On the Navier-Stokes equation with Robin boundary condition in a perturbed half space

Yuka Naito

Waseda University

09/02/2010

$$\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_n > 0\}.$$

$$B_R = \{x \in \mathbb{R}^n \mid |x| < R\}.$$

A perturbed half space Ω

There exists R > 0 such that $\Omega \setminus B_R = \mathbb{R}^n_{\perp} \setminus B_R$.

Navier-Stokes equation

Navier-Stokes equation

$$\begin{cases} u_t - \Delta u + u \cdot \nabla u + \nabla p = 0 & \text{in } \Omega \times (0, \infty), \\ \nabla \cdot u = 0 & \text{in } \Omega \times (0, \infty), \\ u \cdot v = 0, \ B_{\alpha,\beta}(u,p) = 0 & \text{on } \partial\Omega \times (0, \infty), \\ u(x,0) = a(x) & \text{in } \Omega. \end{cases}$$

 $u = (u_1, \dots, u_n)$: Velosity, p: Pressure,

 ν : A unit outer normal vector of $\partial\Omega$,

a: A initial value,

Robin boundary condition,

 Ω : A perturbed half space with smooth boundary $\partial\Omega$, Space dimension $n\geq 3$.

Robin boundary condition

Robin boundary condition

$$u \cdot v = 0$$
, $B_{\alpha,\beta}(u,p) = \alpha u + \beta \{T(u,p)v - (T(u,p)v,v)v\} = 0$ $(\alpha + \beta = 1)$.

$$T(u, p) = D(u) - pI$$
: stress tensor of the Stokes flow $D(u)_{jk} = \frac{\partial u_j}{\partial x_k} + \frac{\partial u_k}{\partial x_i}$: strain tensor.

$$B_{\alpha,\beta}(u,p)=B_{\alpha,\beta}(u).$$

Especially

 $\alpha = \mathbf{0}$: Navier's slip condition, $\beta = \mathbf{0}$: non-slip condition.

In this talk

$$\alpha > 0, \beta > 0.$$

The main result

The global existence of a strong solution of Navier-Stokes equation with small data

Let $n \geq 3$.

There is a constant $\epsilon = \epsilon(\Omega, n) > 0$ such that if $a \in J^n(\Omega)$ satisfies

$$||a||_{L^n(\Omega)} \leq \epsilon,$$

Navier-Stokes equation admits a unique strong solution u(t) on $(0, \infty)$. Moreover as $t \to \infty$,

- $||u(t)||_{L^p(\Omega)} = o(t^{-\frac{1}{2} + \frac{n}{2p}})$ for $n \le p \le \infty$,
- $||\nabla u(t)||_{L^n(\Omega)} = o(t^{-\frac{1}{2}}).$

With non-slip condition (Kubo-Shibata '04).

The global existence of solution to Navier-Stokes equation with small data.

I would like to extend these results to the Robin boundary condition.

To get main theorem

I shall analyze the following linear equation.

Stokes equation

$$\begin{cases} u_t - \Delta u + \nabla p = 0 & \text{in } \Omega \times (0, \infty), \\ \nabla \cdot u = 0 & \text{in } \Omega \times (0, \infty), \\ u \cdot v = 0, \ B_{\alpha,\beta}(u,p) = 0 & \text{on } \partial \Omega \times (0, \infty), \\ u(x,0) = a(x) & \text{in } \Omega. \end{cases}$$

$$J^{p}(\Omega) = \{ u \in L^{p}(\Omega)^{n} \mid \nabla \cdot u = 0 \text{ in } \Omega, \ u \cdot v = 0 \text{ on } \partial\Omega \}$$

P:a continuous projection from $L^p(\Omega)^n$ onto $J^p(\Omega)$.

$$Au=-P\Delta u ext{ for } u\in D(A)$$
 $D(A)=J^p\cap\{u\in W^{2,p}(\Omega)\mid B_{lpha,eta}(u,p)=0 ext{ on } \partial\Omega\}$

To get main theorem

According to Kato's argument to get the main theorem, it suffices to show the following two results about Stokes equation:

- **1** A generates an analytic semigroup $\{T(t)\}_{t\geq 0}$.
- ② $L^n L^q$ decay estimates of the Stokes semigroup $\{T(t)\}_{t\geq 0}$.

$L^n - L^q$ estimates in a perturbed half space

- $||u||_{L^{q}(\Omega)} \leq C_{q} t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})} ||f||_{L^{n}(\Omega)}, t > 0, f \in J^{n}(\Omega), q \geq n$
- $\|\nabla u\|_{L^{n}(\Omega)} \leq Ct^{-\frac{1}{2}}\|f\|_{L^{n}(\Omega)}, t > 0, f \in J^{n}(\Omega)$

To get main theorem

- A generates an analytic semigroup {T(t)}_{t≥0}.
- 2 $L^n L^q$ decay estimates of the Stokes semigroup $\{T(t)\}_{t \ge 0}$.

