Strong well-posedness for a diffuse interface model for the two-phase flow of compressible viscous fluids

Rico Zacher
University of Halle-Wittenberg \& University of Magdeburg, Germany

joint work with Matthias Kotschote (Constance, Germany)

Tokyo, March 2010

Diffuse interface models

Consider the flow of a binary mixture of macroscopically immiscible, viscous compressible Newtonian fluids filling a domain $\Omega \subset \mathbb{R}^{3}$.

In classical models: both fluids are separated by a sharp interface $\Gamma(t)$, across which certain jump conditions are prescribed. Problem: Topological transitions (e.g. due to droplet formation or coalescence) cannot be described.

This motivated the development of diffuse interface models: replace the sharp interface by a narrow transition layer across which the fluids may mix. See Anderson, McFadden, Wheeler (1998)

The following model is discussed in Lowengrub, Truskinovsky (1998), see also Abels, Feireisl (2008).

Model

- $c_{j}=\frac{M_{j}}{M}$ mass concentration of the fluid $j=1,2$,
$M=M_{1}+M_{2}$ total mass, $\Rightarrow c_{1}+c_{2}=1$,
- $\rho_{j}=\frac{M_{j}}{V}$ apparent mass density of the fluid $j=1,2$,
- $\rho=\rho_{1}+\rho_{2}$ total density,
- u_{j} velocity of the fluid $j=1,2$.

Mass balance for each component:

$$
\partial_{t} \rho_{j}+\operatorname{div}\left(\rho_{j} u_{j}\right)=0
$$

Adding both equations gives

$$
\partial_{t} \rho+\operatorname{div}(\rho u)=0,
$$

where u is the mass-averaged velocity given by

$$
\rho u=\rho_{1} u_{1}+\rho_{2} u_{2}
$$

Let J_{j} be the mass flux of the fluid j relative to the mean velocity u, i.e.

$$
\partial_{t} \rho_{j}+\operatorname{div}\left(\rho_{j} u\right)+\operatorname{div} J_{j}=0
$$

Assume $J_{1}+J_{2}=0$, to ensure conservation of mass.
Let $c=c_{1}-c_{2}=2 c_{1}-1$ (order parameter), and $J:=J_{1}-J_{2}=2 J_{1}$. Since $\rho_{j}=\rho c_{j}$, we obtain

$$
\partial_{t}(\rho c)+\operatorname{div}(\rho c u)+\operatorname{div} J=0,
$$

which, by conservation of mass, is equivalent to

$$
\rho \partial_{t} c+\rho u \cdot \nabla c+\operatorname{div} J=0 .
$$

Conservation of momentum w.r.t. the mean velocity u :

$$
\partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)-\operatorname{div} \mathcal{T}=\rho g,
$$

here: \mathcal{T} is the stress tensor and g an external force. Using conservation of mass we obtain

$$
\rho \partial_{t} u+\rho(u \cdot \nabla) u-\operatorname{div} \mathcal{T}=\rho g .
$$

Constitutive equations - the mass flux J

Assume that the relative motion of the fluids can be described by a diffusional model. Introduce the total free energy in the form

$$
F=\int_{\Omega} \psi(\rho(x), c(x), \nabla c(x)) d x
$$

Then the chemical potential μ ("the driving force") is defined as

$$
\mu=\frac{1}{\rho} \frac{\delta F}{\delta c}=\frac{1}{\rho}\left(\frac{\partial \psi}{\partial c}-\operatorname{div} \frac{\partial \psi}{\partial \nabla c}\right)
$$

Generalized Fick's law:

$$
J=-\gamma \nabla \mu, \quad(\gamma>0 \text { mobility }) .
$$

Assume (cf. [LowTru], where $0<\varepsilon=$ const)

$$
\begin{gathered}
\psi(\rho, c, \nabla c)=\rho\left(\tilde{\psi}(\rho, c)+\frac{1}{2} \varepsilon(\rho, c)|\nabla c|^{2}\right) . \\
\Rightarrow \mu=\tilde{\psi}_{c}(\rho, c)+\frac{1}{2} \varepsilon_{c}(\rho, c)|\nabla c|^{2}-\frac{1}{\rho} \operatorname{div}(\rho \varepsilon(\rho, c) \nabla c) .
\end{gathered}
$$

\hookrightarrow Cahn-Hilliard type equation for c.

