

Oleg N. Kirillov

Technical University of Darmstadt Darmstadt, Germany

Multiple eigenvalues and singularities in MHD: Oscillatory dynamo and helical magnetorotational instability

1. Outline

The spherical MHD kinematic mean-field α^2 -dynamo Operator matrix, fundamental symmetry

Oscillatory dynamo and geomagnetic reversals Exceptional points in the spectrum

Three dimensional Arnold tongues of oscillatory dynamo Role of Krein signature of eigenvalues

O.N.K., U. Günther, F. Stefani Physical Review E 79, 016205 2009

Rm, large: Magnetic field lines "frozen" in the electrically conducting fluid in a sphere.

¹ E.N. Parker ApJ 122, 1955;

Rm, large: Magnetic field lines "frozen" in the electrically conducting fluid in a sphere. Helical flow twists the field line of a seed toroidal magnetic field into poloidal planes. Diffusion detaches the loop

flow or r

¹ E.N. Parker ApJ 122, 1955;

 α – effect ¹

Helical flow

Rm, large: Magnetic field lines "frozen" in the electrically conducting fluid in a sphere. Helical flow twists the field line of a seed toroidal magnetic field into poloidal planes. Diffusion detaches the loop

Cyclonic turbulence: Many flux loops produce a large scale electrical current parallel to the toroidal field (inverse cascade). It induces poloidal field (α -effect)¹

¹ E.N. Parker ApJ 122, 1955;

 α – effect ¹

Rm, large: Magnetic field lines "frozen" in the electrically conducting fluid in a sphere. Helical flow twists the field line of a seed toroidal magnetic field into poloidal planes. Diffusion detaches the loop

Cyclonic turbulence: Many flux loops produce a large scale electrical current parallel to the toroidal field (inverse cascade). It induces poloidal field (α -effect) ¹

In α^2 - dynamo the α - effect is the source of both poloidal and toroidal mean field components ²

¹ E.N. Parker ApJ 122, 1955; ² M. Steenbeck et al. Z. Naturforsch. 21a, 1966

 α – effect ¹

Rm, large: Magnetic field lines "frozen" in the electrically conducting fluid in a sphere. Helical flow twists the field line of a seed toroidal magnetic field into poloidal planes. Diffusion detaches the loop

Cyclonic turbulence: Many flux loops produce a large scale electrical current parallel to the toroidal field (inverse cascade). It induces poloidal field (α -effect)¹

In α^2 - dynamo the α - effect is the source of both poloidal and toroidal mean field components ²

It is widely accepted that magnetic fields of planets are generated by α^2 – **dynamo** ²

¹ E.N. Parker ApJ 122, 1955; ² M. Steenbeck et al. Z. Naturforsch. 21a, 1966

Cyclonic turbulence lacks mirror symmetry: averaging yields large scale E.M.F. ~ αB

Self-amplification of magnetic field in α^2 - dynamo

Cyclonic turbulence lacks mirror symmetry: averaging yields large scale E.M.F. ~ αB

Mean field induction equation

$$\partial_t \mathbf{B} = \nabla \times (\alpha \mathbf{B}) + \nu_m \Delta \mathbf{B}, \quad \nabla \cdot \mathbf{B} = 0$$

Self-amplification of magnetic field in α^2 - dynamo

Cyclonic turbulence lacks mirror symmetry: averaging yields large scale E.M.F. ~ αB

Mean field induction equation

$$\partial_t \mathbf{B} = \nabla \times (\alpha \mathbf{B}) + \nu_m \Delta \mathbf{B}, \quad \nabla \cdot \mathbf{B} = 0$$

Helical turbulence function $\alpha = \alpha(r)$ couples toroidal and poloidal fields

Self-amplification of magnetic field in α^2 - dynamo

$$\mathbf{B} = \mathbf{B}_{\mathrm{P}} + \mathbf{B}_{\mathrm{T}}, \quad \mathbf{B}_{\mathrm{P}} = \nabla \times \mathbf{A}_{\mathrm{T}}$$

couples toroidal and poloidal fields $\mathbf{A}_{\mathrm{T}} = -\mathbf{r} \times \nabla F_{1}, \quad \mathbf{B}_{\mathrm{T}} = -\mathbf{r} \times \nabla F_{2}, \quad \int_{S^{2}} F_{1,2} d\omega = 0$

Cyclonic turbulence lacks mirror symmetry: averaging yields large scale E.M.F. ~ αB

Mean field induction equation $\partial_t \mathbf{B} = \nabla \times (\alpha \mathbf{B}) + v_m \Delta \mathbf{B}, \quad \nabla \cdot \mathbf{B} = 0$

Helical turbulence function $\alpha = \alpha(r)$ couples toroidal and poloidal fields

