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Notations

Ω ⊂ Rn is an open bounded domain with smooth boundary ∂Ω,

Ωi(t) is the subdomain occupied by fluid i = 1,2 at time t,

Γ(t) is the interface separating the two phases.

We assume no boundary contact, i.e. Γ(t) ∩ ∂Ω = ∅, and no external forces.

Denote by

u = u(t, x) velocity field, π = π(t, x) pressure field
S(t, x) stress tensor
E(t, x) := 1

2(∇u(t, x) +∇u(t, x)T) rate of strain tensor
θ = θ(t, x) (absolute) temperature field, q = q(t, x) heat flux
e = e(t, x) internal energy, ψ = ψ(t, x) (Hemholtz) free energy
ρi > 0 densities, µi > 0 viscosities in the phases, σ > 0 surface tension
νΓ(t, x) the normal at x ∈ Γ(t) directed into Ω2(t)
uΓ = uΓ(t, x) velocity of Γ(t), VΓ = uΓ · νΓ normal velocity of Γ
HΓ(t, x) = −divΓνΓ(t, x) curvature of Γ(t)
[[φ]] = limh→0+[φ(t, x + hνΓ(t, x))− φ(t, x− hνΓ(t, x))],

the jump of the quantity φ accross Γ(t).



I The Model

Balance of Mass

∂tρ + div (ρu) = 0, t > 0, x 6∈ Γ(t),

[[ρ(u− uΓ)]] · νΓ = 0, t > 0, x ∈ Γ(t).

Define the interfacial mass flux (phase flux for short) by means of

j := ρ(u− uΓ) · νΓ, which means [[
1

ρ
]]j = [[u · νΓ]].

Here we consider the completely incompressible case, i.e. we assume

that the densities are constant in the phases. Then conservation of

mass reduces to

div u = 0, t > 0, x 6∈ Γ(t).

No phase transition means j ≡ 0; then [[u · νΓ]] = 0 and VΓ = u · νΓ,

i.e. the interface is advected with the flow.

Here we are interested in the case j 6≡ 0!



Balance of Momentum

ρ(∂tu + u · ∇u)− div T = 0, t > 0, x 6∈ Γ(t),

[[u]]j − [[TνΓ]] = divΓTΓ t > 0, x ∈ Γ(t).

Balance of momentum is complemented by the constitutive laws

T = 2µE − πI, E =
1

2
(∇u +∇uT), TΓ = σPΓ,

where PΓ = I − νΓ ⊗ νΓ and σ > 0 constant. Then divΓTΓ = σHΓνΓ.

This yields the two-phase Navier-Stokes problem

ρ(∂tu + u · ∇u)− µ∆u +∇π = 0, t > 0, x 6∈ Γ(t),

[[u]]j − [[TνΓ]] = σHΓνΓ, t > 0, x ∈ Γ(t).

for the velocity u and the pressure π.
We further assume no tangential slip at the interface, i.e.

[[PΓu]] = 0, equivalently [[u]] = [[
1

ρ
]]jνΓ.

Note that u is continuous across the interface in the case of equal
densities, but otherwise discontinuos!



Balance of Energy

ρ(∂te + u · ∇e) + div q − T : ∇u = 0, t > 0, x 6∈ Γ(t),

([[e]] + [[
1

2
|u− uΓ|22]])j − [[TνΓ(u− uΓ)]] + [[q · ν]] = 0, t > 0, x ∈ Γ(t).

Here we employ the constitutive laws

e(θ) = ψ(θ) + θη(θ), η(θ) = −ψ′(θ),
κ(θ) = e′(θ) = −θψ′′(θ), q = −d∇θ,

considering the free energy ψ(θ) as given, and in Fourier’s law d > 0
is a constant, for simplicity. We assume κ(θ) > 0 below.

Observe that due to the constitutive law [[PΓu]] = 0 we have

[[|u− uΓ|22]] = [[
1

ρ2
]]j2, [[TνΓ(u− uΓ)]] = [[

TνΓ · νΓ

ρ
]]j,

hence the boundary jump condition can be rewritten as

{[[ψ(θ)]] + [[
1

ρ2
]]j2 − [[

TνΓ · νΓ

ρ
]]}j + {[[θη(θ)]]j + [[q · νΓ]]} = 0.