Constitutive equations - the stress tensor \mathcal{T}

Following [LowTru] we assume that

$$
\mathcal{T}=\mathcal{S}+\mathcal{P}
$$

where \mathcal{S} (viscous stress tensor) and \mathcal{P} (nonviscous contribution) have the form

$$
\begin{aligned}
\mathcal{S} & =\eta(\rho, c)\left(\nabla u+\nabla u^{T}\right)+\lambda(\rho, c) \operatorname{div} u \mathcal{I}, \\
\mathcal{P} & =-\rho^{2} \frac{\partial \psi}{\partial \rho} \mathcal{I}-\rho \nabla c \otimes \frac{\partial \psi}{\partial \nabla c} \\
& =-\rho^{2} \tilde{\psi}_{\rho}(\rho, c) \mathcal{I}-\frac{1}{2} \varepsilon_{\rho}(\rho, c) \rho^{2}|\nabla c|^{2}-\rho \varepsilon \nabla c \otimes \nabla c .
\end{aligned}
$$

$\eta(\rho, c), \lambda(\rho, c)$ are the viscosity coefficients, $\pi=\rho^{2} \tilde{\psi}_{\rho}(\rho, c)$ is the pressure, $-\rho \nabla c \otimes \frac{\partial \psi}{\partial \nabla c}$ the Ericksen's stress.

These constitutive laws lead to a thermodynamically consistent model. The total energy is given by

$$
E(t)=\int_{\Omega}\left(\frac{1}{2} \rho|u|^{2}+\rho \psi(\rho, c, \nabla c)\right) d x
$$

Mathematical problem

Let $J=[0, T]$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with C^{4} boundary Γ. Consider the (compressible) NSCH-system

$$
\begin{aligned}
\rho \partial_{t} u+\rho(u \cdot \nabla) u-\operatorname{div} \mathcal{S}-\operatorname{div} \mathcal{P} & =\rho g \quad(J \times \Omega), \\
\partial_{t} \rho+\operatorname{div}(\rho u) & =0 \quad(J \times \Omega), \\
\rho \partial_{t} c+\rho u \cdot \nabla c-\operatorname{div}(\gamma(\rho, c) \nabla \mu) & =0 \quad(J \times \Omega), \\
u=0, \quad \partial_{\nu} c=\partial_{\nu} \mu & =0 \quad(J \times \Gamma), \\
\left.u\right|_{t=0}=u_{0},\left.\quad c\right|_{t=0}=c_{0},\left.\quad \rho\right|_{t=0} & =\rho_{0} \quad(\Omega),
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{S} & =\eta(\rho, c)\left(\nabla u+\nabla u^{T}\right)+\lambda(\rho, c) \operatorname{div} u \mathcal{I}, \\
\mathcal{P} & =-\pi \mathcal{I}-\frac{1}{2} \rho^{2} \varepsilon_{\rho}(\rho, c)|\nabla c|^{2} \mathcal{I}-\rho \varepsilon(\rho, c) \nabla c \otimes \nabla c, \\
\mu & =\psi_{c}(\rho, c, \nabla c)-\rho^{-1} \operatorname{div}(\varepsilon(\rho, c) \rho \nabla c), \\
\psi & =\tilde{\psi}(\rho, c)+\frac{1}{2} \varepsilon(\rho, c)|\nabla c|^{2}, \quad \pi=\rho^{2} \tilde{\psi}_{\rho}(\rho, c) .
\end{aligned}
$$

