Double Obstacle Limit for a Navier-Stokes/Cahn-Hilliard System

Helmut Abels

Faculty of Mathematics
University of Regensburg
March 10, 2010

Diffuse Interface Models

We consider two (macroscopically) immiscible incompressible, viscous fluids like oil and water.
Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.

Diffuse Interface Models

We consider two (macroscopically) immiscible incompressible, viscous fluids like oil and water.
Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.

But: Sharp Interface is an idealization (van der Waals).
Fluid mix in a thin interfacial region.

Phase Separation/Cahn-Hilliard Equation

We consider two partly miscible components, e.g. Al-/Ni-atoms in a melted alloy, oil and water.
Let $c_{j}: \Omega \rightarrow \mathbb{R}$ be the concentration of the component $j=1,2$, $c=c_{1}-c_{2}$, and let

$$
E_{\varepsilon}(c)=\frac{\varepsilon}{2} \int_{\Omega}|\nabla c(x)|^{2} d x+\varepsilon^{-1} \int_{\Omega} f(c(x)) d x
$$

be the free energy of the mixture, where $\Omega \subseteq \mathbb{R}^{d}$, $d=1,2,3, \varepsilon>0$ and

$$
f: \mathbb{R} \rightarrow[0, \infty) \text { with } f(c)=0 \Leftrightarrow c= \pm 1
$$

Example:

$$
f(c)=\frac{1}{8}\left(1-c^{2}\right)^{2}
$$

Phase Separation/Cahn-Hilliard Equation

We consider two partly miscible components, e.g. Al-/Ni-atoms in a melted alloy, oil and water.
Let $c_{j}: \Omega \rightarrow \mathbb{R}$ be the concentration of the component $j=1,2$, $c=c_{1}-c_{2}$, and let

$$
E_{\varepsilon}(c)=\frac{\varepsilon}{2} \int_{\Omega}|\nabla c(x)|^{2} d x+\varepsilon^{-1} \int_{\Omega} f(c(x)) d x
$$

be the free energy of the mixture, where $\Omega \subseteq \mathbb{R}^{d}$, $d=1,2,3, \varepsilon>0$ and

$$
f: \mathbb{R} \rightarrow[0, \infty) \text { with } f(c)=0 \Leftrightarrow c= \pm 1
$$

Example:

$$
f(c)=\frac{1}{8}\left(1-c^{2}\right)^{2}
$$

H^{-1}-gradient flow of E_{ε} describes dynamics of phase separation:

$$
\begin{align*}
\partial_{t} c & =\Delta \mu & & \text { in } \Omega \times(0, \infty) \tag{1}\\
\mu & =\varepsilon^{-1} f^{\prime}(c)+\varepsilon \Delta c & & \text { in } \Omega \times(0, \infty) \tag{2}
\end{align*}
$$

Choice of Free Energy Density (I)

Typical choice: Smooth double well potential as e.g. $f(c)=\frac{1}{8}\left(1-c^{2}\right)^{2}$.
Then the optimal profile of a diffuse interface is

$$
c_{0}(x)=\tanh \frac{x}{2 \varepsilon}, \quad x \in \mathbb{R}
$$

which minimizes E_{ε} in the case $\Omega=\mathbb{R}$ with constraint $c(x) \rightarrow_{x \rightarrow \pm \infty} \pm 1$. Note: $c_{0}(x) \in(-1,1)$ for all $x \in \mathbb{R}$.

