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Agenda

1. Prelude of this research

e A vortex experiment using a non-neutral (pure electron) plasma
e Time-govering equation of guiding-center plasma = two-dimensional Euler equation

2. Negative absolute temperature state in two-dimensioanl
point-vortex system confined in a finite area

e First introduced by Onsager 1949

3. Numerical results

e Massive numerical simulation using a special-purpose supercomputer

4. Analytical resuit

e Effective diffusion term in point-vortex system due to collisional processes of discrete
point vortices



1. Prelude of this research

¢ Vortex experiments
using a non-neutral (pure electron) plasma
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FIG. 1.1 A photo of non-neutral plasma trap in Kiwamoto Lab. at Kyoto Univ.
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FIG 1.2 Schematics of the trap.



The equation of motion of an electron in the trap:
dv

m — =
dt

B =Bz

0

—e(F + v X B)

The time-averaged Eq. (1) over a gyro-motion around B:

v = ExB 1 Zzx Vo
B[ B < u=Exy
where ¢ is the electrostatic potential: 1 is the stream function for the 2D flow
E=-V¢



The vorticity is proportional to the number density of electron n:
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The two-dimensional electron fluid is imcompressible:
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Thus, 2D electron fluid is identical to the inviscid and incompressible Euler equation
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The electron motion can be traced by the point vortex method !



Diocotron (Kelvin-Helmholtz) instability:

mode 2:

mode 3:

mode 4:

FIG 1.3 Two-dimensional electron distribution perpendicular to the magnetic field



2. Negative absolute temperature state in two-
dimensioanl point-vortex system confined in a
finite area

¢ Target point vortex system

N positive point vortices and N negative point vortices are confined in a circular wall with
radius R

esve Vortices® 2"

Circular Wall with radius R



Vorticity field is descritized as:

W, (r,t) = Z 2,0 (T — rz(t))

Circulation of each point vortex Q,=Q, or — Q) (€2,=constant)

Position vector r,




Equation of motion of the point vortex:
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Explicit Biot-Savart integral form:
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Wall effect is introduced by the image vortex at
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¢ Negative temperature state in the 2D point-vortex system

The statistical definition of (inverse) temperature:
5= dS dlogW(E)
dE dE

W(E) 4
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FIG 2.1 "Normal" relation between a density of state and dS/dE = 0



Suppose a system whose total phase space volume is finite:

fZW@ME<m

In such a system, W(E) has at leaset a peak at an energy value £,
and dS/dE<0at E>E,.

dS/dE<0 & 3<0
IWEW

3>0 % 5<0
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FIG 2.2 "Special" relation for a system that has a negative temperature state.
dS/dE<OatE>E,



Onsager pointed out that:
The phase space equals the configuration space for the 2D point-vortex system by
making an analogy to the usual Hamilton equation.

dqz._(?H dp; _ 5’H dr, 0 Qaly._ 8H
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and
The total phase space volume is finite for the system confined in a finite space.

Phase space volume = (nR*)*"

=Configufation spae

=Phase spae!

— 2D point vortex system has a negative temperature state.



3. Numerical results

+ Massive numerical simulation using
a special-purpose supercomputer, MDGRAPE-3

FIG. 3.1 Hardware accelerator: MDGRAPE-3
PCI-X board
Approx. 300 times faster than a normal PC



Density of state

Direct calculation of the density of state as functions of the system energy E and
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random sampling of states based on microcanonical statistics

number of vortices = 6724

number of total states sampled = 10°
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FIG. 3.2 Density of state
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Equilibrium distribution
Time-asymptotic equilibrium distributions are obtained by time-development simulations.
System energy is controlled by the initial distribution of the point vortices.
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FIG. 3.4 Time-asymptotic equilibrium states
red: positive point vortex
blue: negative point vortex



60
40
201

_20 -
_40 -
,60 -

_60 =

40

20 0 20 40 60

_60 =

40 -20

0 20 40 60

_60 =

40

20

0 20 40 60







4. Analytical resulit

The 2D inviscid vorticity equation has the EXACT point vortex solution:

5’5;2 +u-Vw =0 w (r,t) = ZQJS(T —7(t))

0
Sntr) =2 S08(r ()

— =520 (0] ve(r-r(0)
= > Qu(r(t),t)- V8(r —1,(1))
= —u(r,1)- VY _Q8(r — (1))

= —u(r,t)- Vw (r,t)

This is a rare case that a macroscopic equation has a microscopic, particle solution.

There should be an effective viscous effect in the microscopic particle system.



To identify microscopic and macroscopic physical quantities, new notations are introduced:

Macroscopic vorticity field:

w, (r,t) = <Caz (r,t)> — <Z Qié(r — 'r;(t))>
Microscopic vorticity field:

w (r,t) = ZQJS (r—mr(t) = <c&z(r,t)>5'E + dw_ (7, 1)

S-E

A hat "M means a microscopic variable.
The microscopic vorticity consists of a macroscopic part and a fluctuation part.

Operator <>E IS an ensemble average and operator <>S IS an space average:

A 1 pie ’
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The space-averaged vorticity equation:
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The right hand side of this Eq. is the effective diffusion term.

To obtain an explicit formula of the diffusion term, use the linearlized vorticity equation:

;%&dn@+anwm%w@=~&wwwv%@ﬁ

Assuming the macroscopic variables approximately constant in the microscopic scale, a
formal solution is obtained:

mdnoz—Jlgﬁmr—@—ﬂanmyv%gw)

Note that velocity correlation time is sufficiently short.



Using this result, explicit diffusion term is written as:

% w,(8) + V- [ulr, Qo ()] = —V - (Bl )6, ()
—V - (bu(r,t)bw,(r,t)), ==V (7] Vw,)

SE

t
7= < f dréu(r, t)su(r — (t — 7)u, T)>
—00 S-E
The result is analogous to the well-known Kubo formula.
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5. Conclusion

e The existence of the negative temperature state in two-dimensional point vortex system is
confirmed through the massive numerical simulations.

e In the negative temperature state, point vortices of the same sign makes a clump, while
in the positive temperature state, both sign vortices mix up with each other and forms a
uniform distribution.

e Effective diffusion coefficient is derived by using the Klimontvich formalism.

e The diffusion term arises from the discreteness of the vorticity.

e Our result is an extension of the well-known Kubo formula under a presence of flow.




