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1 Some Basic Concepts in Probability Theory

After briefly summarizing the basic concepts and facts in probability theory
such as probability spaces, random variables, their convergences, independence,
the Central Limit Theorem and Gaussian distributions, the Brownian motion will
be introduced. The stochastic integrals are essential to discuss stochastic (par-
tial) differential equations and Itô’s formula plays a central role in the calculus
related to them.

After these preparations, the SDEs and SPDEs will be discussed, the latter one
with an explicit example, the KPZ equation.

1 Some Basic Concepts in Probability Theory

Modern probability theory is based on the abstract version of measure theory. In particular,
σ-additivity plays an important role. The additivity of probability, that is if events A and B
never occur simultaneously, then P[A∪ B] = P[A] + P[B] is clear. This additivity must be
extended to σ-additivity, for example, to formulate the Strong Law of Large Numbers as I
will explain later.

The Strong Law of Large Numbers was formulated by Borel in 1909. This is, of course,
related to the foundation of Lebesgue’s integral. Then Fréchet extended the measure theory
to an abstract setting motivated by the probability theory around 1915. Finally, Kolmogorov
settled the base of modern probability theory in his book in 1933.

1.1 Basic Concepts

(i) (Ω,F ,P) is called a probability space, if Ω is a certain set, F a σ-field on Ω and P a
measure on (Ω,F ) satisfying P[Ω] = 1. P is called a probability measure.
Remark. To define the (d-dimensional) Brownian Motion, we first consider all possi-
ble sample paths, so that we take Ω = C([0,∞),Rd) and define F ,P properly as we
will see. But in fact, the choice of Ω is quite flexible. One can even take the Lebesgue
space ([0,1],B([0, 1]), d x) to realize a Brownian Motion.

(ii) ω ∈ Ω is called a sample, A∈ F is an event.

(iii) Let (S,S ) be a measurable space. X : Ω→ S is called an (S-valued) random variable if
it isF−S -measurable. In case of S being a topological space, e. g. S = Rd , we usually
take S =B(S), the Borel field of S.
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1 Some Basic Concepts in Probability Theory

(iv) For A ∈ F , A a. s. means P[A] = 1. For two random variables X , Y : Ω→ S we write
X = Y a. s. for P[X = Y ] = 1.
Remark. We will usually omit writing ω, since Ω is considered to be taken just for
convenience to describe random phenomena in mathematical terminology. Therefore

{X = Y } := {ω ∈ Ω : X (ω) = Y (ω)} ∈ F

or
{X ∈ A} := {ω ∈ Ω : X (ω) ∈ A} ∈ F .

(v) For an R-valued random variable X such that X ∈ L1(Ω,F ,P), i. e.
∫

Ω
|X (ω)|dP[ω]<∞,

we write

E[X ] :=

∫

Ω
X (ω)dP[ω]

and call it the expectation (or mean) of X .

(vi) For an S-valued random variable X, the image measure of P under X

PX [A] := P[X ∈ A]

is called the distribution (or probability law) of X .

1.2 Several Different Notions of Convergence of Random Variables

Let X and (Xn)n∈N be R-valued random variables defined on the same probability space
(Ω,F ,P).

(i) Xn
n→∞−−−→ X P-a. s. :⇔ P

�

limn→∞ Xn = X
�

= 1, where

{ lim
n→∞

Xn = X }= {ω ∈ Ω : ∃ lim
n→∞

Xn(ω) and lim
n→∞

Xn(ω) = X (ω)}.

(ii) Xn
n→∞−−−→ X in probability :⇔ ∀ε > 0 : limn→∞ P

�

|Xn− X |> ε
�

= 0.

(iii) Xn
n→∞−−−→ X in Lp, p ≥ 1 :⇔ E

�

|Xn− X |p
�

=
∫

Ω
|Xn− X |pdP[ω] n→∞−−−→ 0.
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1 Some Basic Concepts in Probability Theory

(iv) Xn
n→∞−−−→ X in law :⇔ PXn

→ PX weakly (weak∗), i. e.

∀ϕ ∈ Cb(R) : lim
n→∞
E
�

ϕ(Xn)
�

= E
�

ϕ(X )
�

.

The following implications hold: (1)⇒ (2), (3)⇒ (2), (2)⇒ (4), as well as (2)⇒ (1) and
(3) ⇒ (1) along some subsequence. Also, we have to mention, that in (4) only the distri-
bution matters, therefore it is not necessary for Xn, X to be defined on the same probability
space. This leads us directly to the

Theorem 1.1 (Skorohod’s representation theorem). Assume (4) holds. Then we can construct
a proper probability space (Ω̃, F̃ , P̃) and random variables X̃ , (X̃n)n∈N on this space in such a
way that

P̃X̃n
= PXn

, P̃X̃ = PX and X̃n
n→∞−−−→ X̃ P̃-a. s.

Remark.

{ lim
n→∞

Xn = X }=
⋂

k∈N

⋃

n∈N

⋂

m>n

{|Xm− X |<
1

k
} ∈ F

Therefore the σ-additivity is necessary to define the notion of P-a. s. convergence.

Definition 1.2. Let (An)n∈N ⊂F . We say “An occurs infinitely often” if

P
�

limsup
n→∞

An

�

= P
�

∩n∈N ∪m>n Am
�

= 1.

Proposition 1.3 (Borel-Cantelli). Let (An)n∈N ⊂F . If
∑

n∈N P
�

An
�

<∞ then

P
�

lim sup
n→∞

An

�

= 0.

1.3 Independence

The concept of independence is one of the main components of probability theory. Related to
this, we will consider different σ-fields on Ω at the same time, which is typical in probability
theory.

Definition 1.4. We introduce the following definitions.