Literature

- Abels and Feireisl (2008): Existence of global weak solutions for the NSCHmodel in the case $\varepsilon=\frac{1}{\rho}$, which corresponds to the free energy

$$
F=\int_{\Omega}\left(\rho \tilde{\psi}(\rho, c)+\frac{1}{2}|\nabla c|^{2}\right) d x .
$$

(see also Anderson, McFadden, Wheeler (1998) for this model, compare with Lowengrub, Truskinovsky (1998):

$$
F=\int_{\Omega}\left(\rho \tilde{\psi}(\rho, c)+\frac{1}{2} \varepsilon \rho|\nabla c|^{2}\right) d x .
$$

Problem: energy estimates do not provide any bound for ∇c in vacuum zones

- Abels (2007, 2009): incompressible NSCH-model
- Solonnikov (1976): Existence and uniqueness of local strong solutions for the compressible Navier-Stokes equ., here $u \in H_{p}^{1}\left(J ; L_{p}(\Omega)\right) \cap L_{p}\left(J ; H_{p}^{2}(\Omega)\right)$ and $\rho \in C^{1}\left(J ; L_{p}(\Omega)\right) \cap C\left(J ; H_{p}^{1}(\Omega)\right), p>n$.
- See also the monographs Feireisl (2004); Novotny, Straskraba (2004).

Setting

We are looking for strong solutions in the L_{p}-setting. Consider first the equation for c in $L_{p}\left(J ; L_{p}(\Omega)\right)$:

$$
\begin{aligned}
& \rho \partial_{t} c+\rho u \cdot \nabla c-\operatorname{div}(\gamma(\rho, c) \nabla \mu)=0, \\
& \mu=\psi_{c}(\rho, c)-\rho^{-1} \operatorname{div}(\varepsilon(\rho, c) \rho \nabla c) .
\end{aligned}
$$

The natural regularity class is

$$
c \in H_{p}^{1}\left(J ; L_{p}(\Omega)\right) \cap L_{p}\left(J ; H_{p}^{4}(\Omega)\right) .
$$

Problem: third order term of ρ, i.e. we need at least $\rho \in L_{p}\left(J ; H_{p}^{3}(\Omega)\right)$
Remark: In the case $\varepsilon \rho=1$ only $\rho \in L_{p}\left(J ; H_{p}^{2}(\Omega)\right)$ is required.

Since ρ is governed by the hyperbolic equation

$$
\partial_{t} \rho+\operatorname{div}(\rho u)=0,
$$

we need $u \in L_{p}\left(J ; H_{p}^{4}\left(\Omega ; \mathbb{R}^{n}\right)\right)$. To obtain this regularity for u, we need to consider the Navier-Stokes equation in $L_{p}\left(J ; H_{p}^{2}\left(\Omega ; \mathbb{R}^{n}\right)\right)$:

$$
\begin{array}{r}
\rho \partial_{t} u+\rho(u \cdot \nabla) u-\operatorname{div} \mathcal{S}-\operatorname{div} \mathcal{P}=\rho g, \\
\mathcal{P}=-\pi \mathcal{I}-\frac{1}{2} \rho^{2} \varepsilon_{\rho}(\rho, c)|\nabla c|^{2} \mathcal{I}-\rho \varepsilon(\rho, c) \nabla c \otimes \nabla c .
\end{array}
$$

Note that

$$
c \in H_{p}^{1}\left(J ; L_{p}(\Omega)\right) \cap L_{p}\left(J ; H_{p}^{4}(\Omega)\right) \hookrightarrow H_{p}^{\frac{1}{2}}\left(J ; H_{p}^{2}(\Omega)\right) .
$$

Therefore

$$
\operatorname{div} \mathcal{P} \sim \partial_{x_{i}} \nabla c \in H_{p}^{\frac{1}{2}}\left(J ; L_{p}\left(\Omega ; \mathbb{R}^{n}\right)\right) \cap L_{p}\left(J ; H_{p}^{2}\left(\Omega ; \mathbb{R}^{n}\right)\right)=: X_{1} .
$$