We further assume

[[ψ(θ)]] + [[
1

2ρ2
]]j2 − [[

TνΓ · νΓ

ρ
]] = 0, [[θ]] = 0;

the first one is a generalized Gibbs-Thomson law. This gives the
following problem for the temperature θ.

ρκ(θ)(∂tθ + u · ∇θ)− d∆θ = 2µ|E|22, t > 0, x 6∈ Γ(t),

[[θη(θ)]]j − [[d∂νΓθ]] = 0, t > 0, x ∈ Γ(t),

[[θ]] = 0, t > 0, x ∈ Γ(t).

The second equation is a generalized Stefan law.

Note that in the case of equal densities the linearization of the gener-
alized laws of Stefan and Gibbs-Thomson at u∗ = 0, j∗ = 0, θ∗ = θm,
where θm denotes the melting temperature defined by [[ψ(θm)]] = 0
yields the corresponding classical laws

[[d∂νΓθ]] = −lmj, θ = −(σθm/lm)HΓ,

where lm = −θm[[η(θm)]] means the latent heat at melting temperature.
If u = 0 we have j = −ρVΓ.



Total Entropy Production

The total entropy is given by

Ψ(u, θ,Γ) =
∫

Ω
ρηdx.

By the Reynolds transport theorem, it satisfies

d

dt
Ψ(θ,Γ) =

∫

Ω
ρ∂tη(θ)dx−

∫

Γ
[[ρη(θ)]]VΓdΓ

=
∫

Ω

η′(θ)
e′(θ)

{2µ|E|22 − div q − ρu · ∇e}dx−
∫

Γ
[[ρη(θ)]]uΓ · νdΓ

=
∫

Ω
{2µ

θ
|E|22 +

d

θ2
|∇θ|22}dx +

∫

Γ
{θ[[η]]j + [[q · ν]]}/θdΓ ≥ 0.

Thus there is no entropy production on the interface if

θ[[η(θ)]]j + [[q · ν]] = 0.

This is the generalized Stefan law.



Conservation of Total Energy

We have for the total energy Φ(u, θ,Γ) =
∫
Ω{ρ

2|u|22 + ρe}dx+σmesΓ by
the Reynolds transport theorems

∂tΦ =
∫

Ω
{u · ρ∂tu + ρ∂te}dx−

∫

Γ
{[[ρ

2
|u|22 + ρe]]}VΓdΓ

= −
∫

Ω
{(ρ(u · ∇) · u− div T · u) + (ρ(u · ∇)e + div q − T : ∇u)}dx

−
∫

Γ
{[[ρ

2
|u|22 + ρe]]}uΓ · νΓdΓ

=
∫

Γ
{[[1

2
|u|22 + ψ(θ)]]j − [[Tu · νΓ]]}+ {[[θη(θ)]]j + [[q · νΓ]]}dΓ

=
∫

Γ
{[[ψ(θ) +

j2

2ρ2
− TνΓ · νΓ/ρ]]}j + {[[θη(θ)]]j + [[q · νΓ]]}dΓ = 0

Thus there is conservation of energy across the interface if the gen-
eralized Stefan law holds, and

[[ψ(θ) +
j2

2ρ2
− 1

ρ
TνΓ · νΓ]] = 0,

i.e. the generalized Gibbs-Thomson law is valid.



The Complete Model

In the bulk Ω \ Γ(t)

ρ(∂tu + u · ∇u)− µ∆u +∇π = 0,

div u = 0,

ρκ(θ)(∂tθ + u · ∇θ)− d∆θ − 2µ|E|22 = 0 .

On the interface Γ(t)

[[
1

ρ
]]j2ν − [[TνΓ]] = σHΓνΓ, [[u]] = [[

1

ρ
]]jνΓ,

θ[[η(θ)]]j − [[d∂νθ]] = 0, [[θ]] = 0,

[[ψ(θ)]] + [[
1

2ρ2
]]j2 − [[

1

ρ
TνΓ · νΓ]] = 0, VΓ = u · νΓ −

1

ρ
j.

On the outer boundary ∂Ω

u = 0, ∂νθ = 0.