Self-amplification of magnetic field in α^2 - dynamo

$$\mathbf{B} = \mathbf{B}_{\mathrm{P}} + \mathbf{B}_{\mathrm{T}}, \quad \mathbf{B}_{\mathrm{P}} = \nabla \times \mathbf{A}_{\mathrm{T}}$$

couples toroidal and poloidal fields $\mathbf{A}_{\mathrm{T}} = -\mathbf{r} \times \nabla F_{1}, \quad \mathbf{B}_{\mathrm{T}} = -\mathbf{r} \times \nabla F_{2}, \quad \int_{S^{2}} F_{1,2} d\omega = 0$

$$\alpha - \text{coupled pair} \qquad \mathbf{r} \times \nabla \left[v_m \Delta F_1 + \alpha F_2 - \partial_t F_1 \right] = 0$$

of induction PDEs ³
$$\mathbf{r} \times \nabla \left[v_m \Delta F_2 - \frac{1}{r} (\partial_r \alpha) (\partial_r r F_1) - \alpha \Delta F_1 - \partial_t F_2 \right] = 0$$

Re-scaling *r* and *t*: $v_m = 1$, boundary conditions at r = 1

A series expansion in spherical harmonics ³

$$F_{1,2} = \sum_{l,m,n} e^{t\lambda_{l,n}} F_{1,2}^{(l,m,n)}(r) Y_l^m(\theta,\phi) \in L^2(\Omega, r^2 dr) \otimes L^2(S^2, d\omega), \quad \Omega = [0,1]$$

Denote
$$\Delta_l := \frac{1}{r^2} \partial_r r^2 \partial_r - \frac{l(l+1)}{r^2}$$

Re-scaling *r* and *t*: $v_m = 1$, boundary conditions at r = 1

A series expansion in spherical harmonics ³

$$F_{1,2} = \sum_{l,m,n} e^{t\lambda_{l,n}} F_{1,2}^{(l,m,n)}(r) Y_l^m(\theta,\phi) \in L^2(\Omega, r^2 dr) \otimes L^2(S^2, d\omega), \quad \Omega = [0,1]$$

Denote
$$\Delta_l := \frac{1}{r^2} \partial_r r^2 \partial_r - \frac{l(l+1)}{r^2}$$

Radial α -coupled equations for a spherical harmonic of degree l

$$\Delta_l F_1^{(l,m,n)} + \alpha F_2^{(l,m,n)} = \lambda_{l,n} F_1^{(l,m,n)}$$
$$\Delta_l F_2^{(l,m,n)} - \frac{1}{r} (\partial_r \alpha) (\partial_r r F_1^{(l,m,n)}) - \alpha \Delta_l F_1^{(l,m,n)} = \lambda_{l,n} F_2^{(l,m,n)}$$

Operator matrix $A_{\alpha} := \begin{pmatrix} -A_l & \alpha(r) \\ A_{l,\alpha} & -A_l \end{pmatrix}$ with $A_l = -\partial_r^2 + \frac{l(l+1)}{r^2}, A_{l,\alpha} = \alpha(r)A_l - \alpha'(r)\partial_r$

Fundamental symmetry ³ $A_{\alpha}^* = JA_{\alpha}J, \quad J = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$

Operator matrix $A_{\alpha} := \begin{pmatrix} -A_l & \alpha(r) \\ A_{l,\alpha} & -A_l \end{pmatrix}$ with $A_l = -\partial_r^2 + \frac{l(l+1)}{r^2}, A_{l,\alpha} = \alpha(r)A_l - \alpha'(r)\partial_r$

Fundamental symmetry ³
$$A_{\alpha}^* = JA_{\alpha}J, \quad J = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

Boundary eigenvalue problem

$$A_{\alpha}u = \lambda u, \quad D(A_{\alpha}) = \left\{ u \in \widetilde{H} = L_{2}(0,1) \oplus L_{2}(0,1) \mid u(0) = 0, Bu \right|_{r=1} = 0 \right\}$$

with (indices
$$(l,m,n)$$
 omitted) $u = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}, B = \begin{pmatrix} \beta \partial_r + \beta l + 1 - \beta & 0 \\ 0 & 1 \end{pmatrix}, 0 \le \beta \le 1$

In general $D(A_{\alpha}) \neq D(A_{\alpha}^*)$

Typical spectra (eigencurves)

-8

Dipole field intensity from paleomagnetic data during past 4 Myr ⁴

Dipole field intensity from paleomagnetic data during past 4 Myr ⁴

⁴ J. P. Valet, L. Meynadier, Nature 1993, ⁵ P. H. Roberts, G. A. Glatzmaier Rev. Mod. Phys. 2000

Dipole field intensity from paleomagnetic data during past 4 Myr ⁴

⁴ J. P. Valet, L. Meynadier, Nature 1993, ⁵ P. H. Roberts, G. A. Glatzmaier Rev. Mod. Phys. 2000

Field reversals are provoked by transitions to oscillatory solutions ^{6,7}

⁶ E. N. Parker, ApJ. 164, 1971, ⁷ F. Stefani, G. Gerbeth Phys. Rev. Lett. 2005

Field reversals are provoked by transitions to oscillatory solutions ^{6,7}

Heuristic model ⁷

$$\mathbf{r} \times \nabla \left[v_m \Delta F_1 + \alpha F_2 - \partial_t F_1 \right] = 0$$

$$\mathbf{r} \times \nabla \left[v_m \Delta F_2 - \frac{1}{r} (\partial_r \alpha) (\partial_r r F_1) - \alpha \Delta F_1 - \partial_t F_2 \right] = 0$$