To show the two theorems about Stokes equation, I consider the resolvent problem:

Resolvent problem of Stokes equation in a perturbed half space

$$\begin{cases} \lambda u - \Delta u + \nabla p = f & \text{in } \Omega, \\ \nabla \cdot u = 0 & \text{in } \Omega, \\ u \cdot v = 0, \ B_{\alpha,\beta}(u) = 0 & \text{on } \partial \Omega. \end{cases}$$

Resolvent estimates in a perturbed half space with large *礼* (Shimada-Shibata '05)

For all $\epsilon > 0$ there exists λ_0 and C_{ϵ} such that satisfies the following:

$$\begin{aligned} |\lambda| \, ||u||_{L^q(\Omega)} + |\lambda|^{\frac{1}{2}} \, ||\nabla u||_{L^q(\Omega)} + ||\nabla^2 u||_{L^q(\Omega)} + ||\nabla p||_{L^q(\Omega)} &\leq C ||f||_{L^q(\Omega)} \\ \text{for } \lambda \in \Sigma_{\varepsilon}, \ |\lambda| > \lambda_0 \end{aligned}$$

where
$$\Sigma_{\epsilon} = {\lambda \in \mathbb{C} \setminus {\mathbf{0}} \mid |\arg \lambda| \leq \pi - \epsilon}$$
.

The generation of an analytic semigroup $\{T(t)\}_{t\geq 0}$. $L^n - L^q$ estimates of the Stokes semigroup $\{T(t)\}_{t>0}$

To show the $L^n - L^q$ decay estimates, I have to analyze the resolvent problem with small λ .

To get $L^n - L^q$ decay estimates of the Stokes semigroup.

I shall show the following theorem.

The estimates that λ is small.

Let $n \geq 3$.

There exists a positive constant C such that u satisfies the following:

•
$$||u||_{L^{q}(\Omega)} \leq C|\lambda|^{-\frac{1}{2}-\frac{n}{2q}}||f||_{L^{n}(\Omega)}, \qquad q \geq n$$

$$\bullet ||\nabla u||_{L^{n}(\Omega)} \leq C|\lambda|^{-\frac{1}{2}}||f||_{L^{n}(\Omega)},$$

for
$$\lambda \in \Sigma_{\epsilon} = \{\lambda \in \mathbb{C} \setminus \{\mathbf{0}\} \mid |\arg \lambda| \le \pi - \epsilon\}, \ |\lambda| < \lambda_{\mathbf{0}}.$$

To show these estimates,

I consider Generalized resolvent problem in a perturbed half space.

To get $L^n - L^q$ decay estimates of the Stokes semigroup.

The key step of my argument is to consider the following generalized resolvent problem:

Generalized resolvent problem of Stokes equation in a perturbed half space

$$\begin{cases} \lambda u - \Delta u + \nabla p = f & \text{in } \Omega, \\ \nabla \cdot u = g & \text{in } \Omega, \\ u \cdot v = 0, \ B_{\alpha,\beta}(u) = h & \text{on } \partial \Omega. \end{cases}$$

Let us define the solution operator $U(\lambda)$ and $\Pi(\lambda)$ by the formula:

$$U(\lambda)F = u, \Pi(\lambda)F = p,$$

where I set $F = {}^{t}(f, g, h)$.

The solution operators in a perturbed half space

$$U(\lambda): L_{R+3}^{p}(\Omega)^{n} \times W_{R+3,0}^{1,p}(\Omega) \times W_{R+3}^{1,p}(\Omega)^{n} \longrightarrow W_{loc}^{2,p}(\Omega),$$

$${}^{t}(f,g,h) \longmapsto u,$$

$$\Pi(\lambda): L_{R+3}^{p}(\Omega)^{n} \times W_{R+3,0}^{1,p}(\Omega) \times W_{R+3}^{1,p}(\Omega)^{n} \longrightarrow W_{loc}^{1,p}(\Omega),$$

$${}^{t}(f,g,h) \longmapsto p.$$

Function spaces

$$\begin{split} L_{R+3}^{\rho}(\Omega) &= \{ f \in L^{\rho}(\Omega) \mid \text{supp } f \subset B_{R+3} \}, \\ W_{R+3,0}^{1,\rho}(\Omega) &= \left\{ f \in W^{1,\rho}(\Omega) \mid \text{supp } f \subset B_{R+3}, \int_{\Omega} f dx = 0 \right\}, \\ W_{R+3}^{1,\rho}(\Omega) &= \left\{ f \in W^{1,\rho}(\Omega) \mid \text{supp } f \subset B_{R+3} \right\}. \end{split}$$

