \operatorname{div} (\varrho_i \mathbf{v} + \mathbf{j}_i) = r_i$$

 $\mathbf{mom.}: \ \partial_t(\varrho \mathbf{v}) + \operatorname{div}\left(\varrho \mathbf{v} \otimes \mathbf{v}\right) + \nabla p = \eta \Delta \mathbf{v} + \varrho \mathbf{b} \quad (+ \text{ an EOS for } p)$

energy :
$$\partial_t(\varrho e) + \operatorname{div}(\varrho e \mathbf{v} + \mathbf{q}) = -\rho \operatorname{div} \mathbf{v} - \sum_i \mathbf{u}_i \cdot (\mathbf{F}_i + r_i(\mathbf{v}_i^* - \mathbf{v}_i))$$

diff fluxes :
$$\mathbf{d}_i = -\sum_{j \neq i} \frac{y_j \mathbf{j}_i - y_i \mathbf{j}_j}{D_{ij}}, \qquad \sum_i \mathbf{j}_i = 0$$

heat flux : $\mathbf{q} = \alpha \nabla \frac{1}{T} + \sum_i h_i \mathbf{u}_i$

driving f.:
$$\mathbf{d}_i = \frac{y_i}{RT} \nabla_{p,T} \mu_i + \frac{\phi_i - y_i}{\varrho RT} \nabla p - \frac{y_i}{RT} (\mathbf{b}_i - \mathbf{b}) + \frac{r_i}{\varrho RT} \mathbf{u}_i$$

 $+ \frac{1}{\varrho RT} (h_i - \varrho_i s_i T - \varrho_i \mu_i - (\sigma_i^o - y_i \sum_k \sigma_k^o)) \nabla \ln T$

▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへで

Reactive Navier-Stokes-Maxwell-Stefan Equations

An isothermal and incompressible variant:

$$div \mathbf{v} = \mathbf{0}$$

$$\partial_t(\varrho \mathbf{v}) + div (\varrho \mathbf{v} \otimes \mathbf{v}) + \nabla p = \eta \Delta \mathbf{v} + \varrho \mathbf{b}$$

$$\varrho(\partial_t y_i + \mathbf{v} \cdot y_i) + div \mathbf{j}_i = r_i$$

$$\mathbf{d}_i = -\sum_{j \neq i} \frac{y_j \mathbf{j}_i - y_i \mathbf{j}_j}{D_{ij}}, \qquad \sum_i \mathbf{j}_i = \mathbf{0}$$

$$\mathbf{d}_{i} = \frac{y_{i}}{RT} \nabla_{\boldsymbol{p},T} \mu_{i} + \frac{\phi_{i} - y_{i}}{\varrho RT} \nabla \boldsymbol{p} - \frac{y_{i}}{RT} (\mathbf{b}_{i} - \mathbf{b}) + \frac{r_{i}}{\varrho RT} \mathbf{u}_{i}$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

Chemical Reaction Kinetics

Since TD developed from an equilibrium theory, reactions are assumed to be reversible:

$$\alpha_1^{a}A_1 + \ldots + \alpha_N^{a}A_N \rightleftharpoons \beta_1^{a}A_1 + \ldots + \beta_N^{a}A_N \quad \text{ for } a = 1, \ldots, N_R$$

The (molar) rate R_a of reaction a can be shown to only depend as

$$R_a = R_a(T, \varrho_1, \dots, \varrho_N) \text{ resp. } R_a(T, c_1, \dots, c_N) \text{ resp. } R_a(p, T, c_1, \dots, c_{N-1})$$

For systems not far from equilibrium: closure is linear in the driving forces

$$\Rightarrow R_a = -\sum_{b=1}^{N_R} L_{ab} \sum_{i=1}^{N} (\mu_i - \frac{\mathbf{u}_i^2}{2}) M_i \nu_i^b \text{ with } [L_{ab}] \text{ positive (semi-)definite}$$

Chemical Reaction Kinetics

Example: $A_1 + A_2 \rightleftharpoons A_3$. For diluted case:

$$\mu_i = \mu_i^0 + RT \ln c_i$$
 with $\mu_i^0 = \mu_i^0(p, T)$, $i = 1, 2, 3$

Hence (ignoring the diffusive velocity influence for simplicity)

$$R = -k \Big(-\mu_1^0 - \mu_1^0 + \mu_1^0 - RT \ln \frac{c_1 c_2}{c_3} \Big)$$

equi: $c_1^{eq}c_2^{eq} = Kc_3^{eq}$ with some equilibrium "constant" K and R = 0

$$R = -kRT\left(\ln K - \ln \frac{c_1c_2}{c_3}\right) \doteq kRT\left(\frac{c_1c_2}{Kc_3} - 1\right)$$