Choice of Free Energy Density (I)

Typical choice: Smooth double well potential as e.g. $f(c)=\frac{1}{8}\left(1-c^{2}\right)^{2}$.
Then the optimal profile of a diffuse interface is

$$
c_{0}(x)=\tanh \frac{x}{2 \varepsilon}, \quad x \in \mathbb{R}
$$

which minimizes E_{ε} in the case $\Omega=\mathbb{R}$ with constraint $c(x) \rightarrow_{x \rightarrow \pm \infty} \pm 1$.
Note: $c_{0}(x) \in(-1,1)$ for all $x \in \mathbb{R}$.
Problem: For smooth f solutions $c(x, t)$ of Cahn-Hilliard system

$$
\begin{aligned}
\partial_{t} c & =\Delta \mu & & \text { in } \Omega \times(0, \infty) \\
\mu & =\varepsilon^{-1} f^{\prime}(c)+\varepsilon \Delta c & & \text { in } \Omega \times(0, \infty)
\end{aligned}
$$

might not stay in $[-1,1]$!

Choice of Free Energy (II)

In the following we consider the logarithmic free energy density
$f_{\theta}(c)= \begin{cases}\theta((1-c) \log (1-c)+(1+c) \log (1+c))-\theta_{c} c^{2}, & \text { if } c \in[-1,1], \\ +\infty & \text { else. }\end{cases}$
for some $0<\theta<\theta_{c}$ and $\nu(c)>0$ on [$-1,1$]. cf. Cahn \& Hilliard '58, Elliott \& Luckhaus '91.
Note:

$$
\begin{aligned}
& f_{\theta}(c)=\underbrace{\theta \varphi(c)}_{\text {convex }}-\frac{\theta_{c}}{2} c^{2} \\
& f_{\theta}^{\prime}(c) \rightarrow c \rightarrow \pm 1 \pm \infty
\end{aligned}
$$

Elliott \& Luckhaus '91, Debussche \& Dettori '95, Kenmochi et al. '95: Existence of unique solutions of (1)-(2) such that $c(x, t) \in(-1,1)$. Alternative proofs: Miranville \& Zelik '04, A. \& Wilke '07

Double Obstacle/Deep Quench Limit (I)

We have

$$
f_{\theta}(c) \rightarrow_{\theta \rightarrow 0} f_{0}(c)=\mathbf{I}_{[-1,1]}(c)-\frac{\theta_{c}}{2} c^{2}, \quad \mathbf{I}_{[-1,1]}(c):= \begin{cases}0 & \text { if } c \in[-1,1] \\ +\infty & \text { else }\end{cases}
$$

The optimal profile for E_{ε} with f_{0} and $\varepsilon=\theta_{c}=1$ is

$$
c_{0}(x)= \begin{cases}-1 & \text { if } c<-\frac{\pi}{2} \\ \sin x & \text { if } c \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ 1 & \text { if } c>\frac{\pi}{2}\end{cases}
$$

Double Obstacle/Deep Quench Limit (II)

The optimal profile

$$
c_{0}(x)= \begin{cases}-1 & \text { if } c<-\frac{\pi}{2} \\ \sin x & \text { if } c \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ 1 & \text { if } c>\frac{\pi}{2}\end{cases}
$$

solves the differential inclusion

$$
c^{\prime \prime}(x)+c(x) \in \partial I_{[-1,1]}(c(x))= \begin{cases}(-\infty, 0] & \text { if } c(x)=-1 \\ \{0\} & \text { if } c(x) \in(-1,1) \\ {[0, \infty)} & \text { if } c(x)=1 \\ \emptyset & \text { else }\end{cases}
$$

Elliott \& Luckhaus '91: Solutions of Cahn-Hilliard system (1)-(2) with f_{θ} converge as $\theta \rightarrow 0$ to solution of

$$
\begin{array}{ccc}
\partial_{t} c=\Delta \mu & & \text { in } \Omega \times(0, T) \\
\mu+\varepsilon \Delta c+\varepsilon^{-1} \theta_{c} c \in \partial I_{[-1,1]}(c(x)) & & \text { in } \Omega \times(0, T)
\end{array}
$$