λ is small, **F** has a compact supprt

Let $n \ge 2$ and 1 .

$$G_{\Omega} = \mathcal{L}(L_{R+3}^{p}(\Omega)^{n} \times W_{R+3,0}^{1,p}(\Omega) \times W_{R+3}^{1,p}(\Omega)^{n}, W_{loc}^{2,p}(\Omega) \times W_{loc}^{1,p}(\Omega))$$

Then solution operators $(U(\lambda), \Pi(\lambda)) \in G_{\Omega}$ for $\lambda \in U_{\frac{a^2}{(1+\sqrt{2})^2\beta^2}}$, moreover they have the following expansion formula

$$(U(\lambda)F,\Pi(\lambda)F)$$

$$= \lambda^{\frac{n-2}{2}}H_1(\lambda)F + \lambda^{\frac{n-1}{2}}H_2(\lambda)F + (\lambda \log \lambda)H_3(\lambda)F + H_4(\lambda)F,$$

where H_j (j=1,2,3,4) are G_{Ω} -valued holomorphic functions in $U_{\frac{\alpha^2}{(1+\sqrt{2})^2\beta^2}}$, $F={}^t(f,g,h)$.

$$U_{\lambda} = {\lambda \in \mathbb{C} \mid |\lambda| < r}.$$

A model problem -a half space-

Moreover I need the results of a half space problem.

Generalized resolvent problem in a half space

$$\begin{cases} \lambda \mathbf{v}_h - \Delta \mathbf{v}_h + \nabla \theta_h = \mathbf{f} & \text{in } \mathbb{R}^n_+, \\ \nabla \cdot \mathbf{v}_h = \mathbf{g} & \text{in } \mathbb{R}^n_+, \\ \alpha \mathbf{v}_{hi} - \beta \partial_n \mathbf{v}_{hi} = \mathbf{h}_j \ (j = 1, \cdots n - 1), \ \mathbf{v}_{hn} = \mathbf{0} & \text{on } \partial \mathbb{R}^n_+. \end{cases}$$

In a half space, the unit outer normal vector becomes $v = (0, \dots, 0, -1)$. Using the Gagliardo-Nirenberg-Sobolev theorem, I can get the inequalities:

$L^p - L^\infty$ estimates in a half space

$$\bullet ||v_h||_{L^{\infty}(\mathbb{R}^n_+)} \leq C|\lambda|^{-\frac{1}{2}-\frac{n}{2p}}||f||_{L^p(\mathbb{R}^n_+)},$$

$$\bullet ||\nabla v_h||_{L^{\infty}(\mathbb{R}^n_{\perp})} \leq C|\lambda|^{-\frac{1}{2}}||f||_{L^{p}(\mathbb{R}^n_{\perp})},$$

for
$$\lambda \in \Sigma_{\epsilon}$$
, $|\lambda| < \lambda_0$, $p \neq n$.

Under the preparations I shall show the theorem:

The estimates when λ is small.

Let $n \geq 3$.

There exists a positive constant C such that u satisfies the following:

•
$$||u||_{L^{q}(\Omega)} \leq C|\lambda|^{-\frac{1}{2}-\frac{n}{2q}}||f||_{L^{n}(\Omega)},$$

$$\bullet ||\nabla u||_{L^{n}(\Omega)} \leq C|\lambda|^{-\frac{1}{2}}||f||_{L^{n}(\Omega)},$$

for
$$\lambda \in \Sigma_{\epsilon} = {\lambda \in \mathbb{C} \setminus {\mathbf{0}} \mid |\arg \lambda| \le \pi - \epsilon}, \ |\lambda| < \lambda_{\mathbf{0}}.$$

To divide a domain into two parts, I use cutoff function.

Figure: Ω_R

Cutoff function

$$\psi_R^{\infty}(x) \in C^{\infty}, \psi_R^{\infty}(x) = \begin{cases} 1 & \text{for } |x| \ge R+1 \\ 0 & \text{for } |x| \le R \end{cases}$$

Figure: $\Omega \setminus \Omega_R$

First I shall consider a bounded part $\Omega_R = \Omega \cap B_R$.

$$u = \psi_R^{\infty} v_h + w, p = \psi_R^{\infty} \theta_h + \pi$$

$$\begin{cases} (\lambda - \Delta)w + \nabla \pi = K_1 & \text{in } \Omega, \\ \nabla \cdot w = K_2 & \text{in } \Omega, \\ w \cdot v = 0, \ B_{\alpha,\beta}(w) = K_3 & \text{on } \partial \Omega. \end{cases}$$

$$K_j$$
: The linear functions of $\nabla \psi_R^\infty \cdot V_h$, $(\Delta \psi_R^\infty) v_h$, $\nabla \psi_R^\infty \theta_h$, $(1 - \psi_R^\infty) f$.

