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Diffuse Interface Models

We consider two (macroscopically) immiscible incompressible, viscous
fluids like oil and water.

Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.
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Diffuse Interface Models

We consider two (macroscopically) immiscible incompressible, viscous
fluids like oil and water.

Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.

But: Sharp Interface is an idealization (van der Waals).
Fluid mix in a thin interfacial region.
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Phase Separation/Cahn-Hilliard Equation

We consider two partly miscible components, e.g. Al-/Ni-atoms in a
melted alloy, oil and water.

Let ¢j: © — R be the concentration of the component j = 1,2,

c =11 — G, and let

E.(c) = g/Q|Vc(X)|2dx+e_1/Qf(c(x)) dx

be the free energy of the mixture, where Q C R,
d=1,2,3,¢>0and

Example:

f: R — [07 OO) W|th f(C) = O == +1. f(c) = %(1,(_.2)2

Helmut Abels (U Regensburg) Double Obstacle Limit March 10, 2010 3/14



Phase Separation/Cahn-Hilliard Equation

We consider two partly miscible components, e.g. Al-/Ni-atoms in a
melted alloy, oil and water.

Let ¢j: © — R be the concentration of the component j = 1,2,

c =11 — G, and let

E.(c) = 5/ |Vc(x)|2dx+e_1/ F(c(x)) dx
2 Jg Q
be the free energy of the mixture, where Q C R,
d=1,2,3,¢>0and

Example: 2
flo)=31-¢c2)

f: R —[0,00) with f(c) =0« c = +1.
H~'-gradient flow of E. describes dynamics of phase
separation:

orc = Ap in Qx (0,00) (1)
p=c'(c)+eAc inQx(0,00) (2)
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Choice of Free Energy Density(l)
Typical choice: Smooth double well potential as e.g. f(c) = 3(1 — c2).

Then the optimal profile of a diffuse interface is

which minimizes E. in the case Q = R with constraint ¢(x) —x— 100 £1.
Note: cp(x) € (—1,1) for all x € R.

co(x) = tanh 2X_€’ x € R,
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Choice of Free Energy Density(l)
Typical choice: Smooth double well potential as e.g. f(c) = 3(1 — c2).

Then the optimal profile of a diffuse interface is

which minimizes E. in the case Q = R with constraint ¢(x) —x— 100 £1.
Note: cp(x) € (—1,1) for all x € R.

co(x) = tanh 2X_€’ x € R,

Problem: For smooth f solutions c(x, t) of Cahn-Hilliard system
Orc = Ap in Q x (0,00)
p=e1f(c)+eAhc inQx(0,00)

might not stay in [—1,1]!

Helmut Abels (U Regensburg) Double Obstacle Limit March 10, 2010 4 /14



Choice of Free Energy (II)

In the following we consider the logarithmic free energy density

fo(c) = {0((1 —¢)log(1—c)+(1+ c)log(l +c)) — 0.2,

+oo

for some 0 < 0 < 0. and v(c) > 0 on [—1,1], cf. Cahn & Hilliard '58,

Elliott & Luckhaus '91.
Note:

0
f€) = () — =2
N——
convex

fel(c) —c—+1 100

Elliott & Luckhaus '91, Debussche & Dettori '95, Kenmochi et al. '95:

else.

VRN

Existence of unique solutions of (1)-(2) such that c¢(x,t) € (—1,1).
Alternative proofs: Miranville & Zelik '04, A. & Wilke '07
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Double Obstacle/Deep Quench Limit (1)
We have

Oc 0 if ce —-1,1],
fe(c) —0—0 f(-)(C) = I[_]_y]_](C)—?CZ, I[—l,l](C) = { [ ]

+oo else.

Graph of fg(c), 6 = 0.9,0.8,...,0.1 Optimal profile # = 0.9,0.8,...,0.1
The optimal profile for E. with fp ande =0, =1 is
-1 ifc< -3
co(x)=<{sinx ifcel[-5,5

1 ifc>73
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Double Obstacle/Deep Quench Limit (I1)

The optimal profile

-1 ife< -5
co(x) = qsinx ifcel[-3,5
M s
1 If c > 5
solves the differential inclusion

(—00,0] if c(x)=-1

) R if c(x) € (-1,1)
c"(x) +e(x) € Iy y(c(x)) = [0,00)  if c(x) =1
0 else

Elliott & Luckhaus '91: Solutions of Cahn-Hilliard system (1)-(2) with f,
converge as 6 — 0 to solution of