Diffuse Interface Model in the Case of Matched Densities

If the densities of the fluids are the same, then one can derive:

$$
\begin{array}{rlrl}
\partial_{t} v+v \cdot \nabla v-\underbrace{\operatorname{div}(\nu(c) D v)}_{\text {inner friction }}+\nabla p & =\underbrace{-\varepsilon \operatorname{div}(\nabla c \otimes \nabla c)}_{\text {surface tension }} \text { in } \Omega \times(0, \infty) \\
\operatorname{div} v & =0 & \text { in } \Omega \times(0, \infty) \\
\partial_{t} c+v \cdot \nabla c & =m \Delta \mu & \text { in } \Omega \times(0, \infty) \\
\mu & =-\varepsilon \Delta c+\varepsilon^{-1} f_{\theta}^{\prime}(c) & \text { in } \Omega \times(0, \infty) \tag{6}
\end{array}
$$

where $D v=\frac{1}{2}\left(\nabla v+\nabla v^{T}\right), \Omega \subset \mathbb{R}^{d}$ is a bounded smooth domain, together with boundary and initial conditions.
Derivation: Hohenberg \& Halperin '74, Gurtin et al. '96 Analytical results: Starovoitov '93, Boyer '03, X. Feng '06, A. '07/'09

Diffuse Interface Model in the Case of Matched Densities

 If the densities of the fluids are the same, then one can derive:$$
\begin{array}{rlrl}
\partial_{t} v+v \cdot \nabla v-\underbrace{\operatorname{div}(\nu(c) D v)}_{\text {inner friction }}+\nabla p & =\underbrace{-\varepsilon \operatorname{div}(\nabla c \otimes \nabla c)}_{\text {surface tension }} \text { in } \Omega \times(0, \infty) \\
\operatorname{div} v & =0 & & \text { in } \Omega \times(0, \infty) \\
\partial_{t} c+v \cdot \nabla c & =m \Delta \mu & & \text { in } \Omega \times(0, \infty) \\
\mu & =-\varepsilon \Delta c+\varepsilon^{-1} f_{\theta}^{\prime}(c) & \text { in } \Omega \times(0, \infty)
\end{array}
$$

where $D v=\frac{1}{2}\left(\nabla v+\nabla v^{T}\right), \Omega \subset \mathbb{R}^{d}$ is a bounded smooth domain, together with boundary and initial conditions.
Derivation: Hohenberg \& Halperin '74, Gurtin et al. '96 Analytical results: Starovoitov '93, Boyer '03, X. Feng '06, A. '07/'09 Energy dissipation: For sufficiently smooth solutions we have $\frac{d}{d t} E(c(t), v(t))=-\int_{\Omega} \nu(c)|D v|^{2} d x-\int_{\Omega} m|\nabla \mu|^{2} d x \quad$ with

$$
E(c(t), v(t))=\frac{\varepsilon}{2} \int_{\Omega}|\nabla c(x)|^{2} d x+\varepsilon^{-1} \int_{\Omega} f_{\theta}(c(x)) d x+\int_{\Omega} \frac{|v(t)|^{2}}{2} d x
$$

Theorem (Existence, Regularity, Uniqueness, A. '07/'09)
Let $d=2,3, \theta>0$. For every $v_{0} \in L_{\sigma}^{2}(\Omega), c_{0} \in H^{1}(\Omega)$ with $E\left(c_{0}, v_{0}\right)<\infty$ there is a weak solution (v, c, μ) of (3)-(6), which satisfies

$$
\begin{aligned}
(v, \nabla c) & \in L^{\infty}\left(0, \infty ; L^{2}(\Omega)\right), \quad(\nabla v, \nabla \mu) \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right), \\
\nabla^{2} c, f_{\theta}^{\prime}(c) & \in L_{\text {loc }}^{2}\left([0, \infty) ; L^{6}(\Omega)\right) .
\end{aligned}
$$

In particular, $c(t, x) \in(-1,1)$ a.e. Moreover, $c \in B U C\left([0, \infty) ; W_{q}^{1}(\Omega)\right)$ with $q>d$. For $\left(v_{0}, c_{0}\right)$ sufficiently smooth:
(1) If $d=2$, then the weak solution is unique and regular.
(2) If $d=3$, there are some $0<T_{0}<T_{1}<\infty$ such that the weak solution is regular and (locally) unique on ($0, T_{0}$) and $\left[T_{1}, \infty\right.$).

