Fingering patterns in rotating Hele-Shaw cells

Prof. Dr. Joachim Escher

Institute of Applied Mathematics Leibniz University Hanover

Mathematical Fluid Dynamics

Waseda University, March 10-13, 2010

Introduction

Study the motion of an incompressible fluid in a rotating Hele-Shaw cell

An instationary moving-boundary problem.

Summary of main results

- local well-posedness for general initial data
- a unique (for fixed volume) rotationally invariant equilibrium, which is unstable
- bifurcation theory: global branches of steady fingering patterns (bifurcation parameter: surface tension coefficient or equivalently angular velocity)
- when suitable bounded, the equilibria converge towards a circle along a global bifurcation branch

Joint work with **M. Ehrnström** and **B. Matioc**, to appear in J. Math. Fluid Mech., 2010.

Governing equations

In the fluid domain Ω :

$$\nabla p = -K\vec{v} + \omega^2 \vec{x}$$
(Darcy's law)

$$\frac{div\vec{v}=0}{\text{(incompressibility)}}$$

 $ec{v}$: velocity, p: pressure, ω : angular velocity, $ec{x} \in \mathbb{R}^2$: position vector, $K = \mu/b^2$, with viscosity μ and size of the gap b.

Governing equations

On the moving fluid boundary Γ :

$$p = \gamma \kappa_{\Gamma}$$

(Laplace-Young, dynamic)

$$\langle \partial_t \Gamma - \vec{\mathbf{v}}, \vec{\nu} \rangle = 0$$

(kinematic boundary condition)

 γ : surface tension coefficient,

 κ_{Γ} : curvature, $\vec{\nu}$: outward unit normal.

$$\Omega(0) = \Omega_0$$

(initial condition)

Reformulation

Consider (small) perturbations ρ of the initial domain

$$\Gamma_{\rho} = \Gamma_0 + \rho \vec{\nu}$$
.

 Λ : signed distance to Γ_0 ,

Y: projection onto Γ_0 .

Then Γ_{ρ} is the 0-level set of $N_{\rho} = \Lambda - \rho \circ Y$. Thus $\nu_{\rho} = \nabla N_{\rho}/|\nabla N_{\rho}|$ and

$$\begin{array}{rclcrcl} \Delta p & = & 2\omega^2 & & \text{in} & \Omega_\rho \\ p & = & \gamma \kappa_\rho & & \text{on} & \Gamma_\rho \\ \partial_t N_\rho & = & \frac{1}{K} \langle \nabla p - \omega^2 x \big| \nabla N_\rho \rangle & & \text{on} & \Gamma_\rho \\ \rho(0) & = & \rho_0 & & t = 0. \end{array}$$

Theorem (local existence, analyticity)

The Hele-Shaw problem is uniquely solvable, locally in time, for small initial data (of class $C^{4+\alpha}(\Gamma_0)$). The solution map is analytic with respect to the time and the initial data.

Hanzawa transformation:

$$\Theta_{\rho} = \operatorname{id} + \varphi(\Lambda)\rho(Y)\nu(Y), \quad \Theta_{\rho} \in \operatorname{Diff}^{4+\alpha}(\Omega_0, \Omega_{\rho}).$$

Pulled-back operators:

$$\begin{split} \mathcal{A}(\rho) &= \Theta_{\rho}^* \circ \Delta \circ \Theta_*^{\rho} \\ \mathcal{B}(\rho, v)(y) &= -\frac{1}{K} \left\langle \nabla(\Theta_*^{\rho} v) - \omega^2 x \middle| \nabla N_{\rho} \right\rangle (\Theta_{\rho}(y)). \end{split}$$

Then the Hele-Shaw problem transforms into:

$$\mathcal{A}(\rho)v = 2\omega^2$$
 in Ω
 $v = \gamma\kappa_{\rho}$ on Γ
 $\partial_t \rho = \mathcal{B}(\rho, v)$ on Γ
 $\rho(0) = \rho_0$ $t = 0$.

Solution operator

Let $v = \mathcal{T}(\rho)$ be the solution operator to the elliptic bvp

$$\mathcal{A}(\rho)v = 2\omega^2$$
 in Ω
 $v = \gamma\kappa_{\rho}$ on Γ .

Then the transformed problem reduces to

$$\partial_t \rho = \mathcal{B}(\rho, \mathcal{T}(\rho))$$
 on Γ
 $\rho(0) = \rho_0$ $t = 0$.

$$\mathcal{B}(\cdot,\mathcal{T}(\cdot)):\mathcal{V}\subset C^{4+\alpha}(\Gamma)\longrightarrow C^{1+\alpha}(\Gamma).$$

A thorough investigation of the linearization of $\mathcal{B}(\cdot, \mathcal{T}(\cdot))$, together with abstract theory for analytic semigroups yields **local** well-posedness.

The nonlinear operator

$$\Phi(\rho) := \mathcal{B}(\rho, \mathcal{T}(\rho)).$$

By the explicit form of Θ_{ρ} :

$$\rho \mapsto \mathcal{A}(\rho), \quad \mathcal{B}(\rho, \mathbf{v}), \, \mathcal{K}(\rho) \in C^{\omega},$$

thus $\rho \mapsto \mathcal{T}(\rho) \in C^{\omega}$ and so $\Phi \in C^{\omega}$.

Furthermore

$$D\Phi(0)[\cdot] := \frac{\gamma}{K} \partial_{\nu} (D\mathcal{T}(0)[\cdot]) + F,$$

where F is a linear and bounded operator.

 $DT(0)[\rho]$ is the solution of the (linear) Dirichlet problem:

$$\Delta \omega = -D\mathcal{A}(0)[\rho]\mathcal{T}(0)$$
 in Ω
$$\omega = -\gamma(\kappa^2 \rho + \rho'')$$
 on Γ

where κ denotes the curvature of Γ .