Resulting form of kinetic equation is of mass action type:

$$R = k^{f}c_{1}c_{2} - k^{b}c_{3}$$
 with k^{f}, k^{b} depending on p, T, c_{i}

▲ロト ▲聞 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 □ ∽ � €

Introduction

- 2 The Maxwell-Stefan Equations Modeling
- 3 Partial and Mixture Balances
- 4 Constitutive Modeling
- 5 The Maxwell-Stefan Equations Analysis

Maxwell-Stefan Equations

The simplest case of isobaric isothermal MS-diffusion:

$$\mathbf{v} = 0, \qquad \partial_t c_i + \operatorname{div} \mathbf{J}_i = r_i^{\operatorname{tot}},$$
$$(\mathbf{d}_i =) \quad \frac{x_i}{RT} \operatorname{grad} \mu_i = -\sum_{j \neq i} \frac{x_j \mathbf{J}_i - x_i \mathbf{J}_j}{c_{\operatorname{tot}} \oplus_{ij}}, \qquad (MS)$$
$$\sum_i \mathbf{J}_i = 0.$$

Remark. The Maxwell-Stefan diffusivities \oplus_{ij} are usually assumed to be nonnegative, constant & symmetric. But they may depend on **c** below! In this case $\sum_{i} \mathbf{d}_{i} = 0$ necessarily holds due to $\oplus_{ij} = \bigoplus_{ji}$.

Maxwell-Stefan Equations for Binary Systems

Example (binary system).

$$\mathbf{J}_1 = -\mathbf{J}_2 = -\frac{\mathbf{\mathfrak{P}}_{12}}{RT} c_1 \operatorname{grad} \mu_1.$$
$$\overline{\partial_t c - \Delta \phi(c) = r(c)}$$

with

$$\phi'(s) = rac{\oplus_{12}}{RT}(1+s\gamma'(s)/\gamma(s)), \quad \phi(0) = 0.$$

Sufficient for parabolicity:

 $s
ightarrow s \gamma(s)$ increasing $\Leftrightarrow \mu(\cdot)$ increasing \Leftrightarrow convex energy

Inversion of the Flux-Force Relations - I

Direct approach: eliminate $J_n (= \sum_{i=1}^{n-1} J_i)$ and $x_n (= 1 - \sum_{i=1}^{n-1} x_i)$

$$c_{\text{tot}} \begin{bmatrix} \mathbf{d}_{1} \\ \vdots \\ \mathbf{d}_{n-1} \end{bmatrix} = \mathbf{B} \begin{bmatrix} \mathbf{J}_{1} \\ \vdots \\ \mathbf{J}_{n-1} \end{bmatrix}$$

with

$$B_{ij} = x_i \Big(\frac{1}{D_{1n}} - \frac{1}{D_{ij}} \Big) \text{ for } i \neq j, \quad B_{ii} = \frac{x_i}{D_{in}} + \sum_{k \neq i} \frac{x_k}{D_{ik}}.$$

Formally,

$$\begin{bmatrix} \mathbf{J}_1 \\ \vdots \\ \mathbf{J}_{n-1} \end{bmatrix} = c_{\text{tot}} \mathbf{B}^{-1} \mathbf{\Gamma} \begin{bmatrix} \nabla x_1 \\ \vdots \\ \nabla x_{n-1} \end{bmatrix},$$

where

$$\mathbf{\Gamma} = (\Gamma_{ij})$$
 with $\Gamma_{ij} = \delta_{ij} + x_i \frac{\partial \ln \gamma_i}{\partial c_j}$.

▲日▼ ▲雪▼ ▲田▼ ▲田▼ ▲ ● ◆○◆

Intro MS-equation Balances Modeling Analysis of MS

Maxwell-Stefan Equations for Ternary Systems

Example (ternary system).

$$\mathbf{B} = \begin{bmatrix} \frac{1}{D_{13}} + x_2 \left(\frac{1}{D_{12}} - \frac{1}{D_{13}} \right) & -x_1 \left(\frac{1}{D_{12}} - \frac{1}{D_{13}} \right) \\ -x_2 \left(\frac{1}{D_{12}} - \frac{1}{D_{23}} \right) & \frac{1}{D_{23}} + x_1 \left(\frac{1}{D_{12}} - \frac{1}{D_{23}} \right) \end{bmatrix}$$

 $\det(\mathbf{B} - \lambda \mathbf{I}) = \lambda^2 - \operatorname{tr} \mathbf{B} \lambda + \det \mathbf{B}$ with

det
$$\mathbf{B} = \frac{x_1}{D_{12} D_{13}} + \frac{x_2}{D_{12} D_{23}} + \frac{x_3}{D_{13} D_{23}} \ge \min\{\frac{1}{D_{12} D_{13}}, \frac{1}{D_{12} D_{23}}, \frac{1}{D_{13} D_{23}}\} > 0$$

and

$$\operatorname{tr} \mathbf{B} = \frac{x_1 + x_2}{D_{12}} + \frac{x_1 + x_3}{D_{13}} + \frac{x_2 + x_3}{D_{23}} \ge 2\min\{\frac{1}{D_{12}}, \frac{1}{D_{13}}, \frac{1}{D_{23}}\} > 0.$$