Theorem (Existence, Regularity, Uniqueness, A. '07/'09)
Let $d=2,3, \theta>0$. For every $v_{0} \in L_{\sigma}^{2}(\Omega), c_{0} \in H^{1}(\Omega)$ with $E\left(c_{0}, v_{0}\right)<\infty$ there is a weak solution (v, c, μ) of (3)-(6), which satisfies

$$
\begin{aligned}
(v, \nabla c) & \in L^{\infty}\left(0, \infty ; L^{2}(\Omega)\right), \quad(\nabla v, \nabla \mu) \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right), \\
\nabla^{2} c, f_{\theta}^{\prime}(c) & \in L_{\text {loc }}^{2}\left([0, \infty) ; L^{6}(\Omega)\right) .
\end{aligned}
$$

In particular, $c(t, x) \in(-1,1)$ a.e. Moreover, $c \in B U C\left([0, \infty) ; W_{q}^{1}(\Omega)\right)$ with $q>d$. For $\left(v_{0}, c_{0}\right)$ sufficiently smooth:
(1) If $d=2$, then the weak solution is unique and regular.
(2) If $d=3$, there are some $0<T_{0}<T_{1}<\infty$ such that the weak solution is regular and (locally) unique on ($0, T_{0}$) and $\left[T_{1}, \infty\right.$).

Theorem (Uniform Bounds, A. '09)

The solutions $(v, c, \mu)=\left(v^{\theta}, c^{\theta}, \mu^{\theta}\right), \theta \in(0,1)$ are uniformly bounded in the function spaces above.

Structure of the Proof

First study the separate systems:
(1) Cahn-Hilliard equation with convection and singular potential (based on $E_{\varepsilon}(c)=E_{0, \theta}(c)-\frac{\theta_{c}}{2}\|c\|_{2}^{2}$ with $E_{0, \theta}$ convex)
(2) (Navier-)Stokes system with variable viscosity

Structure of the Proof

First study the separate systems:
(1) Cahn-Hilliard equation with convection and singular potential (based on $E_{\varepsilon}(c)=E_{0, \theta}(c)-\frac{\theta_{c}}{2}\|c\|_{2}^{2}$ with $E_{0, \theta}$ convex)
(2) (Navier-)Stokes system with variable viscosity

Existence of weak solutions:
Approximation and compactness argument
Higher Regularity: Use regularity results for separate systems
Uniqueness: Gronwall's inequality once $c \in L^{\infty}\left(0, T ; C^{1}(\bar{\Omega})\right)$ and $v \in L^{\infty}\left(0, T ; W_{s}^{1}(\Omega)\right), s>d$.
Crucial ingredient for higher regularity:
A priori estimate for $c \in B \cup C\left([0, \infty) ; W_{q}^{1}(\Omega)\right), q>d!$

A priori Estimates for c

W_{r}^{2}-estimate for c : Formally multiply

$$
\mu(x, t)=-\Delta c(x, t)+f_{\theta}^{\prime}(c(x, t))
$$

by $f_{\theta}^{\prime}(c(x, t))=\theta \varphi^{\prime}(c(x, t))-\theta_{c} c(x, t)$ to obtain

$$
\int_{\Omega} f_{\theta}^{\prime}(c(t))^{2} d x+\int_{\Omega} \underbrace{f_{\theta}^{\prime \prime}(c(t))}_{\geq-\theta_{c}}|\nabla c(t)|^{2} d x \leq C\|\mu(t)\|_{2}
$$

uniformly in $\theta>0$.