Quenching α - effect (saturation)
$$\alpha(r, t) = C \frac{\alpha(r)}{1 + \left(\mathbf{B}(r, t) / B_0 \right)^2} + noise$$

⁶ E. N. Parker, ApJ. 164, 1971, ⁷ F. Stefani, G. Gerbeth Phys. Rev. Lett. 2005

Field reversals are provoked by transitions to oscillatory solutions ^{6,7}

Magnetic field dynamics in the vicinity of exceptional point Heuristic model 7

$$\mathbf{r} \times \nabla \left[\nu_m \Delta F_1 + \alpha F_2 - \partial_t F_1 \right] = 0$$

$$\mathbf{r} \times \nabla \left[\nu_m \Delta F_2 - \frac{1}{r} (\partial_r \alpha) (\partial_r r F_1) - \alpha \Delta F_1 - \partial_t F_2 \right] = 0$$

Field reversals observed with the variaion of parameter *C*

Quenching
$$\alpha$$
 – effect (saturation)

$$\alpha(r,t) = C \frac{\alpha(r)}{1 + (\mathbf{B}(r,t)/B_0)^2} + noise$$

⁶ E. N. Parker, ApJ. 164, 1971, ⁷ F. Stefani, G. Gerbeth Phys. Rev. Lett. 2005

How to excite the oscillatory α^2 -dynamo?

Inverse problems for the dynamo operator ⁸

How to excite the oscillatory α^2 -dynamo? Inverse problems for the dynamo operator ⁸

Given: Non-self-adjoint boundary eigenvalue problem

 $\begin{pmatrix} -A_l & \alpha(r) \\ A_{l,\alpha} & -A_l \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \lambda \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} \qquad F_1(0) = F_2(0) = 0 \\ (\beta l + 1 - \beta)F_1(1) + \beta F_1'(1) = 0, \quad F_2(1) = 0$

$$A_{l} = -\partial_{r}^{2} + \frac{l(l+1)}{r^{2}}$$
$$A_{l,\alpha} = \alpha(r)A_{l} - \alpha'(r)\partial_{r}$$

How to excite the oscillatory α^2 -dynamo? Inverse problems for the dynamo operator ⁸

Given: Non-self-adjoint boundary eigenvalue problem

 $\begin{pmatrix} -A_l & \alpha(r) \\ A_{l,\alpha} & -A_l \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \lambda \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} \qquad F_1(0) = F_2(0) = 0 \\ (\beta l + 1 - \beta)F_1(1) + \beta F_1'(1) = 0, \quad F_2(1) = 0$

$$A_{l} = -\partial_{r}^{2} + \frac{l(l+1)}{r^{2}}$$
$$A_{l,\alpha} = \alpha(r)A_{l} - \alpha'(r)\partial_{r}$$

Find: Describe α -profiles that yield Re $\lambda > 0$, Im $\lambda \neq 0$

How to excite the oscillatory α^2 -dynamo? Inverse problems for the dynamo operator ⁸

Given: Non-self-adjoint boundary eigenvalue problem

 $\begin{pmatrix} -A_l & \alpha(r) \\ A_{l,\alpha} & -A_l \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \lambda \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} \qquad F_1(0) = F_2(0) = 0 \\ (\beta l + 1 - \beta)F_1(1) + \beta F_1'(1) = 0, \quad F_2(1) = 0$

$$A_{l} = -\partial_{r}^{2} + \frac{l(l+1)}{r^{2}}$$
$$A_{l,\alpha} = \alpha(r)A_{l} - \alpha'(r)\partial_{r}$$

Find: Describe α -profiles that yield Re $\lambda > 0$, Im $\lambda \neq 0$

Note: Numerically possible (<u>hard</u>); without clear rule ⁸

Why exciting the oscillatory dynamo is not easy?

We look for the α -profiles of the form $\alpha(r) = \alpha_0 + \gamma \varphi(r)$

The problem reduces to description of Arnold's tongues in (α_0, β, γ)-space

Pictured above: Numerical results for various boundary conditions

For $\alpha(r) = \alpha_0 = const$, eigenvalue problem can be solved exactly in 2 cases ¹⁰ $D(A_{\alpha_{\alpha}}) \neq D(A_{\alpha_{\alpha}}^{*})$ Isolating b. c. $(\beta = 1)$: $\lambda_n(\alpha_0) = \frac{1}{\Lambda} (\alpha_0^2 - \pi^2 n^2), \quad n \in \mathbb{N}$ For l = 0: $D(A_{\alpha_{\alpha}}) = D(A_{\alpha_{\alpha}}^{*})$ Superconducting b. c. ($\beta = 0$): For l = 0: $\lambda_n^{\pm}(\alpha_0) = -(\pi n)^2 \pm \alpha_0 \pi n$ $\lambda_n^{\pm}(\alpha_0) = -\rho_n \pm \alpha_0 \sqrt{\rho_n}, \quad n \in \mathbb{Z}^+$ For $l \neq 0$: $J_{l+1/2}(\sqrt{\rho_n}) = 0, \quad 0 < \sqrt{\rho_1} < \sqrt{\rho_2} < \cdots$ Zeros of Bessel functions:

Transition from superconducting to isolating boundary conditions ⁹

Spectral mesh deforms to parabolic eigencurves when $\beta \in [0,1], \gamma = 0$

Superconducting b. c. (β =0): $D(A_{\alpha}) = D(A_{\alpha}^{*})$

 A_{α} is self-adjoint in a Krein space with indefinite inner product

$$[A_{\alpha}u,v] = [u,A_{\alpha}v], \quad u,v \in (K,[.,.]), \quad [.,.] = (J.,.), \quad J = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

Superconducting b. c. (β =0): $D(A_{\alpha}) = D(A_{\alpha}^{*})$

 A_{α} is self-adjoint in a Krein space with indefinite inner product

$$[A_{\alpha}u,v] = [u, A_{\alpha}v], \quad u, v \in (K, [.,.]), \quad [.,.] = (J,..), \quad J = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$
$$\lambda_{n}^{\sigma_{n}} = -\rho_{n} + \sigma_{n}\alpha_{0}\sqrt{\rho_{n}}, \quad u_{n}^{\sigma_{n}} = \begin{pmatrix} 1 \\ \sigma_{n}\sqrt{\rho_{n}} \end{pmatrix} N_{n}r^{\frac{1}{2}}J_{l+\frac{1}{2}}(\sqrt{\rho_{n}}r), \quad N_{n} = \frac{\sqrt{2}}{J_{l+\frac{3}{2}}(\sqrt{\rho_{n}}r)}$$

Superconducting b. c. (β =0): $D(A_{\alpha}) = D(A_{\alpha}^{*})$

 A_{α} is self-adjoint in a Krein space with indefinite inner product

$$[A_{\alpha}u,v] = [u, A_{\alpha}v], \quad u, v \in (K, [.,.]), \quad [.,.] = (J_{n}), \quad J = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$
$$\lambda_{n}^{\sigma_{n}} = -\rho_{n} + \sigma_{n}\alpha_{0}\sqrt{\rho_{n}}, \quad u_{n}^{\sigma_{n}} = \begin{pmatrix} 1 \\ \sigma_{n}\sqrt{\rho_{n}} \end{pmatrix} N_{n}r^{\frac{1}{2}}J_{l+\frac{1}{2}}(\sqrt{\rho_{n}}r), \quad N_{n} = \frac{\sqrt{2}}{J_{l+\frac{3}{2}}(\sqrt{\rho_{n}}r)}$$

Krein signature $\sigma_n = \operatorname{sgn}[u_n, u_n] = \operatorname{sgn}(Ju_n, u_n)$

Spectral mesh: σ_n = sign of the slope of an eigenline $\lambda(\alpha_0)$

Superconducting b. c. (β =0): $D(A_{\alpha}) = D(A_{\alpha}^{*})$

 A_{α} is self-adjoint in a Krein space with indefinite inner product

$$[A_{\alpha}u,v] = [u, A_{\alpha}v], \quad u, v \in (K, [.,.]), \quad [.,.] = (J_{n}), \quad J = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$
$$\lambda_{n}^{\sigma_{n}} = -\rho_{n} + \sigma_{n}\alpha_{0}\sqrt{\rho_{n}}, \quad u_{n}^{\sigma_{n}} = \begin{pmatrix} 1 \\ \sigma_{n}\sqrt{\rho_{n}} \end{pmatrix} N_{n}r^{\frac{1}{2}}J_{l+\frac{1}{2}}(\sqrt{\rho_{n}}r), \quad N_{n} = \frac{\sqrt{2}}{J_{l+\frac{3}{2}}(\sqrt{\rho_{n}}r)}$$

Krein signature $\sigma_n = \operatorname{sgn}[u_n, u_n] = \operatorname{sgn}(Ju_n, u_n)$

Spectral mesh: σ_n = sign of the slope of an eigenline $\lambda(\alpha_0)$

Double eigenvalue
$$\lambda_1 = \lambda_2$$

 $\sigma_1 = \sigma_2$ definite Krein signature
 $\sigma_1 \neq \sigma_2$ mixed Krein signature

Crossing of eigenlines: $\lambda_n^{\varepsilon} = \lambda_m^{\delta}$, $\lambda_n^{\varepsilon} = -\rho_n + \varepsilon \alpha_0 \sqrt{\rho_n}$, $\varepsilon, \delta = \pm$

Crossing of eigenlines: $\lambda_n^{\varepsilon} = \lambda_m^{\delta}$, $\lambda_n^{\varepsilon} = -\rho_n + \varepsilon \alpha_0 \sqrt{\rho_n}$, $\varepsilon, \delta = \pm$

Doublets at the crossings with $\lambda > 0$ have **definite Krein signature**

Crossing of eigenlines: $\lambda_n^{\varepsilon} = \lambda_m^{\delta}$, $\lambda_n^{\varepsilon} = -\rho_n + \varepsilon \alpha_0 \sqrt{\rho_n}$, $\varepsilon, \delta = \pm$

Doublets at the crossings with $\lambda > 0$ have **definite Krein signature Doublets** at the crossings with $\lambda < 0$ have **mixed Krein signature**

Unfolding doublets by perturbation $\alpha(r) = \alpha_0^{\nu} + \gamma \varphi(r), \ \beta = 0$ Indefinite inner product in the Krein space: [.,.] = (J.,.)