 $(\operatorname{tr} \mathbf{B})^2 \ge 3 \operatorname{det} \mathbf{B} \quad \Rightarrow$ $\sigma(\mathbf{B}^{-1}(\mathbf{x})) \subset \Sigma_{\theta} := \{\lambda \in \mathbb{C} \setminus \{0\} : |\operatorname{arg} \lambda| < \theta\} \quad \text{ for } \theta = \frac{\pi}{6}.$

◆ロ → ◆昼 → ◆ き → ◆ 電 → ◆ ④ ◆ ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Inversion of the Flux-Force Relations - II

Invariant Formulation: solve $A \mathbf{J} = \mathbf{d}$ on $E = \{ u \in \mathbb{R}^n : \sum_i u_i = 0 \}$,

$$A = \begin{bmatrix} -s_1 & \dots & d_{ij} \\ d_{ij} & \dots & -s_n \end{bmatrix}, \quad s_i = \sum_{k \neq i} \frac{x_k}{\overline{\mathbb{D}}_{ik}}, \quad d_{ij} = \frac{x_i}{\overline{\mathbb{D}}_{ij}}$$

Properties of A:

• $N(A) = \operatorname{span}{\mathbf{x}}$ for $\mathbf{x} = (x_1, \ldots, x_n)$

•
$$R(A) = {\mathbf{e}}^{\perp}$$
 for $\mathbf{e} = (1, \dots, 1)$

- $A = [a_{ij}]$ is quasi-positive, i.e. $a_{ij} \ge 0$ for $i \ne j$
- If x ≫ 0 then A is irreducible, i.e. a_{ij} ≠ 0 for some (i, j) ∈ I × J for all disjoint decompositions {1,..., n} = I ∪ J

Apply Perron-Frobenius theorem (for quasi-positive matrices)!

Spectrum of A

The Perron-Frobenius theorem yields the following properties of $\sigma(A)$:

- the spectral bound λ₀ := s(A) = max{Re λ : λ ∈ σ(A)} is an eigenvalue of A
- λ_0 is a simple eigenvalue with a strictly positive eigenvector
- eigenvalues different from λ_0 have no positive eigenvector or positive generalized eigenvector

•
$$\operatorname{Re} \lambda < s(A)$$
 for all $\lambda \in \sigma(A), \lambda \neq s(A)$.

Here: **x** is an eigenvector to the eigenvalue 0, hence for $\mathbf{x} \gg 0$:

$$\sigma(A) \subset \{0\} \cup \{z \in \mathbb{C} : \operatorname{Re} z < 0\}$$

Symmetrized version of A

Let
$$\mathbf{x}\gg 0$$
 and $X:= ext{diag}(x_1,\dots x_n).$ Then $A_S:=X^{-rac{1}{2}}\,A\,X^{rac{1}{2}}$ satisfies

$$A_{S} = \begin{bmatrix} -s_{1} & & \hat{d}_{ij} \\ \hat{d}_{ij} & \cdot & \cdot & -s_{n} \end{bmatrix}, \quad s_{i} = \sum_{k \neq i} \frac{x_{k}}{\mathbf{D}_{ik}}, \quad \hat{d}_{ij} = \frac{\sqrt{x_{i}x_{j}}}{\mathbf{D}_{ij}},$$

i.e. A_S is symmetric with $N(A_S) = \operatorname{span}\{\sqrt{\mathbf{x}}\}$. Moreover,

$$A_{\mathcal{S}}(\alpha) = A_{\mathcal{S}} - \alpha \sqrt{\mathbf{x}} \otimes \sqrt{\mathbf{x}}$$

has the same properties as A_S for small $\alpha > 0$. In particular, A_S is quasi-positive, irreducible and $\sqrt{\mathbf{x}} \gg 0$ is an eigenvector for the eigenvalue $-\alpha$. This holds for all $\alpha < \delta := \min\{1/\mathfrak{D}_{ij} : i \neq j\}$. Hence

$$\sigma(A) \setminus \{\mathbf{0}\} = \sigma(A_{\mathcal{S}}(\alpha)) \setminus \{-\alpha\} \subset (-\infty, -\delta]$$

(ロ・・御・・臣・・臣・・臣・ のの(

Inversion of the MS-Equations

 $A_{|E}: E = \{u \in \mathbb{R}^n : \sum_i u_i = 0\} \to E$ is invertible and

$$[\mathbf{J}_{i}] = X^{\frac{1}{2}} (A_{S|E})^{-1} X^{-\frac{1}{2}} [\mathbf{d}_{i}] = \frac{1}{RT} X^{\frac{1}{2}} (A_{S|E})^{-1} X^{\frac{1}{2}} [\nabla \mu_{i}].$$

Hence

$$[\mathbf{J}_i]: [\nabla \mu_i] = \frac{1}{RT} \left((A_{S|E})^{-1} X^{\frac{1}{2}} [\nabla \mu_i] \right) : \left(X^{\frac{1}{2}} [\nabla \mu_i] \right) \leq 0,$$

i.e. the entropy inequality is satisfied.