(i) Let A, B ∈ F . Then A and B are independent iff P[A∩ B] = P[A]P[B].

(ii) Let {Ai}1≤i≤n ⊂ F be a finite family of sets. Then {Ai}1≤i≤n are independent, iff for
all {i1, . . . , ik} ⊂ {1, . . . , n} holds

P
�

Ai1 ∩ . . . Aik

�

= P
�

Ai1

�

· · · · · P
�

Aik

�

.
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1 Some Basic Concepts in Probability Theory

(iii) Let {Aλ}λ∈Λ ⊂F be a family of sets, with Λ possibly being uncountable. Then we say
{Aλ}λ∈Λ are independent, iff for all finite sequences λ1, . . . ,λn ∈ Λ the family of sets
{Aλk
}1≤k≤n is independent.

(iv) Let {Fλ}λ∈Λ be a family of σ-fields on Ω, with Λ possibly being uncountable. Then
we say {Fλ}λ∈Λ are independent, iff for all finite sequences λ1, . . . ,λn ∈ Λ and all
Aλi
∈ Fλi

the family of sets {Aλk
}1≤k≤n is independent.

(v) Let {Xλ}λ∈Λ be a family of random variables on a common probability space (Ω,F ,P),
with Λ possibly being uncountable. Then we say {Xλ}λ∈Λ are independent, iff the
generated σ-fields {σ{Xλ}}λ∈Λ are independent. Hereby

σ{X } := {{X ∈ A} : A∈ S }.

Proposition 1.5. Let X , Y be two independent R-valued random variables.

(i) Let f , g ∈B(R). Then f (X ) and g(Y ) are independent.

(ii) Let X , Y ∈ L1(Ω,F ,P). Then X Y ∈ L1(Ω,F ,P) and E[X Y ] = E[X ]E[Y ].

Theorem 1.6 (Strong Law of Large Numbers/ Kolmogorov’s second law). Let (Xn)n∈N be a
sequence of R-valued independent random variables defined on the same probability space with
identical distributions (short iid). If X1 ∈ L1(Ω,F ,P), then the Strong Law of Large Numbers
holds, i. e.

1

n

n
∑

k=1

Xk
n→∞−−−→ m= E

�

X1
�

P-a. s..

The next theorem explains why Gaussian random variables appear quite naturally in physics
and statistics.

Theorem 1.7 (Central Limit Theorem (CLT)). Let (Xn)n∈N be a sequence of Rd -valued iid
random variables. We assume E

�

X1
�

= 0 and that all covariances exist and are finite, therefore
we can define the symmetric d × d-matrix

V := Cov X1 = (E
h

X (i)1 X ( j)1

i

)1≤i, j≤d .

Then we have a Central Limit Theorem, i e.

1
p

n

n
∑

k=1

Xk
n→∞−−−→ X ∼N (0, V ) weakly.
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2 Brownian Motion

Here N (0, V ) is the Gaussian distribution on Rd with mean 0 and covariance V

µ0,V (d x) =
1

(2π)
d
2 (det V )

1
2

e−
1
2

xV−1 x d x .

Remark. If det V = 0, then µ0,V is degenerate, e. g. in d = 1 that means N (0,0) = δ0.

For the proof of the CLT the characteristic function of a random variable X is used. It is the
Fourier transform of the distribution, namely

ψX (u) := E
�

eiuX
�

, u ∈ Rd .

For X ∼N (0, V ) we have ψX (u) := e−
1
2

uVu.

1.4 Stochastic Processes

Definition 1.8. A collection of Rd -valued random variables X = (X t)t≥0 indexed by t ∈
[0,∞) is called a (continuous time) stochastic process.

X is called continuous, if P
�

{X ·(ω) is continuous in t}
�

= 1.

2 Brownian Motion

The random motion of a particle in Rd , which refreshes the memory of its past at every time
and has continuous trajectories, is called the Brownian Motion.

2.1 Definition and Construction

Definition 2.1. An R-valued stochastic process B = (Bt)t≥0 defined on a probability space
(Ω,F ,P) is called a Brownian Motion, iff

(i) B0 = 0 P-a. s.,

(ii) B is continuous in time and

(iii) for all 0 = t0 < t1 < · · · < tn the increments (Bt i
− Bt i1

)1≤i≤n are independent and
Bt − Bs ∼N (0, t − s) for 0≤ s ≤ t.
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2 Brownian Motion

The property (iii) is equivalent to

P
�

Bt i
− Bt i−1

∈ Ai , 1≤ i ≤ n
�

=

∫

A1

d x1 · · ·
∫

An

d xn

n
∏

i=1

p(t i − t i−1, x i) (2.1)

for A1, . . . , An ∈B(R), where

p(t, x) :=
1
p

2πt
e−

x2

2t , t > 0, x ∈ R

is the heat kernel (Gaussian density) on R. By a change of variables x i = yi − yi−1 with
y0 = 0, the equation (2.1) is equivalent to

P
�

Bt i
∈ Ci , 1≤ i ≤ n

�

=

∫

C1

d y1 · · ·
∫

Cn

d yn

n
∏

i=1

p(t i − t i−1, yi − yi−1) (2.2)

for C1, . . . , Cn ∈B(R). This is sometimes written as

P
�

Bt i
∈ d yi , 1≤ i ≤ n

�

=
n
∏

i=1

p(t i − t i−1, yi − yi−1)d yi , y0 = 0.

Theorem 2.2. There exists a Brownian Motion on a certain probability space.

There are several proofs for this theorem, involving

(i) Kolmogorov’s extension theorem together with (2.2),

(ii) a Fourier series expansion,

(iii) Invariance principles and approximation by a random walk and

(iv) existence of Gaussian systems.