Define:
$$a_1 = \varepsilon \frac{[Ku_n^{\varepsilon}, u_n^{\varepsilon}]}{\sqrt{\rho_n}}, \quad a_2 = \delta \frac{[Ku_m^{\delta}, u_m^{\delta}]}{\sqrt{\rho_m}}, \quad b^2 = \frac{[Ku_n^{\varepsilon}, u_n^{\varepsilon}][Ku_m^{\delta}, u_m^{\delta}]}{\sqrt{\rho_n \rho_m}}$$
$$[Ku_n^{\varepsilon}, u_m^{\delta}] = \gamma \int_0^1 \varphi \left[\left(\varepsilon \delta \sqrt{\rho_n \rho_m} + \frac{l(l+1)}{r^2} \right) u_m u_n + u_m' u_n' \right] dr$$

Splitting: $\lambda = \lambda_0^{\nu} + \Delta \lambda$, $\Delta \lambda = [(a_1 + a_2) \pm \sqrt{(a_1 - a_2)^2 + \varepsilon \delta b^2}]/2$

 $\varepsilon = \delta (\lambda_0^{\nu} > 0)$: $\Delta \lambda$ is real; $\varepsilon = -\delta (\lambda_0^{\nu} < 0)$: $\Delta \lambda$ can be complex

Two branches with the slopes of the same sign – real splitting

Two branches with the slopes of different signs – complex splitting

Fourier coefficients select sequences of resonant crossings

α, β, γ – unfolding of the crossings

Node: $(\alpha_0^{\nu}, \lambda_0^{\nu}), \quad \lambda_0^{\nu} = \varepsilon \delta \pi^2 nm, \quad \alpha_0^{\nu} = \varepsilon \pi n + \delta \pi m, \quad \varepsilon, \delta = \pm$ After the splitting *:

$$\begin{aligned} \lambda(\alpha_0,\beta,\gamma) &= \lambda_0^{\nu} - \varepsilon \delta \pi^2 nm\beta + \frac{\pi}{2} (\delta m + \varepsilon n) \Delta \alpha_0 \\ &\pm \frac{\pi}{2} \sqrt{\left((\delta m - \varepsilon n) \Delta \alpha_0 \right)^2 + 4mn \left(\varepsilon \gamma \Delta \alpha - (-1)^{n+m} \pi n\beta \right)} \left(\delta \gamma \Delta \alpha - (-1)^{n+m} \pi m\beta \right)} \end{aligned}$$

Condition for existence of the complex eigenvalues:

$$((\varepsilon n - \delta m)\Delta\alpha_0)^2 + mn((\varepsilon + \delta)\gamma\Delta\alpha - (-1)^{n+m}(n+m)\beta\pi)^2 - mn((\varepsilon - \delta)\gamma\Delta\alpha - (-1)^{n+m}(n-m)\beta\pi)^2 < 0$$

*:
$$\Delta \alpha_0 := \alpha_0 - \alpha_0^{\nu}, \quad \Delta \alpha := \int_0^1 \varphi(r) \cos((\varepsilon n - \delta m)\pi r) dr, \quad \int_0^1 \varphi(r) dr = 0$$

Three dimensional Arnold tongues of oscillatory dynamo

$$\varphi(r) = \cos(2\pi kr), \quad \Delta \alpha = \int_{0}^{1} \varphi(r) \cos((\varepsilon n - \delta m)r) dr = \begin{cases} 1/2, & 2k = \pm (\varepsilon n - \delta m) \\ 0, & 2k \neq \pm (\varepsilon n - \delta m) \end{cases}$$

Two sorts of the resonance domains in the plane (α_0 , γ)

Hyperbolic regions for $\varepsilon = -\delta$ (decaying magnetic field):

$$mn(\varepsilon\gamma - (n-m)\beta\pi)^2 - 4k^2(\alpha_0 - \alpha_0^{\nu})^2 > mn((n+m)\beta\pi)^2$$
$$\operatorname{Re} \lambda = -\pi^2 mn(1-\beta) + \varepsilon \frac{\pi}{2}(n-m)(\alpha_0 - \alpha_0^{\nu}) < 0$$

Elliptic regions for $\varepsilon = \delta$ (growing magnetic field):

$$4k^{2}(\alpha_{0}-\alpha_{0}^{\nu})^{2}+mn(\varepsilon\gamma-(n+m)\beta\pi)^{2}< mn((n-m)\beta\pi)^{2}$$

$$\operatorname{Re} \lambda = \pi^2 mn \left(1 - \beta\right) + \varepsilon \frac{\pi}{2} (n + m) (\alpha_0 - \alpha_0^{\nu}) > 0$$

