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Motivation

• cardiovascular disease: “number 1 killer" in the Westen
countries:

heart disease kills more people than cancer
cardiovascular risk in women has been recently
increased (more than breast cancer)
prevention is necessary from childhood
emphasis on preventing atherosclerosis by modifying
risk factors: healthy eating, exercise and no smoking

=⇒ importance of further detailed study e.g. using
computational science
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Lukáčová (AG Numerik) Modelling of Blood Flow



Motivation

• cardiovascular disease: “number 1 killer" in the Westen
countries:

heart disease kills more people than cancer
cardiovascular risk in women has been recently
increased (more than breast cancer)

prevention is necessary from childhood
emphasis on preventing atherosclerosis by modifying
risk factors: healthy eating, exercise and no smoking

=⇒ importance of further detailed study e.g. using
computational science
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Motivation

• averaged person: about 4.5 - 6 L blood; 6-8% body
weight

Functions:
transport oxygen and nutrients to all tissues
remove waste products
defend the body against infection through the action of
antibodies

Blood consists of
red blood cells (erythrocytes) . . . 45%
white blood cells (leukocytes), platelets . . . 1%
plasma . . . 54 %
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Motivation

leukocytes:
play a vital role in fighting infection in the body

platelets:
the formation of blood clots (coagulation) is essential
for large injuries

properties of erythrocytes:

ability to aggregate and form a branched 3D
microstructure at low shear rates
deformability
tendency to align with the flow field at high shear rates

=⇒ effect non-Newtonian behaviour of blood
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Motivation

Hemodynamic factors:
flow separation, flow recirculation, and oscillatory wall
shear stress:
important role in the localization and development of
vascular diseases =⇒

- healthy patient: high shear rate, typical vessel lengths: no
time to build microstructures

Newtonian models reasonable approximation

- disease states: diseases in which the arterial geometry
has altered (aneurysms), aggregates get more stable

non-Newtonian models more relevant
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Non-Newtonian nature of blood

Blood: plasma + cells (45% volume concentration)

aggregation deformation

vessel radius RE
aorta 1.25 3400
arteries 0.2 500
arterioles 1.5.10−3 0.7
veins 0.25 140
vena cava 1.5 3300

shear thinning

viscoelasticity
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Lukáčová (AG Numerik) Modelling of Blood Flow



Characteristic numbers

Re =
ρU L
µ

α =
L
2

√
ρω

µ

Reynolds and Wormesley number

ρ . . . density; 1.06× 10−3 kg · m−3,
U . . . characteristic velocity,
u = (u1, . . . ,ud ) . . . fluid velocity
L . . . characteristic length
µ . . . characteristic viscosity; 3− 5.5 mPa · s
ω . . . characteristic angular frequency
Re ∈ (0.0015,6100) α ∈ (0.003,30)
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Pictures

Fig.1,2, 3
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Viscosity

Typical units: 1 cP = 10−3 Pa · s = 1 mPa · s

- grap / experimental data (Fig.5)

µ0 = lim
|D(u)|→0

µ(|D(u)|), µ∞ = lim
|D(u)|→∞

µ(|D(u)|),

D(∇u) :=
(

1
2(∂ui

∂xj
+

∂uj
∂xi

)
)d

i,j=1

• Asymptotic limits:
µ0 = 65.7cP (200C), µ0 = 45.1cP (370C)
µ∞ = 4.47cP (200C), µ∞ = 3.07cP (370C)
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Outline

Non-Newtonian models

Mathematical model
Flow problem
Structure equation
Fluid-structure interaction
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Flow problem

shear-thinning properties

ρ∂tu + ρ (u · ∇) u − div [2µ(|D(u)|)D(u)] +∇p = 0
div u = 0

power-law model

µ = µ(D(u)) = ν(1 + γ|D(u)|2)
p−2

2

Carreau-Yasuda model

µ = µ(D(u)) = µ∞ + (µ0 − µ∞)(1 + γ|D(u)|2)
p−2

2

Yeleswarapu model

µ = µ(D(u)) = µ∞ + (µ0 − µ∞)
log(1 + γ|D(u)|) + 1

(1 + γ|D(u)|)
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Lukáčová (AG Numerik) Modelling of Blood Flow



viscoelastic properties

• blood:
ability to store and release energy (from its branched
3D structures)

challenge: developing nonlinear viscoelastic
constitutive models for blood
the simplest model that captures the shear rate
dependence and elasticity the rate-type shear thinning
model (Oldroyd-B type model)

τ = −pI + τ v + τe

λ

(
∂τe

∂t
+ u · ∇τe − τe · (∇u)T −∇u · τe

)
+ τe =

2
(
µ(D(u))

µ0
− (1− α)

)
D(u)
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viscoelastic shear-dependent fluids

div(u) = 0

Re
(
∂u
∂t

+ u · ∇u
)

= −∇p + (1− α)∆u + div(τe) + f

We
(
∂τe

∂t
+ u · ∇τe − τe∇uT −∇u (τe)

)
+ τe =

2
(
µ(|D(u)|)

µ0
− (1− α)

)
D(u),

α = µe
µ0
. . . elastic part of the total viscosity µ = µ(|D(u)|)

• flow characteristic: Weissenberg number We = U λ
L

λ characteristic relaxation time

• nonlinear coupled parabolic-hyperbolic system
• singular behaviour for large Reynolds, Weissenberg
numbers
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numbersLukáčová (AG Numerik) Modelling of Blood Flow



Outline

Non-Newtonian models

Mathematical model
Flow problem
Structure equation
Fluid-structure interaction
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Domain deformation

Unknown η(x1, t) = R(x1, t)− R0(x1) =⇒ generalized
string model for cylindrical geometry with a non-constant
reference radius R0(x1):

∂2η

∂t2 −
|σx1 |
ρw

(
∂2η
∂x2

1
+ ∂2R0

∂x2
1

)
[
1 +

(
∂R0
∂x1

)2
]2 +

Eη
ρw (R0 + η)R0

− c
∂3η

∂t∂x2
1

=
(−Tf n · er − Pw )

ρwh

- ρW wall density
- h wall thickness
- E the Young modulus of elasticity
- |σx1 | = E/3 shear modulus
- c viscoelastic constant
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Fluid-domain interaction, decoupling

• fluid and geometry are coupled

1 Dirichlet boundary condition

u(x1,R0 + η, t) =
∂η

∂t
N on Γw , (1)

N is unit outward normal to the domain boundary
2

TSN = Tf N

the equation for domain deformation (1).
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