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1. Prelude of this research
● A vortex experiment using a non-neutral (pure electron) plasma
● Time-govering equation of guiding-center plasma = two-dimensional Euler equation

2. Negative absolute temperature state in two-dimensioanl 
point-vortex system confined in a finite area

● First introduced by Onsager 1949

3. Numerical results
● Massive numerical simulation using a special-purpose supercomputer

4. Analytical result
● Effective diffusion term in point-vortex system  due to collisional processes of discrete 

point vortices



1. Prelude of this research
 ♦ Vortex experiments 

using a non-neutral (pure electron) plasma

FIG. 1.1 A photo of non-neutral plasma trap in Kiwamoto Lab. at Kyoto Univ.
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FIG 1.2 Schematics of the trap.



♦ Analogy of the 2D non-neutral plasma equation 
to the Euler equation

The equation of motion of an electron in the trap:

	 m d
dt

ev E v B=− + ×( )

	 B z= B0ˆ

The time-averaged Eq. (1) over a gyro-motion around B:	
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B

z=
×

= ×∇2
0

1
B
ˆ f 								       ⇔	 u z= ×∇ˆ y

where f is the electrostatic potential:				    y is the stream function for the 2D flow
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The vorticity is proportional to the number density of electron n:
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The two-dimensional electron fluid is imcompressible:
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Thus, 2D electron fluid is identical to the inviscid and incompressible Euler equation
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	 The electron motion can be traced by the point vortex method !



♦Some experimental results at Kiwamoto Lab.
Diocotron (Kelvin-Helmholtz) instability:

mode 2:

mode 3:

mode 4:

FIG 1.3 Two-dimensional electron distribution perpendicular to the magnetic field



2. Negative absolute temperature state in two-
dimensioanl point-vortex system confined in a 
finite area

♦ Target point vortex system
N positive point vortices and N negative point vortices are confined in a circular wall with 

radius R

Circular Wall with radius R

Point
Vortices



Vorticity field is descritized as:

		  ω δz i i
i

t t( , ) ( )r r r= −( )∑W

Circulation of each point vortex 		  Wi = W0  or － W0		 (W0=constant)

Position vector 						      ri



Equation of motion of the point vortex:
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Explicit Biot-Savart integral form:
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♦ Negative temperature state in the 2D point-vortex system

The statistical definition of (inverse) temperature:

	 b = =
dS
dE

d W E
dE
log ( )

W(E)

E
FIG 2.1 "Normal" relation between a density of state and dS / dE ≧ 0



Suppose a system whose total phase space volume is finite:

		  W E dE( ) <∞
−∞

∞

∫

In such a system, W(E) has at leaset a peak at an energy value E0 
and dS / dE < 0 at E > E0.

						      dS / dE < 0		  ⇔		  b < 0
W(E)

EE0

β＜0β＞0

FIG 2.2 "Special" relation for a system that has a negative temperature state.
dS / dE < 0 at E > E0



Onsager pointed out that:
The phase space equals the configuration space for the 2D point-vortex system by 
making an analogy to the usual Hamilton equation.
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The total phase space volume is finite for the system confined in a finite space.
Phase space volume = (pR2)2N

=Configufation spae

=Phase spae !

→　2D point vortex system has a negative temperature state.



3. Numerical results
♦ Massive numerical simulation using 
    a special-purpose supercomputer, MDGRAPE-3

FIG. 3.1 Hardware accelerator: MDGRAPE-3
PCI-X board

Approx. 300 times faster than a normal PC



Density of state
Direct calculation of the density of state as functions of the system energy E and 

	 inertia I i i
i

N

=∑Γ r 2
2

	 random sampling of states based on microcanonical statistics
	 number of vortices ＝ 6724
	 number of total states sampled ＝ 108

FIG. 3.2　Density of state
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FIG. 3.3 Density of state (I=0)



Equilibrium distribution
Time-asymptotic equilibrium distributions are obtained by time-development simulations.
System energy is controlled by the initial distribution of the point vortices.
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FIG. 3.4 Time-asymptotic equilibrium states

red: 　positive point vortex
blue: 　negative point vortex



　 　






4. Analytical result
♦ The vorticity equation has a microscopic solution.
The 2D inviscid vorticity equation has the EXACT point vortex solution:
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This is a rare case that a macroscopic equation has a microscopic, particle solution.

There should be an effective viscous effect in the microscopic particle system.



♦ Effective viscous effect 
		  due to "collison" between the point vortices
To identify microscopic and macroscopic physical quantities, new notations are introduced:

	 Macroscopic vorticity field:

		  ω ω δz z i i
i S E
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	 Microscopic vorticity field:
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A hat "^" means a microscopic variable.
The microscopic vorticity consists of a macroscopic part and a fluctuation part.

Operator ⋅ E  is an ensemble average and operator ⋅ S  is an space average:
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♦ Evaluation of the diffusion term
The space-averaged vorticity equation:
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	 The right hand side of this Eq. is the effective diffusion term.

To obtain an explicit formula of the diffusion term, use the linearlized vorticity equation:
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Assuming the macroscopic variables approximately constant in the microscopic scale, a 
formal solution is obtained:
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Using this result, explicit diffusion term is written as:
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	 The result is analogous 	to the well-known Kubo formula.



5. Conclusion

● The existence of the negative temperature state in two-dimensional point vortex system is 
confirmed through the massive numerical simulations.

● In the negative temperature state, point vortices of the same sign makes a clump, while 
in the positive temperature state, both sign vortices mix up with each other and forms a 
uniform distribution.

● Effective diffusion coefficient is derived by using the Klimontvich formalism.

● The diffusion term arises from the discreteness of the vorticity.

● Our result is an extension of the well-known Kubo formula under a presence of flow.