Resonance tongues and islands ($\varphi(r) = \cos(2\pi kr), k = 2$)

- $\beta = 0$: only resonant tongues with Re $\lambda < 0$ are visible in the plane (α_0, γ)
- $\beta > 0$: resonance "islands" of oscillatory dynamo with Re $\lambda > 0$ appear in the "prohibited" zone in the plane (α_0, γ)
- Separate variation of γ or β does not yield the oscillatory dynamo
- Simultaneous changing of γ and β easily produces the non-trivial oscillatory dynamo regions

• γ is bounded from above (in a corridor)

Oscillatory dynamo domains (Arnold tongues)

Numerical vs. perturbative (dashed)

3 principal tongues:

$$\gamma^2 - 4\alpha_0^2 > 16\pi^2\beta^2$$
, $16(\alpha_0 \pm 2\pi)^2 + (\gamma \pm 10\pi\beta)^2 < 4(\gamma \pm 4\pi\beta)^2$

Infinitely many islands: n = 1, 2, ...

Oscillatory dynamo domains (Arnold tongues)

Numerical vs. perturbative (dashed)

green (blue) – decaying (growing) oscillatory modes

Krein signature (KS) determines orientation of the resonance zones

Definite KS (blue) – no instability at $\beta=0$

3D Arnold tongues in $(\alpha_0, \beta, \gamma)$ -space

Physical Review E statistical, nonlinear, and soft matter APS » Journals » Physical Review E **APS** Journals PRE Kaleidoscope Images: Current Issue January 2009 Earlier Issues About This Journal Journal Staff . About the Journals . Search the Journals . APS Home . Join APS Referees . General Information Submit a Report Outstanding Referees >Update Your Information >Policies & Practices .)Referee FAQ Advice to Referees Librarians

⁹ O.N. Kirillov, U. Günther, F. Stefani Phys. Rev. E 2009

PRE Kaleidoscope Images: January 2009

2. Outline

Magnetized Taylor-Couette flow

Axisymmetric perturbations

Local stability analysis

Islands of helical magnetorotational instability

Standard and helical magnetorotational instability

Transition through spectral exceptional points

Mathematical setting

Navier-Stokes equation for the fluid velocity **u**

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla \left(p + \frac{B^2}{2\mu_0} \right) + \frac{1}{\mu_0 \rho} (\mathbf{B} \cdot \nabla)\mathbf{B} + \nu \nabla^2 \mathbf{u}$$

Induction equation for the magnetic field **B**

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

Mass continuity for incompressible flows and the solenoidal condition

 $\nabla \cdot \mathbf{u} = 0, \quad \nabla \cdot \mathbf{B} = 0$

p : pressure, $\rho = const$: density, v = const : kinematic viscosity

 $\eta = (\mu_0 \sigma)^{-1}$: magnetic diffusivity, σ : conductivity of the fluid

 μ_0 : magnetic permeability of free space

Linearization w. r. t. axi-symmetric perturbations, cf. [Liu et al. 2006]

Steady state: A magnetized Taylor-Couette flow

 $\mathbf{u}_0 = R\Omega(R)\mathbf{e}_{\phi}, \quad p = p_0(R), \quad \mathbf{B}_0 = B_{\phi}^0(R)\mathbf{e}_{\phi} + B_z^0\mathbf{e}_z$

$$B^0_{\phi}(R) = \frac{\mu_0 I}{2\pi R}, \qquad \Omega(R) = a + \frac{b}{R^2}, \qquad R\Omega^2 = \frac{1}{\rho} \frac{\partial p_0}{\partial R}, \qquad \kappa^2 = 2\Omega \left(2\Omega + R \frac{d\Omega}{dR}\right)$$

Axi-symmetric perturbation: $\mathbf{u}' = \mathbf{u}'(R, z)$ $\mathbf{B}' = \mathbf{B}'(R, z)$ p' = p'(R, z)

Operators:
$$D_1 = \partial_R \partial_R^{\dagger} + \partial_z^2$$
, $\partial_t = \frac{\partial}{\partial t}$, $\partial_R = \frac{\partial}{\partial R}$, $\partial_z = \frac{\partial}{\partial z}$, $\partial_R^{\dagger} = \partial_R + \frac{1}{R}$, $\widetilde{E} = \text{diag}(D_1, 1, 1, 1)$

Linearized equations:

$$\partial_{t}\widetilde{E}\xi' = \widetilde{H}\xi' \qquad \widetilde{H} = \begin{pmatrix} \nu D_{1}^{2} & 2\Omega\partial_{z}^{2} & \frac{B_{z}^{0}}{\mu_{0}\rho} D_{1}\partial_{z} & -\frac{2B_{\phi}^{0}}{\mu_{0}\rho}\partial_{z}^{2} \\ -\frac{\kappa^{2}}{2\Omega} & \nu D_{1} & 0 & \frac{B_{z}^{0}}{\mu_{0}\rho}\partial_{z} \\ B_{z}^{0}\partial_{z} & 0 & \eta D_{1} & 0 \\ \frac{2B_{\phi}^{0}}{R} & B_{z}^{0}\partial_{z} & R\partial_{R}\Omega & \eta D_{1} \end{pmatrix} \qquad \xi' = \begin{pmatrix} u'_{R} \\ u'_{\phi} \\ B'_{R} \\ B'_{\phi} \end{pmatrix}$$

