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Diffuse interface models

Consider the flow of a binary mixture of macroscopically immiscible, viscous
compressible Newtonian fluids filling a domain Ω ⊂ R3.

In classical models: both fluids are separated by a sharp interface Γ(t), across
which certain jump conditions are prescribed. Problem: Topological transitions
(e.g. due to droplet formation or coalescence) cannot be described.

This motivated the development of diffuse interface models: replace the sharp
interface by a narrow transition layer across which the fluids may mix. See
Anderson, McFadden, Wheeler (1998)

The following model is discussed in Lowengrub, Truskinovsky (1998), see also
Abels, Feireisl (2008).



Model

• cj =
Mj
M mass concentration of the fluid j = 1,2,

•M = M1 +M2 total mass, ⇒ c1 + c2 = 1,
• ρj =

Mj
V apparent mass density of the fluid j = 1,2,

• ρ = ρ1 + ρ2 total density,
• uj velocity of the fluid j = 1,2.

Mass balance for each component:

∂tρj + div (ρjuj) = 0.

Adding both equations gives

∂tρ+ div (ρu) = 0,

where u is the mass-averaged velocity given by

ρu = ρ1u1 + ρ2u2.



Let Jj be the mass flux of the fluid j relative to the mean velocity u, i.e.

∂tρj + div (ρju) + div Jj = 0.

Assume J1 + J2 = 0, to ensure conservation of mass.

Let c = c1 − c2 = 2c1 − 1 (order parameter), and J := J1 − J2 = 2J1.
Since ρj = ρcj, we obtain

∂t(ρc) + div (ρcu) + div J = 0,

which, by conservation of mass, is equivalent to

ρ∂tc+ ρu · ∇c+ div J = 0.

Conservation of momentum w.r.t. the mean velocity u:

∂t(ρu) + div (ρu⊗ u) − div T = ρg,

here: T is the stress tensor and g an external force. Using conservation of
mass we obtain

ρ∂tu+ ρ(u · ∇)u− div T = ρg.



Constitutive equations - the mass flux J

Assume that the relative motion of the fluids can be described by a diffusional
model. Introduce the total free energy in the form

F =
∫

Ω
ψ

(

ρ(x), c(x),∇c(x)
)

dx.

Then the chemical potential µ (”the driving force”) is defined as

µ =
1

ρ

δF

δc
=

1

ρ

(

∂ψ

∂c
− div

∂ψ

∂∇c

)

.

Generalized Fick’s law:

J = −γ∇µ, (γ > 0 mobility).

Assume (cf. [LowTru], where 0 < ε = const)

ψ(ρ, c,∇c) = ρ
(

ψ̃(ρ, c) +
1

2
ε(ρ, c)|∇c|2

)

.

⇒ µ = ψ̃c(ρ, c) +
1

2
εc(ρ, c)|∇c|

2 −
1

ρ
div

(

ρε(ρ, c)∇c
)

.

→֒ Cahn-Hilliard type equation for c.



Constitutive equations - the stress tensor T

Following [LowTru] we assume that

T = S + P,

where S (viscous stress tensor) and P (nonviscous contribution) have the form

S = η(ρ, c)
(

∇u+ ∇uT
)

+ λ(ρ, c)divu I,

P = −ρ2
∂ψ

∂ρ
I − ρ∇c⊗

∂ψ

∂∇c

= −ρ2ψ̃ρ(ρ, c) I −
1

2
ερ(ρ, c)ρ

2|∇c|2 − ρε∇c⊗∇c.

η(ρ, c), λ(ρ, c) are the viscosity coefficients, π = ρ2ψ̃ρ(ρ, c) is the pressure,
−ρ∇c⊗ ∂ψ

∂∇c the Ericksen’s stress.

These constitutive laws lead to a thermodynamically consistent model. The
total energy is given by

E(t) =
∫

Ω

(1

2
ρ|u|2 + ρψ(ρ, c,∇c)

)

dx.