Initial conditions

Γ(0) = Γ0, u(0) = u0, θ(0) = θ0.
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II Equilibria

The negative entropy is a strict Ljapunov functional:
if ∂tΨ = 0 on a time-interval (t0, t1) 6= ∅, then

E = 0, ∇θ = 0 in (t0, t1),

hence θ is constant. If latent heat l(θ) := −θ[[η(θ)]] 6= 0 then j = 0,
hence [[u]] = 0. Korn’s inequality then implies u = 0, hence ∇π = 0.
This in turn yields HΓ constant, i.e. Γ is a sphere if connected.

Therefore the (non-degenerate) equilibria are

u = 0, θ = const, ∇π = 0,

VΓ = 0, j = 0, Γ = SR(x0) ⊂ Ω,

−σ(n− 1)

R
= σHΓ = [[π]], [[ψ(θ)]] + [[π/ρ]] = 0,

ρ1e1(θ)
ωn

n
Rn + ρ2e2(θ)(mesΩ− ωn

n
Rn) + σωnRn−1 = Φ0 := Φ(0),

with ωn = mesS1. Denote the set of non-degenerate equilibria by E.



Linearization at Equilibria

The linearized problem at a non-degenerate equilibrium (0, θ∗,Γ∗) reads:

In the bulk Ω \ Γ∗

ρ∂tu− µ∆u +∇π = fu,

div u = gd,

ρκ∗∂tθ − d∆θ = fθ,

on the interface Γ∗

− [[Tν∗]] + σA∗hν∗ = gu, [[u]]− [[
1

ρ
]]jν∗ = gp,

−l∗j − [[d∂νθ]] = gθ, [[θ]] = 0,

(l∗/θ∗)θ − [[
Tν∗ · ν∗

ρ
]] = gj, ∂th− u · ν∗ +

1

ρ
j = fh,

supplemented by boundary conditions on ∂Ω and initial conditions.

Here κ∗ = κ(θ∗), l∗ = l(θ∗), ν∗ = νΓ∗, A∗ = −H ′(Γ∗) = −(n−1
R2∗

+ ∆∗).



Maximal Lp-Regularity

The strategy to solve the linear problem is as follows.

Suppose j and h are given.

(i) Solve the heat problem to determine θ as

θ = θ̄ + l∗NHj;

here θ̄ is determined by the data alone, and NH means the Neumann-

to-Dirichlet operator for the heat problem.

(ii) Solve the Stokes problem with h = 0 and extract

u · ν∗ − j/ρ = ḡ1 −R1j, −[[Tν∗ · ν∗/ρ]] = ḡ2 + [[1/ρ]]2Gj,

where ḡk are given by the data, and R1 and G are linear pseudo-

differential operators to be studied.

(iii) Solve the Stokes problem with trivial data and j = 0 and extract

u · ν∗ − j/ρ = −σNSA∗h, −[[Tν∗ · ν∗/ρ]] = σR2A∗h.

Here NS means the Neumann-to-Dirichlet operator for the Stokes

problem and R2 is a linear pseudo-differential operator.



(iv) Insert into the next-to-last equation to obtain an equation for j:

(l2∗/θ∗)NHj + [[1/ρ]]2Gj = −σR2A∗h + ḡj.

Here ḡj is determined by the data. Solve this equation for j.
(v) Insert into the last equation to obtain the final equation for the
height function h:

∂th + σNSA∗h + σR1((l
2∗/θ∗)NH + [[1/ρ]]2G)−1R2A∗h = ḡh,

where ḡh is given by the data. Solve this equation for h.

Note that the operators NH , NS are of order (−1/2,−1), i.e. −1/2 in
time, 1 in space, R1, R2 are of order (0,0), and the phase-flux operator
G is of order (1/2,1).

Therefore the evolution equation for h has order (1,1) if [[ρ]] 6= 0; in
this case it is velocity dominated.

It has order (1,3) and in addition has mixed order 1/2 in time and 1
in space, if [[ρ]] = 0; in this case it is temperature dominated.



The Underlying Semigroups

Consider first the velocity dominated case. Set

X0 = Lp,σ(Ω)× Lp(Ω)×W
2−1/p
p (Γ∗),

and define the operator A by

A(u, θ, h) = (−(µ/ρ)∆u+∇π/ρ,−(d/ρκ∗)∆θ,−u ·ν∗+[[1/ρ]]−1[[u ·ν∗]]/ρ).

