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Steady-State Flow

We are interested in steady-state flow of L in the frame S = {C,e′i}.

We thus assume:

I The translational and angular velocities, ξ and ω, of B in S are

I The velocity and pressure fields, v and p, of L in S are

Therefore, the relevant equations become

(v − ξ − ω × x) · gradv + ω × v = ν∆v − grad p

div v = 0

}
in D

with the following side conditions

v(y) = ξ + ω × y, y ∈ Σ ≡ ∂D , lim
|x|→∞

v(x) = 0
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Mozzi-Chasles Transformation

Let
d := diam (B) , ξ = |ξ| e , ω = |ω| e1

We perform the following change of variables:

x∗ := x− λ e1 × e, λ := |ξ|d/|ω|,

and set

Ω∗ :=
{
x∗ ∈ R3 : x∗ = x− λ e1 × e, for some x ∈ Ω

}
,

v∗(x∗) := v(x∗ + λ e1 × e), p∗(x∗) := p(x∗ + λ e1 × e),

f∗(x∗) := f(x∗ + λ e1 × e),

Re :=
(
|ξ|d
ν

)
e · e1 (Reynolds number), Ta :=

|ω| d2

ν
(Taylor number),
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Equations in Dimensionless Form

The original problem becomes (stars omitted)

∆v + Re (e1 − v) · gradv + Ta (e1 × x · gradv − e1 × v) = grad p

div v = 0

}
in D

v(y) = e1 + e1 × y, y ∈ Σ , lim
|x|→∞

v(x) = 0 .

Remark 1

In the transformed problem, ξ and ω .

Remark 2

Notice that (ω 6= 0)

Re ≡
(
|ξ|d
ν

)
e · e1 6= 0 ⇐⇒ ξ · ω 6= 0 .

We suppose Re 6= 0, and, to fix ideas, we shall take Re > 0
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Existence of Solutions

Question 1

Give arbitrary Re > 0 and Ta ≥ 0 (non-dimensional translational and
angular velocity of B) .

Does the following boundary-value problem

∆v + Re (e1 − v) · gradv + Ta (e1 × x · gradv − e1 × v) = grad p

div v = 0

}
in D

v(y) = e1 + e1 × y, y ∈ Σ , lim
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have at least one (smooth) solution?
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Steady-State Flow: Existence of Solutions

Question 2

If Question 1 is affirmatively answered, is the solution Physically
Reasonable (PR in the sense of R. Finn)? That is:

(A) v = v(x) decays, uniformly, ' |x|−1, and even faster, ' |x|−3/2+δ,
δ > 0, in the upstream direction (existence of the “wake”) ;

(B) (v, p) satisfies the energy balance equation:∫
Σ

(Re e1 + Ta e1 × y) · T (v, p) · n =
∫
D
|D(v)|2 ;

(C) For “small” data, (v, p) is unique in the class of PR solutions and is
stable in the sense of Liapounov .

All properties listed in (A), (B) and (C) are related to the
asymptotic spatial behavior of the velocity field v and corresponding
pressure p.
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Absence of Rotation: Existence of Solutions

Case Ta = 0 (the body translates without spinning)

Both questions have been thoroughly investigated for > 50 years. Here is
some significant results:

LERAY (1933): Existence of smooth solutions (v, p) for data of size,
with gradv ∈ L2(D).
Asymptotic properties:∫

Ω

|gradv|2 <∞ =⇒
∫

Ω

|v|6 <∞ (by Sobolev inequality) .

A solution with gradv ∈ L2(Ω) is called LERAY SOLUTION

FINN (1965): Existence of PR solutions for data of

BABENKO (1972), GPG (1992): Every Leray solution is PR
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Rotation and Translation: Existence of Solutions

Case Ta 6= 0 (the body translates and rotates)

The answers to Questions 1 & 2 can not be obtained by perturbative
and/or bootstrap argument to the results established for the case
Ta = 0:

∆v + Re (e1 − v) · gradv + Ta (e1 × x · gradv − e1 × v) = grad p

div v = 0

}
in D

Unbounded Coefficient! |e1 × x| → ∞ as |x| → ∞
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Rotation and Translation: Main Contributions

Over the past decades, both Questions 1 and 2 have been addressed,
from different perspectives and by different approaches, by many authors:

T. HISHIDA (1999-2008), GPG (2003),
R. FARWIG, T. HISHIDA, & D. MÜLLER (2004-2009),
A.L. SILVESTRE, M. KEYD & GPG (2006-2009),
R. FARWIG & J. NEUSTUPA (2009),
P. DEURING, S. KRAČMAR, M. KRBEC, S. NEČASOVA & P. PENEL
(2005-2009)
T. HISHIDA & Y. SHIBATA (2006-2009) . . . . . .

yet, without a definite answer.