It can be shown that

$$D\Phi(0)[\rho] = \frac{\gamma}{K} \partial_{\nu} \circ (\Delta, \operatorname{tr})^{-1}(0, \rho'') + \widetilde{F}\rho,$$

and that the principal part

$$D\mathcal{N} = \partial_{\nu} \circ ((\Delta, \operatorname{tr})^{-1}(0, \cdot))$$

is a Dirichlet-Neumann operator on ρ'' :

$$[\rho \mapsto \mathcal{DN}\rho''] \in \mathcal{H}(h^{3+\alpha}(\Gamma), h^{\alpha}(\Gamma)),$$

cf. E.- Seiler. TAMS 2008.

Equilibria

The full problem

$$\begin{array}{rclcrcl} \Delta \rho & = & 2\omega^2 & & & \text{in} & \Omega_\rho \\ p & = & \gamma \kappa_\rho & & & \text{on} & \Gamma_\rho \\ \partial_t N_\rho & = & \frac{1}{K} \langle \nabla \rho - \omega^2 x \big| \nabla N_\rho \rangle & & \text{on} & \Gamma_\rho \\ \rho(0) & = & \rho_0 & & t = 0. \end{array}$$

Steady states are thus solutions of

$$\begin{array}{llll} \Delta p & = & 2\omega^2 & & \text{in} & \Omega_\rho \\ \\ p & = & \gamma \kappa_\rho & & \text{on} & \Gamma_\rho \\ \\ 0 & = & \langle \nabla p - \omega^2 x \big| \nabla N_\rho \rangle & & \text{on} & \Gamma_\rho. \end{array}$$

Observe: If (p, ρ) is a solution to the above system then

$$p(x) = \frac{\omega^2}{2}|x|^2 + c, \quad x \in \overline{\Omega}_{\rho}.$$

Particularly:

$$\Omega_{\rho} \in C^{2+\alpha} \Rightarrow \Omega_{\rho} \in C^{\infty}$$
,

invoking the bc $p = \gamma \kappa_{\rho}$.

Theorem

The trivial solution $\rho \equiv 0$ is unstable.

Key result: representation of $D\Phi(0)$:

$$D\Phi(0)\left[\sum_{k\in\mathbb{Z}}\hat{\rho}(k)\exp(iks)\right] = \sum_{k\in\mathbb{Z}}\lambda_k\hat{\rho}(k)\exp(iks)$$

with

$$\lambda_k = \frac{|k|}{\kappa} [(\gamma + \omega^2) - \gamma k^2].$$

Observe: $\lambda_1 = \frac{\omega^2}{\kappa} > 0$, for all $\gamma \geq 0$.

Bifurcating solutions

View stationary solutions as pairs (γ, ρ) . For any surface tension $\gamma > 0$, $\rho \equiv 0$ is a solution. There are other equilibria bifurcating from the curve $\gamma \mapsto (\gamma, 0)$.

Bifurcation relation:

$$\omega^2 = (I^2 - 1)\gamma, \quad I \ge 2.$$

Local form of ε — analytic solutions

$$\rho_I(\varepsilon) = \varepsilon \cos(I \cdot) + \delta(\varepsilon^2).$$

l = 4

l = 10

The setting for bifurcation

 $\mathcal{V}\subset \mathcal{C}^{4+lpha}(\mathbb{S})$ admissible functions for Hanzawa transformation

$$\mathcal{V}_{0,\mathsf{e}} := \left\{
ho \in \mathcal{V}; \;
ho \; \mathsf{even} \; \mathsf{with} \; \int_{\mathbb{S}}
ho \, ds = 0
ight\}$$

Then, given $l \ge 2$, there exist a global continuation of the local bifurcation branch

$$\Sigma_I: [0,\infty) \ni \varepsilon \longmapsto (\gamma,\rho) \in \mathcal{V}_{0,e} \times (0,\infty).$$

To derive a global bifurcation result, let

$$\Sigma := \{ (\gamma, \rho) \in (0, \infty) \times \mathcal{V}_{0,e} \, ; \, \Phi(\gamma, \rho) = \}$$

denote the set of all steady states. Then

- $\Sigma \subset (0,\infty) \times C^{\infty}(\mathbb{S}^1)$, as noticed earlier.
- Assume that $K \subset \Sigma$ is bounded, closed and bounded away from the boundary of $(0, \infty) \times \mathcal{V}_{0,e}$. Then K is compact.
- Given any $(\gamma_0, \rho_0) \in \Sigma$, the derivative $\partial_{\rho} \Phi(\gamma_0, \rho_0)$ is Fredholm of index 0.

These facts allow to apply results from the theory of global bifurcation for analytic mappings to conclude that:

unless Σ_I is a closed loop, either

- (i) (γ, ρ) blows up in $\mathbb{R} \times C^{4+\alpha}(\mathbb{S})$
- (ii) (γ, ρ) approaches the boundary of $(0, \infty) \times \mathcal{V}_{0,e}$.

If $\|\rho\|_{\infty} < 1/4$ and ρ'' is bounded then

$$\rho \to 0 \quad \text{in} \quad C^\infty \quad \text{if} \quad \gamma \to \infty \quad \text{as} \quad \varepsilon \to \infty.$$

Physically expected and fits the bifurcation relation.

Conclusions

- The problem is locally well-posed for initial data in a neighbourhood of a simply connected smooth domain.
- There is a volume-unique rotationally invariant steady state.
- At a countable number of small enough surface tension values there are fingering stationary solutions.
- The continuous bifurcation branches can be globally extended.
- If the surface tension tends to infinity along such a curve and free boundary is close to a circle, it approaches a circle.

Thank you for your attention!