In particular, one can construct the Brownian Motion on the space W := C([0,∞),R), resp.
W0 := {w ∈W : w(0) = 0}. The distribution of B on W0 is called the Wiener measure.

In the same way, one can talk of a d-dimensional Brownian Motion, which is an Rd -valued
stochastic process B = ((B(1)t )t≥0, . . . (B(d)t )t≥0) where B(i) are independent 1-dimensional
Brownian Motions. In this case (2.2) holds with

p(t, x) =
1

(2πt)
d
2

e−
|x |2

2t , t ≥ 0, x ∈ Rd .
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2 Brownian Motion

2.2 Properties of the 1-dimensional Brownian Motion

Corollary 2.3 (Moments and Covariance). For the 1-dimensional Brownian Motion holds

E
�

B2n−1
t

�

= 0, n ∈ N, E
�

B2
t

�

= t, E
�

B4
t

�

= 3t2, . . .

and
E
�

Bt Bs
�

= t ∧ s(=min{t, s}).

Proposition 2.4 (Scaling Invariance). Let B be a 1-dimensional Brownian Motion and α > 0.
Then the scaled process (αBtα−2)t≥0 is again a Brownian Motion.

Next we want to focus on path properties of the Brownian Motion. One can show, that
the total variation of B on every interval [T1, T2] is P-a. s. infinite for all 0 ≤ T1 < T2.
Therefore we consider the quadratic variation on the interval [0,1]. Let tk =

k
n
, 1 ≤ k ≤ n

be a partition of [0, 1] and Xn be the sum of the squared increments

Xn :=
n
∑

k=1

(Btk
− Btk−1

)2.

Then we compute the L2-distance

E
�

(Xn− 1)2
�

= E



(
n
∑

k=1

(Btk
− Btk−1

)2−
1

n
)2


=
n
∑

k=1

E
�

((Btk
− Btk−1

)2−
1

n
)2
�

=
2

n
→ 0,

where we used the independence of the increments and the moment calculations in Corol-
lary 2.3.

From the fact, that the quadratic variation is finite we can easily deduce that the total
variation has to be infinite. We can indeed estimate

n
∑

k=1

(Btk
− Btk−1

)2 ≤ V 1
0 (B) · sup

k
|Btk
− Btk−1

|

and because the last term tends to 0, every function with finite total variation V 1
0 (B) has

quadratic variation 0. Therefore the Brownian Motion cannot have finite total variation.

The computation on the quadratic variation suggests that Bt is 1
2
-Hölder continuous in t

P-a. s. In fact, though this is not really true, Bt is (1
2
− δ)-Hölder continuous in t P-a. s. for

all δ ∈ (0,1/2).

Let F B
t be the σ-field generated by {Bs; s ≤ t} and null sets of P. Then,

�

F B
t

�

t≥0 is a

8



3 Stochastic Integrals and Itô’s Formula

reference family (i.e. F B
t are sub σ-fields of F such that F B

s ⊂ F
B
t for all 0 ≤ s < t), B

is
�

F B
t

�

t≥0-adapted (i.e. Bt is F B
t -measurable for all t ≥ 0) and the increment Bt − Bs is

independent of F B
s for all 0≤ s ≤ t.

3 Stochastic Integrals and Itô’s Formula

3.1 Stochastic Integrals

We now develop the calculus based on the Brownian Motion, usually called stochastic cal-
culus or Itô’s calculus. Since the derivative Ḃt =

d
d t

Bt does not exist, we want to give a
meaning to the integral

∫ t

0

f (s,ω)dBs(ω)

for a certain class of functions f (s,ω). Since B also does not have finite variation, such
integrals cannot be defined as usual Stieltjes integrals.

Example 3.1. Before defining the stochastic integrals in general, let us consider the integral

∫ 1

0

BsdBs

defined as followed. We take again the partition tk =
k
n
, 1 ≤ k ≤ n of [0,1] and look at the

Riemann sums

Sn :=
n
∑

k=1

Bsk
(Btk
− Btk−1

), sk ∈ [tk−1.tk].

For the usual Stieltjes integrals, limn→∞ Sn exists and does not depend on the choice of
sk. However, for the stochastic integral this is not the case. If we set Sn as the sum with
sk = tk−1 (evaluation at the left edges) and Sn as the sum with sk = tk (evaluation at the
right edges), we get

Sn− Sn =
n
∑

k=1

(Btk
− Btk−1

)2→ 1 in L2.

Thus, the limit of the stochastic integral is supposed to depend on the choice of sk. This is
due to the fact, that the Brownian Motion has only finite quadratic variation. We will see,
that the evaluation at the left edge sk = tk−1 is convenient for our purposes.

In the following fix a probability space (Ω,F ,P) and a reference family of σ-fields
�

Ft
�

t≥0,
withFs ⊂Ft ⊂F for all 0≤ s < t. Furthermore let B be an

�

Ft
�

t≥0-Brownian Motion, i. e.

9



3 Stochastic Integrals and Itô’s Formula

B is a Brownian Motion and
�

Ft
�

t≥0-adapted (the random variable Bt isFt -measurable for
each t) and for all 0≤ s ≤ t the increment Bt − Bs is independent of Fs.

Fix T > 0 to define the class of possible integrands we will look at.

L 2
T =L

2
T

�

Ft
�

t≥0 = { f ∈ L2([0, T]×Ω) : f is
�

Ft
�

t≥0-adapted}

Lemma 3.2 (Approximation of f ∈ L 2
T ). Consider a step process, i. e. a process in

ST = { f : f (t,ω) =
n
∑

k=1

fk(ω)χ[tk−1,tk)(t), t ∈ [0, T], 0= t0 < t1 < · · ·< tn = T,

n ∈ N and fk is Ftk−1
-measurable and bounded in ω}.