Mathematical problem

Let J = [0, T ] and Ω ⊂ Rn be a bounded domain with C4 boundary Γ.
Consider the (compressible) NSCH-system

ρ∂tu+ ρ(u · ∇)u− divS − divP = ρg (J × Ω),

∂tρ+ div (ρu) = 0 (J × Ω),

ρ∂tc+ ρu · ∇c− div
(

γ(ρ, c)∇µ
)

= 0 (J × Ω),

u = 0, ∂νc = ∂νµ = 0 (J × Γ),

u|t=0 = u0, c|t=0 = c0, ρ|t=0 = ρ0 (Ω),

where

S = η(ρ, c)
(

∇u+ ∇uT
)

+ λ(ρ, c)divu I,

P = −π I −
1

2
ρ2ερ(ρ, c)|∇c|

2I − ρε(ρ, c)∇c⊗∇c,

µ = ψc(ρ, c,∇c) − ρ−1div
(

ε(ρ, c)ρ∇c
)

,

ψ = ψ̃(ρ, c) +
1

2
ε(ρ, c)|∇c|2, π = ρ2ψ̃ρ(ρ, c).



Literature

• Abels and Feireisl (2008): Existence of global weak solutions for the NSCH-
model in the case ε = 1

ρ , which corresponds to the free energy

F =
∫

Ω

(

ρψ̃(ρ, c) +
1

2
|∇c|2

)

dx.

(see also Anderson, McFadden, Wheeler (1998) for this model, compare with
Lowengrub, Truskinovsky (1998):

F =
∫

Ω

(

ρψ̃(ρ, c) +
1

2
ερ|∇c|2

)

dx.

Problem: energy estimates do not provide any bound for ∇c in vacuum zones

• Abels (2007, 2009): incompressible NSCH-model

• Solonnikov (1976): Existence and uniqueness of local strong solutions for the
compressible Navier-Stokes equ., here u ∈ H1

p (J;Lp(Ω)) ∩ Lp(J;H2
p (Ω))

and ρ ∈ C1(J;Lp(Ω)) ∩ C(J;H1
p (Ω)), p > n.

• See also the monographs Feireisl (2004); Novotny, Straskraba (2004).



Setting

We are looking for strong solutions in the Lp-setting. Consider first the
equation for c in Lp(J;Lp(Ω)):

ρ∂tc+ ρu · ∇c− div
(

γ(ρ, c)∇µ
)

= 0,

µ = ψc(ρ, c) − ρ−1div
(

ε(ρ, c)ρ∇c
)

.

The natural regularity class is

c ∈ H1
p (J;Lp(Ω)) ∩ Lp(J;H

4
p (Ω)).

Problem: third order term of ρ, i.e. we need at least ρ ∈ Lp(J;H3
p (Ω))

Remark: In the case ερ = 1 only ρ ∈ Lp(J;H2
p (Ω)) is required.



Since ρ is governed by the hyperbolic equation

∂tρ+ div (ρu) = 0,

we need u ∈ Lp(J;H4
p (Ω;Rn)). To obtain this regularity for u, we need to

consider the Navier-Stokes equation in Lp(J;H2
p (Ω;Rn)):

ρ∂tu+ ρ(u · ∇)u− divS − divP = ρg,

P = −π I −
1

2
ρ2ερ(ρ, c)|∇c|

2I − ρε(ρ, c)∇c⊗∇c.

Note that

c ∈ H1
p (J;Lp(Ω)) ∩ Lp(J;H

4
p (Ω)) →֒ H

1
2
p (J;H

2
p (Ω)).

Therefore

divP ∼ ∂xi∇c ∈ H
1
2
p (J;Lp(Ω;R

n)) ∩ Lp(J;H
2
p (Ω;R

n)) =: X1.



Taking X1 as the base space for the Navier-Stokes equation one expects that

u ∈ H
3
2
p (J;Lp(Ω;R

n)) ∩H1
p (J;H

2
p (Ω;R

n)) ∩ Lp(J;H
4
p (Ω;R

n)).

Using this regularity the continuity equation yields

ρ ∈ H
2+1

4
p (J;Lp(Ω)) ∩ C1(J;H2

p (Ω)) ∩ C(J;H3
p (Ω)).

In fact, ∂2
t ρ = −ρ ∂t(∇ · u) + . . ., and

∂tu ∈ X1 ⇒ ∂t(∇ · u) ∈ H
1
4
p (J;Lp(Ω)).