To define the domain D(A) of A, we set

X1 = {(u, θ, h) ∈ H2
p (Ω \ Γ∗)×H2

p (Ω \ Γ∗)×W
3−1/p
p (Γ∗) :

div u = 0 in Ω \ Γ∗, [[P∗u]] = [[θ]] = 0 on Γ∗},
and

D(A) = {(u, θ, h) ∈ X1 : [[µP∗Eν∗]] = [[d∂ν∗θ]] + l∗[[1/ρ]]−1[[u · ν∗]] = 0 on Γ∗}.
Here π is determined as the solution of the weak elliptic problem

(∇π/ρ|∇φ)2 = ((µ/ρ)∆u|∇φ)2, φ ∈ Ḣ1
p′(Ω),

[[π/ρ]] = [[2µEν∗ · ν∗/ρ]]− (l∗/θ∗)θ, [[π]] = −σA∗h + 2[[µ(Eν∗|ν∗)]].



Next we consider the temperature dominated case. Set

X0 = Lp,σ(Ω)× Lp(Ω)×W
2−2/p
p (Γ∗),

and define the operator A by

A(u, θ, h) = (− (µ/ρ)∆u +∇π/ρ,−d∆θ/ρκ∗,−u · ν∗ − (l∗ρ)−1[[d∂ν∗θ]]).

To define the domain D(A) of A, we set

X1 = {(u, θ, h) ∈ H2
p (Ω \ Γ∗)×H2

p (Ω \ Γ∗)×W
4−1/p
p (Γ∗) :

div u = 0 in Ω \ Γ∗, [[u]] = [[θ]] = 0 on Γ∗},
and

D(A) = {(u, θ, h) ∈ X1 : [[µP∗Eν∗]] = (l∗/θ∗)θ − (σ/ρ)A∗h = 0 on Γ∗}.
Here π is determined as the solution of the weak transmission problem

(∇π|∇φ/ρ)2 = ((µ/ρ)∆u|∇φ)2, φ ∈ Ḣ1
p′(Ω),

[[π]] = −σA∗h + 2[[µ(Eν∗|ν∗)]].



Then the linearized problem can be rewritten as an evolution equation

in X0 as

ż + Az = f, t > 0, z(0) = z0, (1)

where z = (u, θ, h), f = (fu, fθ, fh), z0 = (u0, θ0, h0),

provided gd = gu = gp = gθ = gj = 0.

The linearized problem has maximal Lp-regularity, hence (1) has this

property as well. Therefore, −A generates an analytic C0-semigroup

in X0.

Since the embedding X1 ↪→ X0 is compact, the semigroup e−At as well

as the resolvent (λ + A)−1 of −A are compact, too. Therefore the

spectrum σ(A) of A consists only of countably many eigenvalues of

finite algebraic multiplicity.



Nonzero Eigenvalues

Suppose that λ 6= 0, Reλ ≥ 0 is an eigenvalue of the linear problem.
Then taking the inner product of the equation for u with u we get:

0 = λ‖ρ1/2u‖22 +
∫

Ω
T : ∇ūdx +

∫

Γ∗
[[Tνū]]dΓ

= λ‖ρ1/2u‖22 + 2‖µ1/2E‖22 + σλ̄(A∗h|h)2 + ([[ρ−1Tν · ν]]|j)2.

Similarly, for θ we obtain

0 = λ‖(ρκ∗)1/2θ‖22 + ‖d1/2∇θ‖22 + ([[d∂νθ]]|θ)2
= λ‖(ρκ∗)1/2θ‖22 + ‖d1/2∇θ‖22 − θ∗(j|[[ρ−1Tν · ν]])2,

Adding the real parts yields

0 = Reλ‖ρ1/2u‖22 + 2‖µ1/2E‖22 + σReλ(A∗h|h)2
+θ−1∗ (Reλ‖(ρκ∗)1/2ϑ‖22 + ‖d1/2∇θ‖22).

If Imλ 6= 0, taking imaginary parts we get

σ(A∗h|h)2 = ‖ρ1/2u‖22 − ‖(ρκ∗)1/2θ‖22/θ∗.



We deduce from this

0 = 2Reλ‖ρ1/2u‖22 + 2‖µ1/2E‖22 + ‖d1/2∇θ‖22/θ∗,

which shows that such eigenvalues are real. Next decompose

θ = θ̂ + θ0, j = ĵ + j0, h = ĥ + h0,

with the weighted means

ϑ̂ = (κ∗ϑ|ρ)2/(κ∗|ρ), ĥ = (h|1)2/mes,Γ∗ ĵ = (j|1)2/mesΓ∗.