Then for every f ∈ L 2
T there exists a sequence ( fn)n∈N ⊂ ST such that

‖ f − fn‖L2([0,T]×Ω)
n→∞−−−→ 0.

Idea of Proof First consider a cutoff by fm(t,ω) := ( f (t,ω) ∧ m) ∨ −m. Then it clearly
holds ‖ f − fm‖L2([0,T]×Ω)→ 0. So we can assume f is bounded.

By smearing the function in t via f ε(t,ω) := ε−1
∫ t

(t−ε)∨0
f (s,ω)ds we can assume, that f

is continuous in time. This approximation maintains the adaptedness to
�

Ft
�

t≥0.

Finally we approximate the continuous in time function f by

fn(t,ω) =
n
∑

k=1

f( tk−1,ω)χ[tk−1,tk)(t)

with tk =
k
n

T . By taking the evaluation at the left edge we maintain the adaptedness.

Definition 3.3. For every function f ∈ ST we define the stochastic Integral as

It( f ) =

∫ t

0

f (s)dBs :=
n
∑

k=1

fk(Bt∧tk
− Bt∧tk−1

), t ∈ [0, T].

Lemma 3.4. For f ∈ ST holds

(i) E
�

It( f )
�

= 0 and

(ii) E
�

It( f )2
�

= E
h

∫ t

0
f (s)2ds

i

= ‖ f ‖2
L2([0,t]×Ω).
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3 Stochastic Integrals and Itô’s Formula

Proof For the first claim observe, that since fk is Ftk−1
-measurable and therefore indepen-

dent of the increment (Bt∧tk
−Bt∧tk−1

) we can use Proposition 1.5 and Corollary 2.3 and get
the desired result.

For the second claim we use the same properties, which yield first that

E
�

It( f )
2
�

= E





n
∑

k=1

f 2
k (Bt∧tk

− Bt∧tk−1
)2


 ,

since all off-diagonal terms have expectation 0. By exploiting again the independence, we
see that

=
n
∑

k=1

E
�

f 2
k

�

E
�

(Bt∧tk
− Bt∧tk−1

)2
�

= E





n
∑

k=1

f 2
k ((t ∧ tk)− (t ∧ tk−1))



 .

Now we can construct the stochastic integral for general integrand f ∈ L 2
T . We take a

sequence ( fn)n∈N ⊂ ST with fn → f in L2([0, T] × Ω) and consider for 0 < t < T the
sequence of stochastic integrals (It( fn))n∈N. By Lemma 3.4 this is a Cauchy sequence in
L2([0, T] × Ω) and we call its limit It( f ) =

∫ t

0
f (s)dBs, the stochastic integral of f with

respect to B.

One can extend the results in Lemma 3.4 to all f ∈ L 2
T and obtain the so called Itô isome-

try:

E
�

It( f )
2
�

= E
�
∫ t

0

f (s)2ds

�

and E
�

It( f )It(g)
�

= E
�
∫ t

0

f (s)g(s)ds

�

.

As a matter of fact, based on the theory of martingales one can show a uniform convergence
in time

E
�

sup
0<t<T

(It( fm)− It( fn))
2
�

→ 0

as m, n → ∞. This shows that the stochastic integral It( f ) is a continuous stochastic pro-
cess.

Since T > 0 is arbitrary, we can define the stochastic integral for all f ∈ L 2

L 2 := { f : f |[0,T] ∈ L 2
T for all T > 0}.

In order to deal with d-dimensional processes in the next subsection, we need the next

11



3 Stochastic Integrals and Itô’s Formula

lemma.

Lemma 3.5. Let B = (B(1), . . . , B(d)) be a d-dimensional Brownian Motion. Then

E
�
∫ t

0

f (s)dB(i)s

∫ t

0

g(s)dB( j)s

�

= δi jE
�
∫ t

0

f (s)g(s)ds

�

.

By using the independence of the different components of the d-dimensional Brownian
Motion the result follows easily from the same computations as above.

3.2 Itô’s Formula

As a motivation for the following we first consider f , g ∈ C1(R). Then

d

d t
f (g(t)) = f ′(g(t))

d g

d t

and of course in the integrated form

f (g(t))− f (g(0)) =

∫ t

0

f ′(g(s))d g(s).

We want to introduce a similar result for the stochastic integral, i. e. g(t) = Bt . As we will
see later, a correction term of second order appears

f (Bt)− f (B0) =

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds. (3.3)

Example 3.6. We come back to the example we discussed before:

∫ 1

0

BsdBs = lim
n→∞

Sn = lim
n→∞

n
∑

k=1

Btk−1
(Btk
− Btk−1

)

with tk =
k
n
. Using the identity 2Btk−1

= (Btk
+ Btk−1

)− (Btk
− Btk−1

) yields

= lim
n→∞

1

2





n
∑

k=1

(B2
tk
− B2

tk−1
)−

n
∑

k=1

(Btk
− Btk−1

)2


=
1

2
(B2

1 − B2
0)−

1

2
.
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3 Stochastic Integrals and Itô’s Formula

Thus we have shown, that for f (x) = x2, therefore f ′(x) = 2x and f ′′(x) = 2

B2
1 = f (B1) = 2

∫ t

0

BsdBs + 1= f (B0) +

∫ 1

0

f ′(Bs)dBs +
1

2

∫ 1

0

f ′′(Bs)ds.