Objective of this talk is to prove (or to give a flavor of the proof) that
both Questions 1 and 2 are

In other words, for data of arbitrary size, there is always a
corresponding, smooth PR solution.
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Existence of Leray Solution (Data of arbitrary size)

The “rotational term” satisfies the fundamental property:∫
D

(e1 × x · gradu− e1 × u) · u = 0 , for all u ∈ C∞0 (D), div u = 0 .

Thanks to this property, the above problem (1) admits the formal a priori
estimate ∫

D
|gradv|2 ≤ C(D,Re,Ta)

By coupling this inequality with,e.g., Galerkin’s method, one can show
the following result.

Theorem (Weinberger, 1982; Serre, 1987; Borchers, 1992)

Let D be an exterior domain in R3. For any Re > 0 and Ta ≥ 0, there
exists at least one (v, p) ∈ C∞(D)×C∞(D) (Leray solution) to problem
(1) .
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Theorem (Kyed & GPG, 2009)

Let Re,Ta > 0, that is, ξ · ω 6= 0, be given. Let (v, p) be a smooth pair
satisfying the following equations

∆v + Re (e1 − v) · gradv + Ta (e1 × x · gradv − e1 × v) = grad p

div v = 0

}
in D

Then, if for some R > 0,

gradv ∈ L2(D ∩ {|x| > R}) , v ∈ L6(D ∩ {|x| > R}) ,

for all sufficiently large |x| we have

|v(x)| ≤ V1(x) + V2(x)

where

V1(x) = O([(1+|x|)(1+Re s(x))]−1) , V2(x) = O(|x|−3/2+δ), arbitrary δ > 0 .
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Main Result: Leray Solutions are PR Solutions

Remark 1

Analogous estimates (with improved bounds) hold for the velocity
gradient gradv(x). Moreover, the pressure p satisfies

p(x) = O(log |x| |x|−2) .

Remark 2

It is conjectured that the asymptotic estimate for v(x) is sharp. From
this latter and from the regularity of v it follows

v ∈ Lq(D) , for all q > 2.

It is probably true that

v ∈ L2(D) =⇒ v(x) ≡ 0 .

Remark 3
The result includes the case of nonzero body forces decaying “sufficiently
fast” at large distances.
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Without loss, we may set Re = Ta = 1.

Step 1: Reduction to a Problem in the Whole Space.

For a fixed and sufficiently large ρ > 0, take a smooth “cut-off” function
ψρ = ψρ(x) that is 0 if |x| < R and is 1 if |x| > 2ρ, and set

u := ψρv − z , div z = v · gradψρ , p := ψρ p

Then, the original problem for (v, p) goes into the following one:

∆u +
∂u

∂x1
+ (e1 × x · gradu− e1 × u)

= div [(ψρv)⊗ (ψρv)] + grad p + f c

div u = 0

 in R3

where f c ∈ C∞0 (R3).

Since z ∈ C∞0 (R3), u(x) = v(x) for all sufficiently large |x|.
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Step 2: Proof of Further Summability Properties.

Suppose:

v ∈ L6(DR) , gradv ∈ L2(DR) , DR := D ∩ {|y| ≥ R} .

(this is the only information we have at the outset) Then:

v ∈ Ls1(DR) , gradv ∈ Ls2(DR) , D2v ∈ Ls3(DR) , all s1 > 2, s2 >
4
3 , s3 > 1 .

The proof rests upon a result of R. Farwig (2006) and the following
uniqueness lemma.

Lemma
Let u, p, with u ∈ Ls(R3), some s ∈ [1,∞), be a smooth solution to

∆u +
∂u

∂x1
+ (e1 × x · gradu− e1 × u) = grad p

div u = 0

 in R3 .

Then u ≡ grad p ≡ 0. If s = ∞, then u = const.
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4
3 , s3 > 1 .

The proof rests upon a result of R. Farwig (2006) and the following
uniqueness lemma.
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Let u, p, with u ∈ Ls(R3), some s ∈ [1,∞), be a smooth solution to

∆u +
∂u

∂x1
+ (e1 × x · gradu− e1 × u) = grad p
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Leray Solutions are PR: Sketch of the Proof

Step 3: Using Summability Properties to get Pointwise Estimates.