Local stability analysis [Pessah & Psaltis 2005]

Local stability analysis around a fiducial point (R_0, z_0) Local coordinates $\tilde{R} = R - R_0$ $\tilde{z} = z - z_0$ PDEs with constant coefficients $\partial_t \tilde{E}_0 \xi' = \tilde{H}_0 \xi'$

$$\begin{split} \widetilde{E}_{0} &= \begin{pmatrix} D_{1}^{0} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \widetilde{H}_{0} = \begin{pmatrix} \nu(D_{1}^{0})^{2} & 2\Omega_{0}\partial_{\tilde{z}}^{2} & \frac{B_{z}^{0}}{\mu_{0}\rho}D_{1}^{0}\partial_{\tilde{z}} & -\frac{2B_{\phi}^{0}}{\mu_{0}\rho}\partial_{\tilde{z}}^{2} \\ -\frac{\kappa_{0}^{2}}{2\Omega_{0}} & \nu D_{1}^{0} & 0 & \frac{B_{z}^{0}}{\mu_{0}\rho}\partial_{\tilde{z}} \\ B_{z}^{0}\partial_{\tilde{z}} & 0 & \eta D_{1}^{0} & 0 \\ \frac{2B_{\phi}^{0}}{R_{0}} & B_{z}^{0}\partial_{\tilde{z}} & \frac{\kappa_{0}^{2}}{2\Omega_{0}} - 2\Omega_{0} & \eta D_{1}^{0} \end{pmatrix} \\ \Omega_{0} &= \Omega(R_{0}), \quad \kappa_{0}^{2} = 2\Omega_{0} \left(2\Omega_{0} + R_{0} \frac{d\Omega}{dR} \Big|_{R=R_{0}} \right), \quad B_{\phi}^{0} = B_{\phi}^{0}(R_{0}), \quad D_{1}^{0} = \partial_{\tilde{R}}^{2} + \partial_{\tilde{z}}^{2} + \frac{\partial_{\tilde{R}}}{R_{0}} - \frac{1}{R_{0}^{2}} \right) \end{split}$$

WKB approximation, cf. [Lakhin & Velikhov 2007, Rüdiger et al. 2008]

A plane wave $\xi' = \tilde{\xi} \exp(\gamma t + ik_R \tilde{R} + ik_z \tilde{z}), \quad \tilde{\xi} = (\tilde{u}_R, \tilde{u}_\phi, \tilde{B}_R, \tilde{B}_\phi)^T$

Restriction to the modes with $k_R R_0 \gg 1$

Eigenvalue problem $(H - \gamma I)\tilde{\xi} = 0$ $H = -\text{diag}(\omega_{\nu}, \omega_{\nu}, \omega_{\eta}, \omega_{\eta}) + H_1 + H_2$

$$H_{1} = \frac{i\omega_{A}}{\sqrt{\mu_{0}\rho}} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \mu_{0}\rho & 0 & 0 & 0 \\ 0 & \mu_{0}\rho & 0 & 0 \end{pmatrix} \qquad H_{2} = \begin{pmatrix} 0 & 2\Omega_{0}\alpha^{2} & 0 & -2\omega_{A_{\phi}}\frac{\alpha^{2}}{\sqrt{\mu_{0}\rho}} \\ -2\Omega_{0} - R_{0}\frac{d\Omega}{dR}\Big|_{R=R_{0}} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2\omega_{A_{\phi}}\sqrt{\mu_{0}\rho} & 0 & R_{0}\frac{d\Omega}{dR}\Big|_{R=R_{0}} & 0 \end{pmatrix}$$

Alfvén frequencies

Viscous and resistive frequencies

$$\omega_A^2 = \frac{k_z^2 (B_z^0)^2}{\mu_0 \rho}, \quad \omega_{A_\phi}^2 = \frac{(B_\phi^0)^2}{\mu_0 \rho R_0^2} \qquad \qquad \omega_V = vk^2, \quad \omega_\eta = \eta k^2 \qquad k^2 = k_z^2 + k_R^2 \qquad \alpha = \frac{k_z}{k}$$

Splitting the Alfvén frequencies, cf. [Lehnert 1954, Nornberg et al. 2009]

Damped Alfvén modes ($H_2 = 0$)

$$\gamma_{1,2} = -\frac{\omega_{\nu} + \omega_{\eta}}{2} + \sqrt{\left(\frac{\omega_{\nu} - \omega_{\eta}}{2}\right)^2 - \omega_A^2}, \quad \gamma_{3,4} = -\frac{\omega_{\nu} + \omega_{\eta}}{2} - \sqrt{\left(\frac{\omega_{\nu} - \omega_{\eta}}{2}\right)^2 - \omega_A^2}$$