We see, that the correction term actually appears with our choice of the stochastic integral.
If we choose a different evaluation point, say sk =

1
2
(tk−1 + tk) the middle point of the

division times, and define the stochastic integral by

∫ 1

0

Bs ◦ dBs := lim
n→∞

Sn := lim
n→∞

n
∑

k=1

Bsk
(Btk
− Btk−1

)

this correction term will not appear. In detail we calculate Sn

Sn =
n
∑

k=1

Bsk
(Btk
− Bsk

+ Bsk
− Btk−1

) =
n
∑

k=1

Bsk
(Btk
− Bsk

) +
n
∑

k=1

Bsk
(Bsk
− Btk−1

)

and with the same trick as above

=
1

2





n
∑

k=1

(B2
tk
− B2

sk
) +

n
∑

k=1

(B2
sk
− B2

tk−1
)−

n
∑

k=1

(Btk
− Bsk

)2+
n
∑

k=1

(Bsk
− Btk−1

)2




=
1

2



(B2
1 − B2

0 −
n
∑

k=1

(Btk
− Bsk

)2+
n
∑

k=1

(Bsk
− Btk−1

)2


→
1

2
B2

1 .

Thus we see that B2
1 =

∫ 1

0
Bs ◦ dBs without the correction term.

We now want to state the Itô’s formula, a general form of (3.3). Therefore we introduce the
Rd -valued stochastic process X = (X 1, . . . , X d) given by

X i
t = X i

0+
N
∑

k=1

∫ t

0

ai
k(s,ω)dBk

s +

∫ t

0

bi(s,ω)ds, 1≤ i ≤ d, (3.4)

where X i
0 are F0-measurable random variables, B an N -dimensional

�

Ft
�

t≥0-Brownian
Motion, ai

k ∈ L
2 and bi bounded and

�

Ft
�

t≥0-adapted.

13



3 Stochastic Integrals and Itô’s Formula

Theorem 3.7 (Itô’s formula). Let f ∈ C2
b (R

d) and X given by (3.4). Then

f (X t) = f (X0) +
d
∑

i=1

N
∑

k=1

∫ t

0

∂ f

∂ x i (Xs)a
i
k(s)dBk

s +
d
∑

i=1

∫ t

0

∂ f

∂ x i (Xs)b
i(s)ds

+
1

2

d
∑

i, j=1

N
∑

k=1

∫ t

0

∂ 2 f

∂ x i∂ x j (Xs)a
i
k(s)a

j
k(s)ds, t ≥ 0, P-a. s..

(3.5)

There are several different proofs for this theorem, one can start considering ai
k ∈ ST and

taking the limit afterwards. We omit a detailed proof, instead we give an efficient interpre-
tation of this formula.

Remark. (i) Usually equations (3.4) and (3.5) are written in terms of stochastic differ-
entials

dX i
t = ai

k(t)dBk
t + bi(t)d t,

using Einstein’s convention. Note that this expression has only a formal meaning and
mathematically we always need to go back to the integrated forms. Then, under the
usual calculus for differentiable functions, we have

d f (X t) =
∂ f

∂ x i (X t)dX i
t

but in the stochastic calculus, we have

d f (X t) =
∂ f

∂ x i (X t)dX i
t +

1

2

∂ 2 f

∂ x i∂ x j (X t)dX i
t dX j

t ,

i. e. we take account of the second order term in the Taylor expansion. To compute
dX i

t dX j
t , we apply the relations:

dBi
t dB j

t = δi jd t and dBi
t d t = (d t)2 = 0.

The first relation is related to Lemma 3.5 and we may think of dBt ∼
p

t, since B has
almost 1

2
-Hölder continuous paths. This relation gives us

dX i
t dX j

t =
N
∑

k=1

ai
k(t)a

j
k(t)d t

and thus, we obtain Itô’s formula.

(ii) As the last example suggests, if we use another definition for the stochastic integral,

14



4 Stochastic Differential Equations

namely the Stratonovich stochastic integral

∫ t

0

f (s) ◦ dBs

the correction term in Itô’s formula does not appear. However, the class of possible
integrands is more restrictive than the one for the Itô integral.

4 Stochastic Differential Equations

4.1 What is a Stochastic Differential Equation?

As a first example we consider an ordinary differential equation on Rd given by a vector
field b : Rd → Rd and

dX t

d t
= b(X t). (4.6)

We now want to get into the situation, that each time t is independently perturbed by a
noise, so that we formally consider

dX t

d t
= b(X t) + Ḃt ,

where Ḃt =
dBt

d t
with B being a d-dimensional Brownian Motion is seen as a noise indepen-

dent in time (as a limit of independent increments), though Ḃt does not exist. In addition
to that, the noise may depend on the space variable by changing the equation to

dX t

d t
= b(X t) +σ(X t)Ḃt ,

where σ : Rd → Rd×N and B is an N -dimensional
�

Ft
�

t≥0-Brownian Motion.

More precisely this equation is written in terms of stochastic differentials

dX t = b(X t)d t +σ(X t)dBt , (4.7)

i. e.
dX i

t = bi(X t)d t +σi
k(X t)dBk

t , 1≤ i ≤ d.

Definition 4.1. We call an Rd -valued continuous
�

Ft
�

t≥0-adapted stochastic process X =
(X t)t≥0 defined on (Ω,F ,P) a solution of the stochastic differential equation (4.7) starting

15



4 Stochastic Differential Equations

in x ∈ Rd , if it satisfies the stochastic integral equation

X t = x +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs, t ≥ 0, P-a. s.. (4.8)

Remark. We always consider the situation σi
k(X ·) ∈ L

2�Ft
�

t≥0 and b(X ·) ∈ L1
loc([0,∞))

P-a. s., so that the integrals are well defined.

It is well known that if the coefficients of an ordinary differential equation are Lipschitz
continuous, then it has a unique solution. This can be extended to the stochastic differential
equations. We introduce the notation

‖σ‖2 =
∑

i,k

(σi
k)

2 and |b|2 =
∑

i

(bi)2.