If $G := \varrho \psi$ is strongly convex:

 $\operatorname{div}\left(-\mathbf{D}(\mathbf{c})\nabla\mathbf{c}\right) := \operatorname{div}\left([\mathbf{J}_{i}]\right)$ has elliptic principal part

This will be shown below

Isothermal isobaric single-phase case

Theorem (Local-in-time Wellposedness, B. 2010)

Let $\Omega \subset \mathbb{R}^N$ be open bounded with smooth $\partial\Omega$. Let $p > \frac{N+2}{2}$ and $\mathbf{c}_0 \in W_p^{2-\frac{2}{p}}(\Omega)$ such that $c_i^0 > 0$ in $\overline{\Omega}$ and c_0^{tot} is constant in Ω . Let the diffusion matrix $\mathbf{D}(\mathbf{c})$ be given by

$$\mathbf{D}(\mathbf{c}) = X^{\frac{1}{2}} (A_{S|E})^{-1} X^{\frac{1}{2}} G''(\mathbf{x})$$
 with $\mathbf{x} = \mathbf{c}/c^{\text{tot}}, X = \text{diag}(\mathbf{x})$

where $G := \varrho \psi$ is smooth and strongly convex on $\{c^{tot} = c_0^{tot}\}$. Then there exists - locally in time - a unique strong solution (in the L^p -sense) of

$$\partial_t \mathbf{c} + \operatorname{div} \left(-\mathbf{D}(\mathbf{c}) \nabla \mathbf{c}
ight) = 0, \qquad \partial_
u \mathbf{c}_{|\partial\Omega} = 0, \quad \mathbf{c}_{|t=0} = \mathbf{c}_0$$

This solution is in fact classical.
Isothermal isobaric single-phase case

Idea of proof: Let u be given by $c_{tot}x_i = u_i + c_{tot}^0/n$.

- evolution for u lives in $E = \{u \in \mathbb{R}^n : \sum_i u_i = 0\}$
- $\operatorname{div}(-\mathbf{D}(u)\nabla u) = \mathbf{D}(u)(-\Delta u) + \text{ lower order terms}$
- $\lambda \in \mathbb{C}$ and $v \in E$ with $\mathbf{D}(u) v = \lambda v$ means

$$\begin{split} -X^{\frac{1}{2}}(A_{S|E})^{-1}X^{\frac{1}{2}}G''(\mathbf{x})\,v &= \lambda v\\ \Rightarrow \langle -(A_{S|E})^{-1}X^{\frac{1}{2}}G''(\mathbf{x})\,v, X^{\frac{1}{2}}G''(\mathbf{x})\,v \rangle &= \lambda \langle v, G''(\mathbf{x})\,v \rangle \end{split}$$

- left-hand side > 0 and ⟨v, G"(x) v⟩ > 0 by assumption on G, hence λ > 0 ⇒ σ(D(u)) ⊂ (0,∞) in L(E; E)
- apply well-known existence results for quasilinear parabolic systems, e.g. the theory of L_p-maximal regularity as to be found in "Denk, Hieber, Prüss: AMS Memoirs 166, 2003"

Some Additions

• Extension to reaction-diffusion systems

$$\partial_t u + \operatorname{div} (-\mathbf{D}(u)\nabla u) = f(t, u), \qquad \partial_\nu u_{|\partial\Omega} = 0, \quad u_{|t=0} = u_0$$

admits a unique local strong solution if f is locally Lipschitz with $\sum_{i} f_i = 0$.

Non-Negativity

Solutions stay non-negative because of the structure of diffusive fluxes:

$$\mathbf{J}_i(\mathbf{c}) = -D_i(\mathbf{c}) \operatorname{grad} c_i + c_i \, \mathbf{F}_i(\mathbf{c}, \nabla \mathbf{c}).$$

イロト イヨト イヨト イヨト

æ

Outlook

- next steps:
 - strict positivity of solutions
 - global existence (without reaction)
 - asymptotic behavior
 - non-ideal mixtures
- extension to the reactive case:
 - local-in-time existence
 - (work in progress, jointly with J. Prüss)
 - implication for blow-up in Reaction-Diffusion-systems
- extension to the non-isobaric case:
 - MS-equations coupled with Navier-Stokes-equation (work in progress, jointly with H. Amann)