Fast and slow Magneto-Coriolis waves $(\omega_{A_{\phi}} = 0 \quad \frac{d\Omega}{dR}\Big|_{R=R_0} = 0)$ $\gamma_{1,2} = i\sqrt{\omega_A^2 + \Omega_0^2 \alpha^2} \pm i\alpha \Omega_0, \quad \gamma_{3,4} = -i\sqrt{\omega_A^2 + \Omega_0^2 \alpha^2} \pm i\alpha \Omega_0$

Dispersion relation $P(\gamma) = \det(H - \gamma I) = 0$ **[LV07, Rüdiger & Schultz 2008]**

Dimensionless dispersion relation

$$P(\lambda) = \lambda^4 + a_1 \lambda^3 + a_2 \lambda^2 + (a_3 + ib_3)\lambda + a_4 + ib_4 = 0 \qquad \gamma = \lambda \sqrt{\omega_{\nu} \omega_{\eta}}$$

Rossby, magnetic Prandtl, Reynolds, and Hartmann numbers

$$\operatorname{Ro} = \frac{1}{2} \frac{R_0}{\Omega_0} \frac{d\Omega}{dR}\Big|_{R=R_0}, \quad \operatorname{Pm} = \frac{\nu}{\eta} = \frac{\omega_{\nu}}{\omega_{\eta}}, \quad \beta^* = \alpha \frac{\omega_{A_{\phi}}}{\omega_{A}}, \quad \operatorname{Re}^* = \alpha \frac{\Omega_0}{\omega_{\nu}}, \quad \operatorname{Ha}^* = \alpha \frac{B_z^0}{k\sqrt{\mu_0\rho\nu\eta}}$$

Coefficients

$$a_{1} = 2\left(\sqrt{Pm} + \frac{1}{\sqrt{Pm}}\right) \qquad a_{4} = \left(1 + Ha^{*2}\right)^{2} + 4\beta^{*2}Ha^{*2} + 4Re^{*2} + 4Re^{*2}Ro(PmHa^{*2} + 1)$$

$$a_{2} = \frac{a_{1}^{2}}{4} + 2(1 + Ha^{*2}) + 4\beta^{*2}Ha^{*2} + 4Re^{*2}Pm(1 + Ro) \qquad b_{3} = -8\beta^{*}Ha^{*2}Re^{*}\sqrt{Pm}$$

$$a_{3} = a_{1}(1 + Ha^{*2}) + 2a_{1}\beta^{*2}Ha^{*2} + 8Re^{*2}(1 + Ro)\sqrt{Pm} \qquad b_{4} = -4\beta^{*}Ha^{*2}Re^{*}(2 + (1 - Pm)Ro)$$

SMRI in the absence of the azimuthal magnetic field $(\beta^* = 0)$

 $b_3=0$, $b_4=0$ Real coefficients: Routh-Hurwitz criterion

Ro < Ro^c :=
$$-\frac{(1 + Ha^{*2})^2 + 4Re^{*2}}{4Re^{*2}(PmHa^{*2} + 1)}$$

Standard magneto-rotational instability (SMRI), cf. [Ji et al. 2001]

SMRI as destabilization of slow Magneto-Coriolis waves [Nornberg 2008]

No dissipation ($\omega_v = 0, \omega_v = 0$)

$$\gamma = \pm \sqrt{-2\Omega_0^2 \alpha^2 (1 + \mathrm{Ro}) - \omega_A^2 \pm 2\Omega_0 \alpha \sqrt{\Omega_0^2 \alpha^2 (1 + \mathrm{Ro})^2 + \omega_A^2}}$$

Helical magnetorotational instability (HMRI)

Left to the dashed line – a (semi-) "island" of the essential HMRI

Right to the dashed line – a "continent" of the *helically modified SMRI*

Essential HMRI as a weakly destabilized inertial oscillation

Series expansions of the roots in the vicinity of $\beta^* = 0$, Pm = 0

$$\lambda_{2,4} = -\frac{1}{\sqrt{Pm}} + Ha^{*2}\sqrt{Pm} + o(Pm^{1/2})$$
$$\lambda_{1,3} = \left[-1 - Ha^{*2} \pm 2Re^{*}\sqrt{-(1+Ro)}\right]\sqrt{Pm} + o(Pm^{1/2})$$

The roots
$$\lambda_{1,3}$$
 are complex for Ro > -1

Frequency of the inertial wave

$$\omega = 2\Omega_0 \frac{k_z}{k} \sqrt{\text{Ro} + 1}$$

The mechanism of continuous transition from SMRI to HMRI

Continuous connection between SMRI and HMRI – a paradox?

[Hollerbach & Rüdiger 2005]: There exist continuous and monotonic connection between SMRI (a destabilized slow magneto-Coriolis wave) and HMRI (a weakly destabilized inertial oscillation, [Liu et al. 2006])

The hidden exceptional point governs transfer of instability between the branch of (helically modified) SMRI and a complex branch of the inertial wave and thus reconciles both findings !

Plücker conoid in the unfolding of 1:1 resonance I. Hoveijn, O.N. Kirillov J. Diff. Eqns. 2010