Main result

Theorem: Let Ω ⊂ Rn be a bounded domain with C4 boundary Γ, and let
η, λ, γ, ε, and ψ̃ be (sufficiently) smooth. Let p > p∗ := max{4, n}, p 6= 5,
and assume that

(i) g ∈ H
1
2
p (J;Lp(Ω;Rn)) ∩ Lp(J;H2

p (Ω;Rn));

(ii) u0 ∈W
4−2

p
p (Ω), c0 ∈W

4−4
p

p (Ω), ρ0 ∈ H3
p (Ω);

(iii) u0 = 0 on Γ; −divS(ρ0, c0, u0) − divP(ρ0, c0) = ρ0g|t=0 on Γ;

∂νc0 = 0 on Γ; ∂νµ(ρ0, c0) = 0 on Γ, if p > 5;

(iv) (η,2η+ λ, γ, ε)|ρ=ρ0,c=c0 ∈ (0,∞)4 in Ω̄; ρ0 > 0 in Ω̄.

Then there exists T > 0 such that the NSCH-system has a unique solution
(u, c, ρ) ∈ Z1 × Z2 × Z3 on J = [0, T ] where

Z1 = H
3
2
p (J;Lp(Ω;R

n)) ∩H1
p (J;H

2
p (Ω;R

n)) ∩ Lp(J;H
4
p (Ω;R

n)),

Z2 = H1
p (J;Lp(Ω)) ∩ Lp(J;H

4
p (Ω)),

Z3 = H
2+1

4
p (J;Lp(Ω)) ∩ C1(J;H2

p (Ω)) ∩ C(J;H3
p (Ω)).



Basic ideas of the proof

1. Given ρ0 and u with u = 0 on Γ, solve the continuity equation (e.g. by the
method of characterictics). →֒ ρ = Φ(u).
2. Insert ρ = Φ(u) into the equations for u and c.
3. Fixed point formulation for (u, c):

ρ0∂tu− divS(ρ0, c0, u) +M(ρ0, c0)∇
2c = F1(u, c,Φ(u)) (J × Ω),

κ0 ∂tc+ ∇ · (ε0∇∇ · (ε0∇c)) = F2(u, c,Φ(u)) (J × Ω),

u = 0, ∂νc = 0, ∂ν∇ · (ε0∇c) = ∂νh(c,Φ(u)) (J × Γ),

u|t=0 = u0, c|t=0 = c0 (Ω),

where ε0 := ε(ρ0, c0), γ0 := γ(ρ0, c0), κ0 := ε0ρ0
γ0

. More abstractly,

L11u+ L12c = F1(u, c,Φ(u)),

L22c = F2(u, c,Φ(u)).



Fixed point argument

Define reference functions ũ ∈ Z
T0
1 , c̃ ∈ Z

T0
2 by means of

L(ũ, c̃) = F (u0, c0, ρ0),

(ũ, c̃)|t=0 = (u0, c0).

For T ∈ (0, T0] and r ∈ (0, r0] let ΣT
r := {(u, c) ∈ ZT1 × ZT2 : u = 0 on

J × Γ, (u, c)|t=0 = (u0, c0), and |(u, c) − (ũ, c̃)|
ZT1 ×ZT2

≤ r}.

Define the mapping Λ : ΣT
r → ZT1 × ZT2 by Λ(u, c) := (û, ĉ) where

L(û, ĉ) = F (u, c,Φ(u)),

(û, ĉ)|t=0 = (u0, c0).

Show that for sufficiently small T and r: (i) Λ leaves ΣT
r invariant, (ii) Λ is a

strict contraction in the space Y T1 × Y T2 (weaker topology!) with

Y T1 = H1
p (J;Lp(Ω;R

n)) ∩ Lp(J;H
2
p (Ω;R

n)),

Y T2 = H
1
2
p (J;Lp(Ω)) ∩ Lp(J;H

2
p (Ω)).

ΣT
r is closed in Y T1 × Y T2 , so the contraction mapping principle is applicable.



Some auxiliary results

(i) For the Cahn-Hilliard equation we need maximal Lp-regularity (c ∈ Z2) for
the problem

κ0 ∂tc+ ∇ · (ε0∇∇ · (ε0∇c)) = f (J × Ω),

∂νc = 0, ∂ν∇ · (ε0∇c) = ϕ (J × Γ),

c|t=0 = c0 (Ω).

Natural regularity class for boundary data:

ϕ ∈W
1
4−

1
4p

p (J;Lp(Γ)) ∩ Lp(J;W
1−1

p
p (Γ)).

See e.g. Prüss, Racke, Zheng (2006); Prüss, Wilke (2006); Denk, Hieber,
Prüss (2007).