A priori Estimates for c

W_{r}^{2}-estimate for c : Formally multiply

$$
\mu(x, t)=-\Delta c(x, t)+f_{\theta}^{\prime}(c(x, t))
$$

by $f_{\theta}^{\prime}(c(x, t))=\theta \varphi^{\prime}(c(x, t))-\theta_{c} c(x, t)$ to obtain

$$
\int_{\Omega} f_{\theta}^{\prime}(c(t))^{2} d x+\int_{\Omega} \underbrace{f_{\theta}^{\prime \prime}(c(t))}_{\geq-\theta_{c}}|\nabla c(t)|^{2} d x \leq C\|\mu(t)\|_{2}
$$

uniformly in $\theta>0$. Similarly, for $2 \leq r<\infty$

$$
\begin{aligned}
\left\|f_{\theta}^{\prime}(c(t))\right\|_{r} & +\|c(t)\|_{W_{r}^{2}} \leq C_{r}\left(\|\mu(t)\|_{r}+\|\nabla c(t)\|_{2}\right) \\
& \Rightarrow c \in L_{\mathrm{uloc}}^{2}\left([0, \infty) ; W_{6}^{2}(\Omega)\right)
\end{aligned}
$$

where

$$
\|c\|_{L_{\text {uloc }}^{2}([0, \infty) ; X)}=\sup _{t \geq 0}\|c\|_{L^{2}(t, t+1 ; X)}
$$

Modifications: Higher regularity in time in Besov spaces.

Higher Time Regularity for c

$L^{\infty}\left(0, \infty ; H_{(0)}^{-1}\right)$-estimate of $\partial_{t} c$: Multiplying

$$
\partial_{t}^{2} c+\Delta(\Delta c-\underbrace{f^{\prime \prime}(c)}_{\geq-\theta_{c}} \partial_{t} c)=-\partial_{t}(v \cdot \nabla c)
$$

by $-\Delta_{N}^{-1} \partial_{t} c$ yields

$$
\left\|\partial_{t} c\right\|_{L^{\infty}\left(0, \infty ; H_{(0)}^{-1}\right)}+\left\|\nabla \partial_{t} c\right\|_{L^{2}(Q)} \leq C\left(c_{0}\right)\left(1+\left\|\partial_{t} v\right\|_{L_{\text {uloc }}^{\frac{4}{3}}\left(0, \infty ; V_{n}^{\prime}\right)}\right)
$$

where $V_{n}(\Omega)=\left\{\varphi \in H^{1}(\Omega)^{n}:\left.n \cdot \varphi\right|_{\partial \Omega}=0\right\}$.
$\Rightarrow \mu \in L^{\infty}\left(0, \infty ; H^{1}(\Omega)\right)$
$\Rightarrow c \in L^{\infty}\left(0, \infty ; W_{r}^{2}(\Omega)\right), r=6$ if $d=3$ and $1<r<\infty$ if $d=2$.

Higher Time Regularity for c

$L^{\infty}\left(0, \infty ; H_{(0)}^{-1}\right)$-estimate of $\partial_{t} c$: Multiplying

$$
\partial_{t}^{2} c+\Delta(\Delta c-\underbrace{f^{\prime \prime}(c)}_{\geq-\theta_{c}} \partial_{t} c)=-\partial_{t}(v \cdot \nabla c)
$$

by $-\Delta_{N}^{-1} \partial_{t} c$ yields

$$
\left\|\partial_{t} c\right\|_{L^{\infty}\left(0, \infty ; H_{(0)}^{-1}\right)}+\left\|\nabla \partial_{t} c\right\|_{L^{2}(Q)} \leq C\left(c_{0}\right)\left(1+\left\|\partial_{t} v\right\|_{L_{\text {uloc }}^{\frac{4}{3}}\left(0, \infty ; V_{n}^{\prime}\right)}\right)
$$