The “canonical” way of showing this is to represent the solution u to the
problem

∆u +
∂u

∂x1
+ (e1 × x · gradu− e1 × u) = grad p + F

div u = 0

 in R3

where
F := div [(ψρv)⊗ (ψρv)] + f c .

by means of the fundamental solution G = G(x, y).

(Recall that v(x) = u(x) for all large |x|).
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Leray Solutions are PR: Sketch of the Proof

However, this approach does not look promising, and it is discouraged by
the following two facts:

I The form of the fundamental tensor solution G is very complicated ;

I Unlike the case Ta = 0 (no rotation), the fundamental tensor G
does not satisfy the uniform estimate (that would be the starting
point to establish asymptotic properties):

|G(x, y)| ≤ C

|x− y|
, for all x, y ∈ R3

for some C independent of x, y (Farwig, Hishida & Müller, 2004).

Therefore, one would like to argue in a different way.
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Leray Solutions are PR: Sketch of the Proof

GPG (2003) , Silvestre & GPG (2006,2007)

Let

Q(t) =


1 0 0

0 cos(Ta t) − sin(Ta t)

0 sin(Ta t) cos(Ta t)

 , t ≥ 0 (rotation matrix around e1)

Set:

y = Q(t) · x , t ≥ 0 .

Define

w(y, t) := Q(t) · u(Q>(t) · y) , π(y, t) := p(Q>(t) · y)

V (y, t) := Q(t) · [ψρv](Q>(t) · y) , F c(y, t) := Q(t) · f c(Q
>(t) · y)
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Then (w, π) satisfies the following Oseen-like IVP

∂w

∂t
= ∆w +

∂w

∂x1
− div [V ⊗ V ]− gradπ − F c

div w = 0

 in R3 × (0,∞)

w(y, 0) = u(y) ,

with F c ∈ L∞(0,∞;C∞0 (R3)) .

The solution w can be then represented by means of convolutions
involving the well-known (and very well-studied) Oseen fundamental
tensor Γ = Γ(ξ, τ).
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Leray Solutions are PR Solutions: Sketch of the Proof

We thus have

w(y, t) = w1(y, t) + w2(y, t) + w3(y, t)

where

w1(y, t) =
∫

R3
Γ(y − z, t) · u(z) dz

w2(y, t) = −
∫

R3

∫ t

0

Γ(y − z, τ) · F c(z, t− τ) dτ dz

w3(y, t) = −
∫

R3

∫ t

0

gradΓ(y − z, τ) : [V ⊗ V ](z, t− τ)dτ dz
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Leray Solutions are PR Solutions: Sketch of the Proof

In these representations, we:

I use the summability properties of v (∼ V ) ;

I show appropriate spatial estimates for the quantities:∫ ∞

0

|Γ(x, t)| dt ,
∫ ∞

0

|gradΓ(x, t)| dt ;

I recall that |v(x)| = |w(y, t)| .
We thus obtain

|v(x)| ≤ Cθ

[
‖f c‖r

(1 + |x|)(1 + s(x))
+
]
.

for all θ ∈ (0, 1), some r > 3, and all sufficiently large |x|.
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Leray Solutions are PR Solutions: Sketch of the Proof

Step 4: Estimates of the term

∫
|z|≥R

|gradv|2 for large R.

The following result holds:

Key Lemma

For all ε > 0, there is C = C(v, ε) > 0 such that∫
|z|≥R

|gradv|2 ≤ C R−1+ε

The result is obtained via a St. Venant-type technique

A crucial role in the proof of the lemma is played by the previously
established summability properties:

v ∈ Ls1(DR) , gradv ∈ Ls2(DR) , D2v ∈ Ls3(DR) ,

all s1 > 2, s2 > 4/3, s3 > 1 ,

where DR := D ∩ {|y| ≥ R} .
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Replace the estimate ∫
|z|≥R

|gradv|2 ≤ C R−1+ε

into the inequality

|v(x)| ≤ Cθ

 ‖f c‖r

(1 + |x|)(1 + s(x))
+

(∫
|y|≥R

|gradv|2
)1−θ

 .
and choose R = |x|.

We thus find

|v(x)| ≤ Cη

(
‖f c‖r

(1 + |x|)(1 + s(x))
+

1
|x|1−η

)
, for all η > 0
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Final Remark.

There is still one question that remains open, concerning the leading
term in the asymptotic expansion.

Precisely, it is expected that v = v(x) can be expressed, for large |x|, as:

v(x) = v1(x) + v2(x)

with

|v1(x)| = O([(1 + |x|)(1 + Re s(x))]−1) , v2(x) = O(|x|−3/2+δ),

arbitrary δ > 0, but no proof is available (yet).

THANK YOU!
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