(ii) Maximal Lp-regularity and higher regularity with base space X1, i.e.

u ∈ Z1 = H
3
2
p (J;Lp(Ω;Rn)) ∩ H1

p (J;H
2
p (Ω;Rn)) ∩ Lp(J;H4

p (Ω;Rn)),
for the parabolic system

ρ0∂tu− divS(ρ0, c0, u) = f (J × Ω),

u = 0 (J × Γ), u|t=0 = u0 (Ω).

In case of constant coefficients the PDE reads

ρ0∂tu− η0∆u− (λ0 + η0)∇∇ · u = f.

Assumptions: ρ0, η0,2η0 + λ0 > 0. Symbol of −η0∆ − (λ0 + η0)∇ div:
A(ξ) = η0|ξ|

2+(λ0+η0)ξ⊗ξ. For ξ 6= 0 the eigenvalues are η0, 2η0+λ0.
→֒ ellipticity in the sense of Denk, Hieber, Prüss (2003), (2007). Further, con-
dition (LS) is satisfied. ⇒ max. Lp-regularity. See also Solonnikov (1965).

Higher regularity: reduction to model problems (full and half space) by lo-
calization and perturbation arguments, Fourier transform w.r.t. tangential vari-
ables, Newton polygon trace theory, natural regularity class for Dirichlet data:

W
3
2−

1
4p

p (J;Lp(Γ)) ∩H1
p (J;W

2−1
p

p (Γ)) ∩ Lp(J;W
4−1

p
p (Γ)).



Estimates for the continuity equation

Let T ∈ (0, T0], r ∈ (0, r0] and (u, c) ∈ ΣT
r . Then u = 0 on [0, T ] × Γ and

|u|
ZT1

≤ |u− ũ|
ZT1

+ |ũ|
ZT1

≤ r+ |ũ|
Z
T0
1

≤ r0 + |ũ|
Z
T0
1

.

Suppose ρ0 ∈ H3
p (Ω), p > p∗, ρ0 > 0 in Ω̄. Then the continuity equation,

together with ρ|t=0 = ρ0, has a unique positive solution ρ = Φ(u) ∈ ZT3 ,
and we have the a priori estimate

|ρ|
ZT3

≤ C0,

where C0 is independent of T, r, u.

For the contraction estimate we use that (J = [0, T ])

|Φ(u1) − Φ(u2)|H1
2(J;Lp(Ω))∩C(J;H1

p (Ω)) ≤ C1(T )|u1 − u2|ZT1
,

for all (ui, ci) ∈ ΣT
r , i = 1,2, where C1(T ) → 0 as T → 0 and C1 is

independent of r.



A weak estimate for Cahn-Hilliard

Recall the fixed point formulation for (CH):

κ0 ∂tĉ+ ∇ · (ε0∇∇ · (ε0∇ĉ)) = F2(u, c,Φ(u)) (J × Ω),

∂ν ĉ = 0, ∂ν∇ · (ε0∇ĉ) = ∂νh(c,Φ(u)) (J × Γ),

ĉ|t=0 = c0 (Ω).

Here h(c, ρ) = ∇ · ([ε(ρ, c)− ε0]∇c)+ ρ−1ε(ρ, c)∇ρ · ∇c− ∂cψ(ρ, c,∇c).

Recall Y T2 := H
1/2
p (J;Lp(Ω)) ∩ Lp(J;H2

p (Ω)).

For (ui, ci) ∈ ΣT
r , ρi = Φ(ui), i = 1,2, we can show that

|ĉ1 − ĉ2|Y T2
≤ C2

(

|h(c1, ρ1) − h(c2, ρ2)|Lp(Lp) + |Θ|
H

1/2
p (Lp)

+ |Θ̃|Lp(Lp) + |γ0 − γ1|C(C1)|c1 − c2|Lp(H2
p )

+ T1/4|γ1 − γ2|C(H1
p )

)

,

where γi = γ(ρi, ci), Θ = (ρ0 − ρ1)(c1 − c2) − (ρ1 − ρ2)c2, and
Θ̃ = c1ρ1u1 − c2ρ2u2.

Pf.: Uses the divergence structure, duality relations, and max. reg. methods.



Final remarks

• The local solution can be extended to a maximally defined solution.

• The main result can be generalized to cover other boundary conditions
like the pure slip condition:

u · ν = 0, (I − ν ⊗ ν)Sν = 0 on [0, T ] × Γ.