where $V_{n}(\Omega)=\left\{\varphi \in H^{1}(\Omega)^{n}:\left.n \cdot \varphi\right|_{\partial \Omega}=0\right\}$.
$\Rightarrow \mu \in L^{\infty}\left(0, \infty ; H^{1}(\Omega)\right)$
$\Rightarrow c \in L^{\infty}\left(0, \infty ; W_{r}^{2}(\Omega)\right), r=6$ if $d=3$ and $1<r<\infty$ if $d=2$.
Problem: In general $\partial_{t} v \in L_{\text {uloc }}^{\frac{4}{3}}\left(0, \infty ; H^{-1}(\Omega)^{n}\right) \nsubseteq L_{\text {uloc }}^{\frac{4}{3}}\left(0, \infty ; V_{n}^{\prime}\right)$!
Solution: Replace $\partial_{t} c$ by $h^{-\tau} \Delta_{h} c$. Use $v \in B_{\frac{4}{3} \infty ; \text { uloc }}^{\tau}\left([0, \infty) ; H^{-s}(\Omega)\right)$ with $0<s<\frac{1}{2}, \tau>\frac{2}{3}$ as well as $H_{0}^{s}(\Omega)=H^{s}(\Omega)$ and $H^{-s}(\Omega)=H^{s}(\Omega)^{\prime}$.
$\ldots \Rightarrow c \in B \cup C\left([0, \infty) ; W_{q}^{1}(\Omega)\right), q>3$.

Theorem (Double Obstacle Limit, A. '09)

There a subsequence of $\left(v^{\theta}, c^{\theta}, \mu^{\theta}\right)_{\theta \in(0,1)}$ converges to $\left(v^{0}, c^{0}, \mu^{0}\right)$ solving

$$
\begin{align*}
\partial_{t} v+v \cdot \nabla v-\operatorname{div}(\nu(c) D v)+\nabla p & =\mu_{0} \nabla c & & \text { in } \Omega \times(0, \infty) \tag{7}\\
\operatorname{div} v & =0 & & \text { in } \Omega \times(0, \infty) \\
\partial_{t} c+v \cdot \nabla c & =m \Delta \mu & & \text { in } \Omega \times(0, \infty) \tag{8}\\
b:=\mu+\varepsilon \Delta c+\varepsilon^{-1} \theta_{c} c & \in \partial I_{[-1,1]}(c) & & \text { in } \Omega \times(0, \infty) \tag{9}
\end{align*}
$$

and $c(x, t) \in[-1,1]$ for all $(x, t) \in \Omega \times(0, \infty)$. Moreover,

$$
\begin{aligned}
& \left(v^{0}, \nabla c^{0}\right) \in L^{\infty}\left(0, \infty ; L^{2}(\Omega)\right), \quad\left(\nabla v^{0}, \nabla \mu^{0}\right) \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right), \\
& \nabla^{2} c^{0}, b \in L_{l o c}^{2}\left([0, \infty) ; L^{6}(\Omega)\right), c^{0} \in B \cup C\left([0, \infty) ; W_{q}^{1}(\Omega)\right), q>d
\end{aligned}
$$

For $\left(v_{0}, c_{0}\right)$ sufficiently smooth:
(1) If $d=2$, then the weak solution is unique and regular.
(2) If $d=3$, there are some $0<T_{0}<T_{1}<\infty$ such that the weak solution is regular and (locally) unique on $\left(0, T_{0}\right)$ and $\left[T_{1}, \infty\right)$.

Open Questions

Question: How much does $\theta \geq 0$ influences the Ostwald ripening effect (for fixed ε)?

Open Questions

Question: How much does $\theta \geq 0$ influences the Ostwald ripening effect (for fixed ε)?

Simulation by S. Bartels

Question: Does $(v(t), c(t))$ converges to stationary solution as $t \rightarrow \infty$ if $\theta=0$? (Known for $\theta>0$, A. '07/'09)