By the equations we have

λĥ = −ĵ/ρ, λ(κ∗|ρ)2θ̂ = l∗mesΓ∗ĵ,

in particular ĥ = ĵ = θ̂ = 0 in case [[ρ]] 6= 0. Otherwise

λ‖ρ1/2u‖22 + 2‖µ1/2E‖22 + σλ(A∗h0|h0)2 + (λ‖(ρκ∗)1/2θ0‖22
+‖d1/2∇θ0‖22)/θ∗ + λρmesΓ∗{ l2∗mesΓ∗

θ∗(κ∗|ρ)2
− (n− 1)σ

ρ2R2∗
}|ĥ|2 = 0.



As a consequence we have

Theorem. Let the phases be connected. Then

(i) In case [[ρ]] 6= 0, there are no eigenvalues Reλ ≥ 0, λ 6= 0.

(ii) In case [[ρ]] = 0, there are no eigenvalues Reλ ≥ 0, λ 6= 0 if

(S)
l2∗mesΓ∗
θ∗(κ∗|ρ)

− (n− 1)σ

ρ2R2∗
≥ 0.

This is the Stability Condition for equilibria in the temperature domi-

nated case.

If the stability condition is violated there will be a positive eigenvalue

which is algebraically simple.

Note that the condition (S) does neither involve the diffusion coeffi-

cients dk nor the viscosities µk!



The Eigenvalue λ = 0

Here the equations yield

0 = 2‖µ1/2E‖2 + ‖d1/2∇θ‖2,

hence θ is constant, with l∗ 6= 0 also j = 0, hence u = 0 by Korn’s

inequality. This further shows that π is constant in the phases, hence

we are left with the equations

[[π]] = σA∗h, (l∗/θ∗)θ + [[π/ρ]] = 0.

The kernel of A∗ consists of the (orhonormalized) spherical harmonics

{Yk}nk=1 of degree one.

In the temperature dominated case, there is one further degree of

freedom, namely [[π]], hence eigenvalue zero has geometric multiplicity

n + 1. It is semi-simple, unless equality holds in condition (S).



In the velocity dominated case, there are two further degree of freedom,

namely π1, π2, hence eigenvalue zero has geometric multiplicity n + 2.

However, taking preservation of volume into account, we have [[π]] = 0

which reduces the multiplicity to n + 1; λ = 0 is semi-simple.

If one also takes into account conservation of energy, then the dimen-

sion of E and of the kernel are both equal to n.

Thus in both cases, the dimension of the eigenspace for λ = 0 of the

linearization equals the dimension of the manifold E of equilibria, and

its tangent space is isomorphic to this eigenspace.

This shows that the equilibrium in question is normally stable in the

velocity dominated case, and also in the temperature dominated case

if we have strict inequality in (S). If (S) does not hold, it is normally

hyperbolic. In the temperature dominated case, the equilibrium is not

normally hyperbolic if and only if we have equality in (S) ( or l∗ = 0).



III The Induced Semiflow

We first introduce the semiflow induced by the solutions. Recall that

the closed C2-hypersurfaces contained in Ω form a C2-manifold, which

we denote by MH2. Charts are obtained via parametrization over a

fixed hypersurface, and the tangent spaces consist of the normal vector

fields. As an ambient space for the phase-manifold PM of the two-

phase problem with surface tension and phase transitions we consider

the product space X0 := Lp,σ(Ω)× Lp(Ω)×MH2.

In the velocity dominated case we define PM as follows

PM := {(u, θ,Γ) ∈ X0 : (u, θ) ∈ W
2−2/p
p (Ω \ Γ)n+1, Γ ∈ W

3−2/p
p ,

the compatibilities (3) hold }. (2)

The charts for this manifold are obtained by the charts induced by

MH2, followed by a Hanzawa transformation.



Observe that the compatibility conditions

PΓ[[µE]]νΓ = PΓ[[u]] = [[θ]] = 0 on Γ,

l(θ)[[1/ρ]]−1[[u · νΓ]] + [[d∂νΓθ]] = 0 on Γ (3)

u = ∂νθ = 0 on ∂Ω,

as well as regularity are preserved by the solutions.