Taking X_{1} as the base space for the Navier-Stokes equation one expects that

$$
u \in H_{p}^{\frac{3}{2}}\left(J ; L_{p}\left(\Omega ; \mathbb{R}^{n}\right)\right) \cap H_{p}^{1}\left(J ; H_{p}^{2}\left(\Omega ; \mathbb{R}^{n}\right)\right) \cap L_{p}\left(J ; H_{p}^{4}\left(\Omega ; \mathbb{R}^{n}\right)\right)
$$

Using this regularity the continuity equation yields

$$
\rho \in H_{p}^{2+\frac{1}{4}}\left(J ; L_{p}(\Omega)\right) \cap C^{1}\left(J ; H_{p}^{2}(\Omega)\right) \cap C\left(J ; H_{p}^{3}(\Omega)\right) .
$$

In fact, $\partial_{t}^{2} \rho=-\rho \partial_{t}(\nabla \cdot u)+\ldots$, and

$$
\partial_{t} u \in X_{1} \Rightarrow \partial_{t}(\nabla \cdot u) \in H_{p}^{\frac{1}{4}}\left(J ; L_{p}(\Omega)\right) .
$$

Main result

Theorem: Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with C^{4} boundary Γ, and let $\eta, \lambda, \gamma, \varepsilon$, and $\tilde{\psi}$ be (sufficiently) smooth. Let $p>p_{*}:=\max \{4, n\}, p \neq 5$, and assume that
(i) $g \in H_{p}^{\frac{1}{2}}\left(J ; L_{p}\left(\Omega ; \mathbb{R}^{n}\right)\right) \cap L_{p}\left(J ; H_{p}^{2}\left(\Omega ; \mathbb{R}^{n}\right)\right)$;
(ii) $u_{0} \in W_{p}^{4-\frac{2}{p}}(\Omega), c_{0} \in W_{p}^{4-\frac{4}{p}}(\Omega), \rho_{0} \in H_{p}^{3}(\Omega)$;
(iii) $u_{0}=0$ on Γ; $-\operatorname{div} \mathcal{S}\left(\rho_{0}, c_{0}, u_{0}\right)-\operatorname{div} \mathcal{P}\left(\rho_{0}, c_{0}\right)=\left.\rho_{0} g\right|_{t=0}$ on Γ;

$$
\partial_{\nu} c_{0}=0 \text { on } \Gamma ; \partial_{\nu} \mu\left(\rho_{0}, c_{0}\right)=0 \text { on } \Gamma \text {, if } p>5 \text {; }
$$

(iv) $\left.(\eta, 2 \eta+\lambda, \gamma, \varepsilon)\right|_{\rho=\rho_{0}, c=c_{0}} \in(0, \infty)^{4}$ in $\bar{\Omega} ; \rho_{0}>0$ in $\bar{\Omega}$.

Then there exists $T>0$ such that the NSCH-system has a unique solution $(u, c, \rho) \in Z_{1} \times Z_{2} \times Z_{3}$ on $J=[0, T]$ where

$$
\begin{aligned}
& Z_{1}=H_{p}^{\frac{3}{2}}\left(J ; L_{p}\left(\Omega ; \mathbb{R}^{n}\right)\right) \cap H_{p}^{1}\left(J ; H_{p}^{2}\left(\Omega ; \mathbb{R}^{n}\right)\right) \cap L_{p}\left(J ; H_{p}^{4}\left(\Omega ; \mathbb{R}^{n}\right)\right), \\
& Z_{2}=H_{p}^{1}\left(J ; L_{p}(\Omega)\right) \cap L_{p}\left(J ; H_{p}^{4}(\Omega)\right), \\
& Z_{3}=H_{p}^{2+\frac{1}{4}}\left(J ; L_{p}(\Omega)\right) \cap C^{1}\left(J ; H_{p}^{2}(\Omega)\right) \cap C\left(J ; H_{p}^{3}(\Omega)\right) .
\end{aligned}
$$