Theorem 4.2. Assume that for the coefficients of (4.7) exists a constant K > 0 such that

‖σ(x)−σ(y)‖+ |b(x)− b(y)| ≤ K |x − y| for all x , y ∈ Rd .

Then for every x ∈ Rd there exists a solution X of (4.7) starting in x and the following pathwise
uniqueness holds: If X , X ′ are two solutions starting in x, then

P
�

X t = X ′t , for all t ≥ 0
�

= 1.

Remark. The Lipschitz continuity implies the linear growth condition on σ and b:

‖σ(x)‖+ |b(x)| ≤ K ′(|x |+ 1).

Proof As in the deterministic setting, the usual method of Picard’s successive approxima-
tions can be applied. Set X (1)t = x and

X (n)t = x +

∫ t

0

b(X (n−1)
s )ds+

∫ t

0

σ(X (n−1)
s )dBs n≥ 2.

Then one can show

E
�

sup
0≤s≤t

|X (n)s − X (n−1)
s |2

�

≤ C

∫ t

0

E
�

|X (n−1)
s − X (n−2)

s |2
�

ds,

which can be used to conclude existence via a fixed point theorem. The details are omitted.
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4 Stochastic Differential Equations

4.2 Applications to PDE and the Feynman-Kac Formula

In this section, we want to point out the relation between stochastic differential equations
and parabolic resp. elliptic partial differential equations. So in the following let X be the
unique solution to (4.7). For f ∈ C2

b (R
d) define the differential operator

L f (x) :=
1

2

d
∑

i, j=1

ai j(x)
∂ 2 f

∂ x i∂ x j (x) +
d
∑

i−1

bi(x)
∂ f

∂ x i ,

where a = (ai j)1≤i, j≤d = σσT .

Proposition 4.3. If the distribution of X t has a density u(t, x) with respect to the Lebesgue
measure d x in Rd , i. e.

P
�

X t ∈ d x
�

= u(t, x)d x ,

then u(t, x) satisfies Kolmogorov’s forward equation

∂ u

∂ t
= L∗u(t, x)

=
1

2

d
∑

i, j=1

∂ 2

∂ x i∂ x j (a
i j(x)u(t, x))−

d
∑

i=1

∂

∂ x i (b
i(x)u(t, x)), t ≥ 0, x ∈ Rd (4.9)

in a weak sense.

Proof The origin of the Kolmogorov’s forward equation can be seen in the Itô’s formula.
Since for a test function f ∈ C2

c (R
d) it holds

f (X t) = f (x) +

∫ t

0

L f (Xs)ds+ stochastic integral.

By taking the expectation the stochastic integral vanishes and we get

E
�

f (X t)
�

= f (x) +

∫ t

0

E
�

L f (Xs)
�

ds.

Since E
�

f (X t)
�

=
∫

Rd u(t, x) f (x)d x holds, we derive the weak form of Kolmogorov’s for-
ward equation

d

d t
〈u(t), f 〉= 〈u(t), L f 〉.

17



4 Stochastic Differential Equations

As a next step we want to introduce a similar result, without the assumption that X admits a
density w. r. t. the d x . Fix functions ϕ, V, g ∈ Cb(Rd) and consider the parabolic equation

∂

∂ t
u(t) = Lu(t) + Vu(t) + g, t > 0, on Rd

u(0) = ϕ
(4.10)

Proposition 4.4 (Feynman-Kac formula). Assume that the parabolic equation (4.10) has a
smooth solution u ∈ C1,2((0,∞)×Rd)∩ C([0,∞)×Rd) growing at most polynomially in x,
i. e.

∀T > 0 ∃CT > 0, p ≥ 1 : |u(t, x)| ≤ CT (1+ |x |p) for all t ∈ [0, T], x ∈ Rd .

Then we have the representation

u(t, x) = E
�

ϕ(X (t, x))e
∫ t

0
V (X (s,x))ds +

∫ t

0

g(X (s, x))e
∫ s

0
V (X (r,x))dr ds

�

,

where X (t, x) is the solution to (4.7) at time t starting in x.

Proof Fix T > 0 and set

Mt := u(T − t, X (t, x))e
∫ t

0
V (X (s,x))ds +

∫ t

0

g(X (s, x))e
∫ s

0
V (X (r,x))dr ds.

We can apply Itô’s formula because of the polynomial growth of u and get

dMt =
∂ u

∂ x i (T − t, X (t, x))σi
k(X (t, x))e

∫ t

0
V (X (s,x))dsdBk

t +
�

−
∂ u

∂ t
(T − t, X (t, x))

+Lu(T − t, X (t, x)) + V (X (t, x))u(T − t, X (t, x)) + g(X (t, x))
�

e
∫ t

0
V (X (s,x))dsd t.

Since u satisfies the equation (4.10) the term in parentheses vanishes, thus E
�

MT
�

= M0 =
u(T, x), what was to prove.

After this short paragraph about parabolic equations we want to turn our attention to the
Dirichlet problem for an elliptic equation. Therefore let D ⊂ Rd be a bounded, open set with
smooth boundary ∂ D. ϕ ∈ C(∂ D) is the given Dirichlet boundary data and we define the
stopping times

τ(x) := inf{t ≥ 0 : X (t, x) ∈ ∂ D},

where X (t, x) is the solution to (4.7) at time t starting in x . You can interpret this as the
first hitting time for the boundary ∂ D.
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4 Stochastic Differential Equations

Proposition 4.5. Assume P[τ(x)<∞] = 1 for all x ∈ D and the elliptic equation

Lu+ Vu+ g = 0, x ∈ D

u= ϕ, x ∈ ∂ D
(4.11)

has a smooth solution u. Then

u(x) = E
�

ϕ(X (τ, x))e
∫ τ

0
V (X (s,x))ds +

∫ τ

0

g(X (s, x))e
∫ s

0
V (X (r,x))dr ds

�

, x ∈ D,

where τ= τ(x). In particular the solution to (4.11) is unique.