Orc = Ap inQx(0,T)
p+eAc+e e e Oh—13(c(x)) inQx(0,T)
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Diffuse Interface Model in the Case of Matched Densities
If the densities of the fluids are the same, then one can derive:
Otv 4+ v - Vv —div(v(c)Dv) +Vp = —ediv(Vec ® V) in Q x (0,00) (3)
divv =0 in Q2 x (0,00) (4)
oic+v-Vec=mAu in Q2 x (0,00) (5)
p=—eAc+e )(c)in Q x (0,00) (6)
where Dv = 3(Vv + VvT), Q C R? is a bounded smooth domain,
together with boundary and initial conditions.

Derivation: Hohenberg & Halperin '74, Gurtin et al. '96
Analytical results: Starovoitov '93, Boyer '03, X. Feng '06, A. '07/'09
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Diffuse Interface Model in the Case of Matched Densities
If the densities of the fluids are the same, then one can derive:

Otv 4+ v - Vv —div(v(c)Dv) +Vp = —ediv(Vec ® V) in Q x (0,00) (3)
—_————
inner friction surface tension
divv=20 in Q x (0,00) (4)
oic+v-Vec=mAu in Q2 x (0,00) (5)
p=—cAc+et(c) in Q x (0,00) (6)
where Dv = 3(Vv + VvT), Q C R? is a bounded smooth domain,
together with boundary and initial conditions.
Derivation: Hohenberg & Halperin '74, Gurtin et al. '96
Analytical results: Starovoitov '93, Boyer '03, X. Feng '06, A. '07/'09
Energy dissipation: For sufficiently smooth solutions we have
d
9 E(e(t), (b)) = _/ v(c)| Dv|? dx —/ MV dx with

9 v 2
Eeli) () = 5 [ 1VelaPare [ aetyan+ [ Mo
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Theorem (Existence, Regularity, Uniqueness, A. '07/'09)

Let d = 2,3, 6 > 0. For every vy € L2(Q), co € H}(Q) with
E(co, vo) < oo there is a weak solution (v, c, i) of (3)-(6), which satisfies

(v,Vc) € L(0,00; L2(Q)), (Vv,Vu) € L%(0,00; L3(Q)),
V2¢, f3(€) € Line([0, 00); L°(R))-

In particular, c(t,x) € (—1,1) a.e. Moreover, c € BUC([0,c0); W7 (1))
with g > d. For (w, cp) sufficiently smooth:

© Ifd = 2, then the weak solution is unique and regular.

@ I/f d = 3, there are some 0 < Ty < Ty < 0o such that the weak
solution is regular and (locally) unique on (0, To) and [T1, c0).
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Theorem (Existence, Regularity, Uniqueness, A. '07/'09)

Let d = 2,3, 6 > 0. For every vy € L2(Q), co € H}(Q) with
E(co, vo) < oo there is a weak solution (v, c, i) of (3)-(6), which satisfies

(v,Vc) € L(0,00; L2(Q)), (Vv,Vu) € L%(0,00; L3(Q)),
V2¢, f3(€) € Line([0, 00); L°(R))-

In particular, c(t,x) € (—1,1) a.e. Moreover, c € BUC([0,c0); W7 (1))
with g > d. For (w, cp) sufficiently smooth:

© Ifd = 2, then the weak solution is unique and regular.

@ I/f d = 3, there are some 0 < Ty < Ty < 0o such that the weak
solution is regular and (locally) unique on (0, To) and [T1, c0).

Theorem (Uniform Bounds, A. '09)

The solutions (v, c, u) = (v?,c?, u?), 6 € (0,1) are uniformly bounded in
the function spaces above.

v
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Structure of the Proof

First study the separate systems:

@ Cahn-Hilliard equation with convection and singular potential
(based on E.(c) = Egp(c) — %||c||3 with Eop convex)
@ (Navier-)Stokes system with variable viscosity
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Structure of the Proof

First study the separate systems:

@ Cahn-Hilliard equation with convection and singular potential
(based on E.(c) = Egp(c) — %||c||3 with Eop convex)

@ (Navier-)Stokes system with variable viscosity
Existence of weak solutions:
Approximation and compactness argument
Higher Regularity: Use regularity results for separate systems

Uniqueness: Gronwall's inequality once ¢ € L°°(0, T; C}()) and
veL®0, T; WQ)), s> d.