Basic ideas of the proof

1. Given ρ_{0} and u with $u=0$ on Γ, solve the continuity equation (e.g. by the method of characterictics). $\hookrightarrow \rho=\Phi(u)$.
2. Insert $\rho=\Phi(u)$ into the equations for u and c.
3. Fixed point formulation for (u, c) :

$$
\begin{aligned}
\rho_{0} \partial_{t} u-\operatorname{div} \mathcal{S}\left(\rho_{0}, c_{0}, u\right)+M\left(\rho_{0}, c_{0}\right) \nabla^{2} c & =F_{1}(u, c, \Phi(u)) \quad(J \times \Omega), \\
\kappa_{0} \partial_{t} c+\nabla \cdot\left(\varepsilon_{0} \nabla \nabla \cdot\left(\varepsilon_{0} \nabla c\right)\right) & =F_{2}(u, c, \Phi(u)) \quad(J \times \Omega), \\
u=0, \quad \partial_{\nu} c=0, \quad \partial_{\nu} \nabla \cdot\left(\varepsilon_{0} \nabla c\right) & =\partial_{\nu} h(c, \Phi(u)) \quad(J \times \Gamma), \\
\left.u\right|_{t=0}=u_{0},\left.\quad c\right|_{t=0} & =c_{0} \quad(\Omega),
\end{aligned}
$$

where $\varepsilon_{0}:=\varepsilon\left(\rho_{0}, c_{0}\right), \gamma_{0}:=\gamma\left(\rho_{0}, c_{0}\right), \kappa_{0}:=\frac{\varepsilon_{0} \rho_{0}}{\gamma_{0}}$. More abstractly,

$$
\begin{aligned}
\mathcal{L}_{11} u+\mathcal{L}_{12} c & =F_{1}(u, c, \Phi(u)), \\
\mathcal{L}_{22} c & =F_{2}(u, c, \Phi(u)) .
\end{aligned}
$$

Fixed point argument

Define reference functions $\tilde{u} \in Z_{1}^{T_{0}}, \tilde{c} \in Z_{2}^{T_{0}}$ by means of

$$
\begin{aligned}
\mathcal{L}(\tilde{u}, \tilde{c}) & =F\left(u_{0}, c_{0}, \rho_{0}\right), \\
\left.(\tilde{u}, \tilde{c})\right|_{t=0} & =\left(u_{0}, c_{0}\right) .
\end{aligned}
$$

For $T \in\left(0, T_{0}\right]$ and $r \in\left(0, r_{0}\right]$ let $\Sigma_{r}^{T}:=\left\{(u, c) \in Z_{1}^{T} \times Z_{2}^{T}: u=0\right.$ on $J \times \Gamma,\left.(u, c)\right|_{t=0}=\left(u_{0}, c_{0}\right)$, and $\left.|(u, c)-(\tilde{u}, \tilde{c})|_{Z_{1}^{T} \times Z_{2}^{T}} \leq r\right\}$.
Define the mapping $\wedge: \Sigma_{r}^{T} \rightarrow Z_{1}^{T} \times Z_{2}^{T}$ by $\wedge(u, c):=(\hat{u}, \hat{c})$ where

$$
\begin{aligned}
\mathcal{L}(\widehat{u}, \widehat{c}) & =F(u, c, \Phi(u)), \\
\left.(\widehat{u}, \widehat{c})\right|_{t=0} & =\left(u_{0}, c_{0}\right)
\end{aligned}
$$