Applying the local existence result and re-parameterizing repeatedly,

we obtain a local semiflow on PM.

Theorem Let p > n + 2 and [[ρ]] 6= 0. Then the two-phase problem

with phase transitions generates a local semiflow on the phase-manifold

PM. Each solution (u, θ,Γ) exists on a maximal time interval [0, t∗).



In the temperature dominated case we define PM as follows

PM := {(u, θ,Γ) ∈ X0 : (u, θ) ∈ W
2−2/p
p (Ω \ Γ)n+1, Γ ∈ W

4−3/p
p ,

[[d∂νΓθ]] ∈ W
2−6/p
p (Γ), l(θ) 6= 0, on Γ (4)

and the compatibilities (5) hold }.
The charts for this manifold are obtained by the charts induced by
MH2, followed by a Hanzawa transformation.

Observe that the compatibility conditions

PΓ[[µE]]νΓ = [[u]] = [[θ]] = 0 on Γ, (5)

[[ψ(θ)]] + (σ/ρ)HΓ = 0 on Γ,

u = ∂νθ = 0 on ∂Ω,

as well as regularity are preserved by the solutions. However, the well-
posedness condition l(θ) 6= 0 may fail to be preserved by the semiflow!

By the local existence result and re-parameterizing repeatedly, we ob-
tain also in case [[ρ]] = 0 a local semiflow on PM.



Nonlinear Stability

The properties of the linearized problem near an equilibrium call for

the Generalized Principle of Linear Stability; cf. P., Simonett, Zacher

2009. Employing this technique we obtain

Theorem.Let (0, θ∗,Γ∗) be an equilibrium

such that l∗ 6= 0 in case [[ρ]] = 0.

(i) If [[ρ]] 6= 0 then the equilibrium (0, θ∗,Γ∗) is stable in PM for the

nonlinear problem. Each solution starting near (0, θ∗,Γ∗) converges to

another equilibrium.

(ii) If [[ρ]] = 0 and the Stability Condition (S) holds with strict inequal-

ity, then the equilibrium (0, θ∗,Γ∗) is stable in PM for the nonlinear

problem. Each solution starting near (0, θ∗,Γ∗) converges to another

equilibrium.

(iii) If [[ρ]] = 0 and the Stability Condition (S) does not hold, then the

equilibrium (0, θ∗,Γ∗) is unstable in PM for the nonlinear problem.



Asymptotic behaviour

There are a number of obstructions to global existence of the solutions:

- regularity: the norms of either u(t), θ(t) or Γ(t) become unbounded;
- geometry: the topology of the interface changes;

or the interface touches the boundary of Ω;
or the interface shrinks to a point (in case [[ρ]] = 0);

- well-posedness: l(θ(t)) develops a zero (in case [[ρ]] = 0).

Note that in case [[ρ]] 6= 0 the phase volumes are preserved by the
semiflow!

We say that a solution (u, θ,Γ) satisfies a uniform ball condition, if
there is a radius r > 0 such that for each t ∈ [0, t∗) and at every point
p ∈ Γ(t) we have

B̄r(p± rνΓ(t)(p)) ∩ Γ(t) = {p}.



Combining the above results, we obtain the following theorem on the

asymptotic behavior of solutions.

Theorem Let p > n + 2. Suppose that (u, θ,Γ) is a solution of the

two-phase problem with phase transition on the maximal time interval

[0, t∗). Assume the following on [0, t∗):
(i) ‖u(t)‖

W
2−2/p
p

+ ‖θ(t)‖
W

2−2/p
p

+ ‖Γ(t)‖
W

3−2/p
p

≤ M < ∞;

(ii) (u, θ,Γ) satisfies a uniform ball condition,

and in case [[ρ]] = 0 in addition:

(iii) |l(θ)| ≥ 1/M , ‖Γ(t)‖
W

4−3/p
p

+ ‖[[d∂νΓ]]‖W2−6/p
p

≤ M .

Then t∗ = ∞, i.e. the solution exists globally and its limit set ω(u, θ,Γ) ⊂
E is nonempty. If this limit set contains a stable equilibrium, then the

solution converges in PM to this equilibrium. The converse is also

true.

For the proof we combine a compactness argument with the entropy

and apply the stability result.