Since supp $K_1, K_2, K_3 \subset B_R$, I can use resolvent expansion:

$$||w||_{L^{\infty}(\Omega_{R})} \leq C|\lambda|^{\frac{n-2}{2}}||(K_{1}, K_{2}, K_{3})||_{L^{\infty}(\Omega_{R})}$$

$$\leq C|\lambda|^{\frac{n-2}{2}}\left(|\lambda|^{-1+\frac{n}{2p}}||f||_{L^{p}(\Omega)}\right)$$

$$\leq C|\lambda|^{-2+\frac{n}{2}+\frac{n}{2p}}||f||_{L^{p}(\Omega)}$$

Next I shall consider (w, π) in $\Omega \setminus \Omega_R$.

Figure: $\Omega \setminus \Omega_R$

$$\psi_{R-2}^{\infty} \mathbf{w} = \mathbf{z}, \ \psi_{R-2}^{\infty} \pi = \mathbf{\theta}.$$

$$\begin{cases} (\lambda - \Delta)\mathbf{z} + \nabla \theta = H_1 & \text{in } \mathbb{R}_+^n, \\ \nabla \cdot \mathbf{z} = H_2 & \text{in } \mathbb{R}_+^n, \\ \alpha \mathbf{z}_i - \beta \partial_n \mathbf{z}_i = H_{3j} \ (j = 1, \dots n - 1), \ \mathbf{z}_n = \mathbf{0} & \text{on } \partial \mathbb{R}_+^n. \end{cases}$$

 H_j : The linear functions of $\nabla \psi_{R-2}^{\infty} \cdot w$, $(\Delta \psi_{R-2}^{\infty}) w$, $\nabla \psi_{R-2}^{\infty} \pi$.

$$\psi_{R-2}^{\infty} w = z, \, \psi_{R-2}^{\infty} \pi = \theta.$$

$$\begin{split} & ||z||_{L^{p}(\mathbb{R}^{n}_{+})} \leq C||\nabla^{2}z||_{L^{q}(\mathbb{R}^{n}_{+})}^{\frac{n}{2}(\frac{1}{q}-\frac{1}{p})} ||z||_{L^{q}(\mathbb{R}^{n}_{+})}^{1-\frac{n}{2}(\frac{1}{q}-\frac{1}{p})} \\ & \leq ||(H_{1},H_{2},H_{3})||_{L^{q}(\mathbb{R}^{n}_{+})}^{\frac{n}{2}(\frac{1}{q}-\frac{1}{p})} \\ & \times \left\{ |\lambda|^{-1}||H_{1}||_{L^{n}(\mathbb{R}^{n}_{+})} + ||H_{2}||_{W^{-1,q}(\mathbb{R}^{n}_{+})} + |\lambda|^{-\frac{1}{2}}||(H_{2},H_{3})||_{L^{q}(\mathbb{R}^{n}_{+})} \\ & + |\lambda|^{-1}||(\nabla H_{2},\nabla H_{3})||_{L^{q}(\mathbb{R}^{n}_{+})} \right\}^{1-\frac{n}{2}(\frac{1}{q}-\frac{1}{p})} \\ & \leq C|\lambda|^{1-\frac{n}{2}(\frac{1}{q}-\frac{1}{p})}||(H_{1},H_{2},H_{3})||_{L^{q}(\Omega_{R})} \\ & \leq C|\lambda|^{-1+\frac{n}{2}(\frac{1}{q}-\frac{1}{p})}\left(|\lambda|^{-2+\frac{n}{2}+\frac{n}{2q}}||f||_{L^{q}(\Omega)}\right) \\ & \leq C|\lambda|^{-3+\frac{n}{2}+\frac{n}{q}-\frac{n}{2p}}||f||_{L^{q}(\Omega)} \\ & \leq C|\lambda|^{-1+\frac{n}{2}(\frac{1}{q}-\frac{1}{p})}||f||_{L^{q}(\Omega)} \qquad \text{for } q \leq p. \end{split}$$

The main result

The global existence of a strong solution of Navier-Stokes equation with small data

Let $n \geq 3$.

There is a constant $\epsilon = \epsilon(\Omega, n) > 0$ such that if $a \in J^n(\Omega)$ satisfies

$$||a||_{L^n(\Omega)} \leq \epsilon,$$

Navier-Stokes equation admits a unique strong solution u(t) on $(0, \infty)$. Moreover as $t \to \infty$,

- $||u(t)||_{L^p(\Omega)} = o(t^{-\frac{1}{2} + \frac{n}{2p}})$ for $n \leq p \leq \infty$,
- $\|\nabla u(t)\|_{L^{n}(\Omega)} = o(t^{-\frac{1}{2}}).$