Proof We use a similar argument as above, namely we define

Mt := u(X (t, x))e
∫ t

0
V (X (s,x))ds +

∫ t

0

g(X (s, x))e
∫ s

0
V (X (r,x))dr ds, 0≤ t < τ.

Then we can show that, computing dMt , only the stochastic integral remains, which shows
Mt is a martingale. By Doob’s optimal sampling theorem for martingales

E
�

Mτ(x)

�

= M0 = u(x).

4.3 Vanishing Viscosity Limit under Non-uniqueness for the Limiting ODE

Even though the uniqueness of solutions for the ODE (4.6) does not hold, the uniqueness
(in law sense) holds for the SDE (4.7) if the diffusion coefficient σ(x) is non-degenerate.
Let us consider the SDE on R:

dX εt = b(X εt )d t + εdBt , (4.12)

where b(x) = sgnx ·
p

|x | and ε > 0. It is well-known that the ODE (with ε = 0) admits
several solutions: X t = (t − t0)2/4 and −(t − t0)2/4 with arbitrary t0 ≥ 0.

Proposition 4.6. The solution X εt , t ∈ [0, T] of the SDE (4.12) starting at 0 (i.e. X ε0 = 0)
weakly converges to

X t =

¨

t2/4, with probability 1/2,

−t2/4, with probability 1/2,

as ε ↓ 0.
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5 Stochastic Partial Differential Equations

The proof goes as follows. First note that the corresponding large deviation rate function is
given by

I(x) =
1

2

∫ T

0

( ẋ t − b(x t))
2d t,

for a path x = (x t)t∈[0,T], see Funaki (’05, p.121). Thus the limits of X ε as ε ↓ 0 must
concentrate on the set of minimizers of I , that is, the paths X t = ±(t − t0)2/4 with some
t0 ∈ [0, T]. However, one can compute the expectation E[τε] of the hitting time τε of
X ε to {±1} (this is well-known in probability theory, but see, for example, Karatzas-Shreve
(’91, p.344)) and this shows that t0 should be 0 in the limit. The symmetry proves the
proposition. (I thank Tokuzo Shiga for helpful discussions.) This proposition tells that
the random noise forces the particle starting at the origin to leave there immediately. The
vanishing viscosity limit picks up the most natural solutions from several candidates.

Remark. If b is Lipschitz continuous and b(0) = 0, then X εt converges to X t ≡ 0 as ε ↓ 0,
since it is the unique minimizer of I .

5 Stochastic Partial Differential Equations

In the last section we saw that “SDE = ODE + random noise”. This noise in time was
modeled by a Brownian motion. Now we want to look at partial differential equations,
so this should translate to “SPDE = PDE + random space-time noise”. Examples for these
kind of equations are the stochastic Navier-Stokes equations, stochastic reaction-diffusion
equations and equations in control theory, filtering and finance.

Let us consider for u= u(t, x), t ≥ 0, x ∈ Rd the equation

∂ u

∂ t
= Au+ B(u) + CẆt(x), (5.13)

where

(i) A =
∑

|α|≤2m aα(x)Dα with aα ∈ C∞b (R
d), m ∈ N and α = (α1, . . . ,αd) ∈ Zd

+. The

derivative is the usual Dα =
�

∂
∂ x1

�α1
· · ·
�

∂
∂ xd

�αd
. The coefficients should satisfy some

uniform parabolicity condition

inf
x ,σ∈Rd ,|σ|=1

(−1)m+1
∑

|α|=2m

aα(x)σ
α > 0,

where σα = σα1
1 · · ·σ

αd
d for σ = (σ1, . . . ,σd).

(ii) B(u) is a nonlinear term.
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5 Stochastic Partial Differential Equations

(iii) C =
∑

|α|≤l cα(x)Dα with cα ∈ C∞b (R
d), l ∈ Z. l may be negative, then it is seen as an

integral operator.

(iv) Ẇt(x) is a space-time White Noise, i. e. a Gaussian noise with mean 0 and covariance
structure

E
�

Ẇt(x)Ẇs(y)
�

= δ(t − s)δ(x − y). (5.14)

This notation is only used by physicists, we define the noise in a correct way later on.

Remark. For Ḃt =
dBt

d t
we formally have

E
�

Ḃt Ḃs

�

= δ(t − s),

since for ϕ,ψ ∈ C∞c ((0,∞)) we formally have (since the derivative does not exist)

∫ ∞

0

d t

∫ ∞

0

dsϕ(t)ψ(s)E
�

Ḃt Ḃs

�

= E
�

〈ϕ, Ḃ〉〈ψ, Ḃ〉
�

= E
�

〈ϕ̇, B〉〈ψ̇, B〉
�

=

∫ ∞

0

d t

∫ ∞

0

dsϕ̇(t)ψ̇(s)E
�

Bt Bs
�

=

∫ ∞

0

ϕ̇(t)

∫ ∞

0

ψ̇(s)(t ∧ s)dsd t =

∫ ∞

0

ϕ(t)ψ(t)d t.

5.1 Definition of a Suitable Noise

In this section we want to extend the definition of the d-dimensional Brownian Motion
to an infinite dimensional setting. Let H be a separable Hilbert space, for simplicity H =
L2(Rd , d x) and (ei)i∈N a complete orthonormal system of H. We now take a sequence of
independent 1-dimensional Brownian Motions (Bi

t)i∈N and want to define

Wt(x) :=
∑

i∈N
Bi

t ei(x), x ∈ Rd .