Show that for sufficiently small T and r : (i) \wedge leaves Σ_{r}^{T} invariant, (ii) \wedge is a strict contraction in the space $Y_{1}^{T} \times Y_{2}^{T}$ (weaker topology!) with

$$
\begin{aligned}
& Y_{1}^{T}=H_{p}^{1}\left(J ; L_{p}\left(\Omega ; \mathbb{R}^{n}\right)\right) \cap L_{p}\left(J ; H_{p}^{2}\left(\Omega ; \mathbb{R}^{n}\right)\right), \\
& Y_{2}^{T}=H_{p}^{\frac{1}{2}}\left(J ; L_{p}(\Omega)\right) \cap L_{p}\left(J ; H_{p}^{2}(\Omega)\right) .
\end{aligned}
$$

Σ_{r}^{T} is closed in $Y_{1}^{T} \times Y_{2}^{T}$, so the contraction mapping principle is applicable.

Some auxiliary results

(i) For the Cahn-Hilliard equation we need maximal L_{p}-regularity $\left(c \in Z_{2}\right)$ for the problem

$$
\begin{aligned}
\kappa_{0} \partial_{t} c+\nabla \cdot\left(\varepsilon_{0} \nabla \nabla \cdot\left(\varepsilon_{0} \nabla c\right)\right) & =f \quad(J \times \Omega), \\
\partial_{\nu} c=0, \quad \partial_{\nu} \nabla \cdot\left(\varepsilon_{0} \nabla c\right) & =\varphi \quad(J \times \Gamma), \\
\left.c\right|_{t=0} & =c_{0} \quad(\Omega) .
\end{aligned}
$$

Natural regularity class for boundary data:

$$
\varphi \in W_{p}^{\frac{1}{4}-\frac{1}{4 p}}\left(J ; L_{p}(\ulcorner)) \cap L_{p}\left(J ; W_{p}^{1-\frac{1}{p}}(\Gamma)\right) .\right.
$$

See e.g. Prüss, Racke, Zheng (2006); Prüss, Wilke (2006); Denk, Hieber, Prüss (2007).
(ii) Maximal L_{p}-regularity and higher regularity with base space X_{1}, i.e.
$u \in Z_{1}=H_{p}^{\frac{3}{2}}\left(J ; L_{p}\left(\Omega ; \mathbb{R}^{n}\right)\right) \cap H_{p}^{1}\left(J ; H_{p}^{2}\left(\Omega ; \mathbb{R}^{n}\right)\right) \cap L_{p}\left(J ; H_{p}^{4}\left(\Omega ; \mathbb{R}^{n}\right)\right)$, for the parabolic system

$$
\begin{gathered}
\rho_{0} \partial_{t} u-\operatorname{div} \mathcal{S}\left(\rho_{0}, c_{0}, u\right)=f \quad(J \times \Omega) \\
u=0 \quad(J \times \Gamma),\left.\quad u\right|_{t=0}=u_{0} \quad(\Omega)
\end{gathered}
$$

In case of constant coefficients the PDE reads

$$
\rho_{0} \partial_{t} u-\eta_{0} \Delta u-\left(\lambda_{0}+\eta_{0}\right) \nabla \nabla \cdot u=f .
$$

Assumptions: $\rho_{0}, \eta_{0}, 2 \eta_{0}+\lambda_{0}>0$. Symbol of $-\eta_{0} \Delta-\left(\lambda_{0}+\eta_{0}\right) \nabla$ div: $A(\xi)=\eta_{0}|\xi|^{2}+\left(\lambda_{0}+\eta_{0}\right) \xi \otimes \xi$. For $\xi \neq 0$ the eigenvalues are $\eta_{0}, 2 \eta_{0}+\lambda_{0}$. \hookrightarrow ellipticity in the sense of Denk, Hieber, Prüss (2003), (2007). Further, condition (LS) is satisfied. \Rightarrow max. L_{p}-regularity. See also Solonnikov (1965).