Crucial ingredient for higher regularity:
A priori estimate for ¢ € BUC([0, o0); W;(Q)), q>d!
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A priori Estimates for ¢

W?2-estimate for c: Formally multiply
(x, £) = —Ac(x, ) + f(c(x, 1))
by f;(c(x,t)) = 0¢'(c(x, t)) — Occ(x, t) to obtain

[ e ax+ [ (o) Ve o < Clul
Q Q N——

>—0c

uniformly in 6 > 0.
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A priori Estimates for ¢
W?2-estimate for c: Formally multiply
plx; t) = =Ac(x, t) + f(c(x, 1))
by f;(c(x,t)) = 0¢'(c(x, t)) — Occ(x, t) to obtain
[ e et [ e@)ve)P ox < Clu)l
Q QT:GT’

uniformly in @ > 0. Similarly, for 2 < r < 0o

I (Dl + le(®)llwz < G (el + 1Ve(t)ll2) -

= € € L35c([0, 00); WE(Q))
where

lelliz, (10.00):%) = sup lelli2ee,e1:x)-

Modifications: Higher regularity in time in Besov spaces.
Helmut Abels (U Regensburg) Double Obstacle Limit March 10, 2010

11/ 14



Higher Time Regularity for ¢
L=>°(0, oo; H(B;)—estimate of d¢c: Multiplying
d%2c+ A(Ac — "(c) B;c) = —d:(v - V)
0
>—0c

by —Ap Orc yields

10cclim oy + IVOrclia) < Cle) (140l )
quc

where V,(Q) = {¢ € HY(Q)" : n- ¢|oq = 0}.
= p € L®(0,00; HY(Q))
= c € L%®(0,00; W2(Q)), r=6ifd=3and 1 <r<occifd=2.
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Higher Time Regularity for ¢
L=>°(0, oo; H(B:)l)—estimate of d:c: Multiplying
d%2c+ A(Ac — "(c) B;c) = —d:(v - V)
0,
>—0c

by —Ap Orc yields

10cclim oy + IVOrclia) < Cle) (140l )
quc

where V,(Q) = {¢ € HY(Q)" : n- ¢|oq = 0}.

= p € L®(0,00; HY(Q))

= c € L>(0, 00; W2(Q)), r:6ifd:3and1<r<ooifd:2.

Problem: In general 0;v € Luloc(O,oo; H=Y(Q)™) ¢ Luloc(O,oo; V))!

Solution: Replace 0;c by h™"Apc. Use v e B | ([0,00); H*(2))
3OO,U

with 0 <s < 3, 7> 3 as well as H§(Q) = H*(Q) and H~5(Q) = H(Q)".

.. = ¢ € BUC([0,00); W}(Q)),q > 3.

Helmut Abels (U Regensburg) Double Obstacle Limit March 10, 2010 12 / 14



Theorem (Double Obstacle Limit, A.'09)

There a subsequence of (v?, c?, M0)96(071) converges to (v°, c, u®) solving
Otv + v - Vv —div(v(c)Dv) + Vp = uoVe in Q2 x (0,00) (7)
divy =0 in Q2 x (0,00) (8)

Orc+v-Vec=mAypy in Q2 x(0,00) (9)

b:=p+eAc+e 0cc€0_1q(c)  inQx(0,00) (10)

and c(x, t) € [-1,1] for all (x,t) € Q x (0,00). Moreover,

(V2,Vc0) € L(0, 00; L2(Q)),  (VvO,Vu0) € L2(0, o0; L2(Q)),
V2%, b € L ([0, 00); L%(R)), ® € BUC([0, 0); W;(R)),q > d

For (v, co) sufficiently smooth:
©Q I/fd = 2, then the weak solution is unique and regular.

@ Ifd =3, there are some 0 < Tg < T1 < oo such that the weak
solution is regular and (locally) unique on (0, To) and [T1, c0).
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Open Questions

Question: How much does # > 0 influences the Ostwald ripening effect
(for fixed €)?
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Open Questions

Question: How much does 6 > 0 influences the Ostwald ripening effect
(for fixed €)?

Simulation by S. Bartels

Question: Does (v(t), c(t)) converges to stationary solution as t — oo if
6 =07 (Known for § > 0, A. '07/'09)

Helmut Abels (U Regensburg) Double Obstacle Limit March 10, 2010 14 / 14