Unfortunately Wt /∈ H, but we can extend H to a larger space H̃ of generalized functions. In
fact, if we take a sequence (λi > 0)i∈N such that

∑

i∈Nλi <∞ we can define a weaker norm
than ‖·‖H by

‖ f ‖2
H̃

:=
∑

i∈N
λi〈 f , ei〉2H , f ∈ H.

Then if H̃ is the completion of H under ‖·‖H̃ , we actually get Wt ∈ H̃ P-a. s. Formally we
have

E
�

‖Wt‖2H̃
�

=
∑

i∈N
λiE
�

(Bi
t)

2
�

= t
∑

i∈N
λi <∞.
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Nevertheless the scalar product with elements in H is always definable as 〈Wt , f 〉H =
Wt(ϕ) :=

∑

i∈N Bi
t〈ϕ, ei〉H , since

E
�

〈Wt ,ϕ〉H〈Ws,ψ〉H
�

=
∑

i, j∈N
E
�

Bi
t B

j
s

�

〈ϕ, ei〉H〈ψ, e j〉H

= (t ∧ s)
∑

i∈N
〈ϕ, ei〉H〈ψ, e j〉H = (t ∧ s)〈ϕ,ψ〉H ,

which is finite. This computation suggests (5.14) for the covariance structure of Ẇt(x).

5.2 Concepts of Solutions

Definition 5.1. u(t, x) is called a solution of (5.13) in the sense of generalized functions, if
it satisfies

〈u(t),ϕ〉H = 〈u0,ϕ〉H +
∫ t

0

{〈u(s), A∗ϕ〉H + 〈B(u(s)),ϕ〉H}ds+Wt(C
∗ϕ)

for all ϕ ∈ C∞c (R
d).

Definition 5.2. u is called a mild solution of (5.13), if it satisfies

u(t) = T (t)u0+

∫ t

0

T (t − s)B(u(s))ds+

∫ t

0

T (t − s)CdWs,

where T (t) is the semigroup generated by the operator A (in a proper space).

In some typical cases the two notions of solutions are equivalent.

5.3 Regularity of Solutions

Since the noise Wt(x) only lives in a bad space H̃ we need the regularizing properties of
the operator A. We want to consider the linear equation, therefore we set B(u) = 0 and we
get the following result on the regularity of solutions, apply Kolmogorov-Čentsov’s theorem
(see, for example, Kunita (’90)) noting Lemma 2.3 in Funaki (’91) and the Gaussian property
of the solutions.

Proposition 5.3. Let u(t, x) be the solution to the linear equation corresponding to (5.13).
Then

u(t, x) ∈
⋂

δ>0

Cα−δ,β−δ((0,∞)×Rd),
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5 Stochastic Partial Differential Equations

with

α=
2m− 2l − d

4m
and β =

2m− 2l − d

2
.

If the noise is the space-time White Noise (i. e. l = 0) and A=∆ (i. e. m= 1) we have

u(t, x) ∈
⋂

δ>0

C
1
2
− d

4
−δ,1− d

2
−δ((0,∞)×Rd).

Therefore the solution lives in the usual function spaces only, when d = 1. If d = 2, the
solution is already a generalized function. Of course, this can be improved, if we take l to
be negative, which results in a more regular noise in the space variable, a so-called colored
noise.

If we consider the stochastic Navier-Stokes equations as an example for equation (5.13), the
nonlinear term u · ∇u appears, so that the noise has to be colored, or some special way to
interpret the nonlinearity is required.

5.4 The KPZ Equation

Kardar-Parisi-Zhang (’86) introduced the following stochastic partial differential equation
for a height function h(t, x) of a randomly growing interface.

∂ h

∂ t
=

1

2

∂ 2h

∂ x2 −
1

2

�

∂ h

∂ x

�2

+ Ẇt(x), t > 0, x ∈ R, (5.15)

where Ẇt(x) is the space-time White Noise. Without the nonlinear term we have seen that

h ∈
⋂

δ>0 C
1
4
−δ, 1

2
−δ and for such h the space derivative ∂ h

∂ x
is not definable. Therefore (5.15)

does not have a solution in the usual sense.

Consider the slope of the interface u(t, x) = ∂ h
∂ x
(t, x). For this function we obtain the

stochastic viscous Burgers’ equation

∂ u

∂ t
=

1

2

∂ 2u

∂ x2 −
1

2

∂

∂ x
u2+

∂

∂ x
Ẇt(x).

Here the noise has even less regularity, but a formal application of the Hopf-Cole transfor-
mation

Z(t, x) := e
∫∞

x
u(t,y)d y = eh(t,∞)−h(t,x)

or setting
Z(t, x) := e−h(t,x) (5.16)
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leads to the linear SPDE
∂ Z

∂ t
=

1

2

∂ 2Z

∂ x2 − ZẆt(x). (5.17)

This stochastic partial differential equation has a unique continuous solution and we inter-
pret (5.15) by (5.17) with h(t, x) =− log Z(t, x). Such h is called the Hopf-Cole solution of
(5.15) and was introduced by Bertini and Giancomin in (’97).

Remark (1
3
-power law). Recently Balász, Quastel and Seppäläinen (’10) showed that if we

choose Z(0, x) = e−B(x) with B being a two-sided Brownian Motion independent of the noise
Ẇt(x) (i.e. we consider a stationary solution) then

c t
2
3 ≤ Var(h(t, 0))≤ C t

2
3 ,

i. e. the fluctuations of h(t, 0) are of order t
1
3 . This is a different behavior from the Central

Limit Theorem. See also recent works by Sasamoto and Spohn (’10) who gave much precise
behaviors.
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