Higher regularity: reduction to model problems (full and half space) by localization and perturbation arguments, Fourier transform w.r.t. tangential variables, Newton polygon trace theory, natural regularity class for Dirichlet data: $W_{p}^{\frac{3}{2}-\frac{1}{4 p}}\left(J ; L_{p}(\ulcorner)) \cap H_{p}^{1}\left(J ; W_{p}^{2-\frac{1}{p}}(\ulcorner)) \cap L_{p}\left(J ; W_{p}^{4-\frac{1}{p}}(\Gamma)\right)\right.\right.$.

Estimates for the continuity equation

Let $T \in\left(0, T_{0}\right], r \in\left(0, r_{0}\right]$ and $(u, c) \in \Sigma_{r}^{T}$. Then $u=0$ on $[0, T] \times \Gamma$ and

$$
|u|_{Z_{1}^{T}} \leq|u-\tilde{u}|_{Z_{1}^{T}}+|\tilde{u}|_{Z_{1}^{T}} \leq r+|\tilde{u}|_{Z_{1}^{T_{0}}} \leq r_{0}+|\tilde{u}|_{Z_{1}^{T_{0}}} .
$$

Suppose $\rho_{0} \in H_{p}^{3}(\Omega), p>p_{*}, \rho_{0}>0$ in $\bar{\Omega}$. Then the continuity equation, together with $\left.\rho\right|_{t=0}=\rho_{0}$, has a unique positive solution $\rho=\Phi(u) \in Z_{3}^{T}$, and we have the a priori estimate

$$
|\rho|_{Z_{3}^{T}} \leq C_{0},
$$

where C_{0} is independent of T, r, u.
For the contraction estimate we use that ($J=[0, T]$)

$$
\left|\Phi\left(u_{1}\right)-\Phi\left(u_{2}\right)\right|_{H_{2}^{1}\left(J ; L_{p}(\Omega)\right) \cap C\left(J ; H_{p}^{1}(\Omega)\right)} \leq C_{1}(T)\left|u_{1}-u_{2}\right|_{Z_{1}^{T}},
$$

for all $\left(u_{i}, c_{i}\right) \in \Sigma_{r}^{T}, i=1,2$, where $C_{1}(T) \rightarrow 0$ as $T \rightarrow 0$ and C_{1} is independent of r.

A weak estimate for Cahn-Hilliard

Recall the fixed point formulation for (CH):

$$
\begin{aligned}
\kappa_{0} \partial_{t} \hat{c}+\nabla \cdot\left(\varepsilon_{0} \nabla \nabla \cdot\left(\varepsilon_{0} \nabla \hat{c}\right)\right) & =F_{2}(u, c, \Phi(u)) \quad(J \times \Omega), \\
\partial_{\nu} \hat{c}=0, \quad \partial_{\nu} \nabla \cdot\left(\varepsilon_{0} \nabla \hat{c}\right) & =\partial_{\nu} h(c, \Phi(u)) \quad(J \times \Gamma), \\
\left.\hat{c}\right|_{t=0} & =c_{0} \quad(\Omega) .
\end{aligned}
$$

Here $h(c, \rho)=\nabla \cdot\left(\left[\varepsilon(\rho, c)-\varepsilon_{0}\right] \nabla c\right)+\rho^{-1} \varepsilon(\rho, c) \nabla \rho \cdot \nabla c-\partial_{c} \psi(\rho, c, \nabla c)$.
Recall $Y_{2}^{T}:=H_{p}^{1 / 2}\left(J ; L_{p}(\Omega)\right) \cap L_{p}\left(J ; H_{p}^{2}(\Omega)\right)$.
For $\left(u_{i}, c_{i}\right) \in \Sigma_{r}^{T}, \rho_{i}=\Phi\left(u_{i}\right), i=1,2$, we can show that

$$
\begin{aligned}
& \left|\widehat{c}_{1}-\hat{c}_{2}\right|_{Y_{2}^{T}} \leq C_{2}\left(\left|h\left(c_{1}, \rho_{1}\right)-h\left(c_{2}, \rho_{2}\right)\right|_{L_{p}\left(L_{p}\right)}+|\Theta|_{H_{p}^{1 / 2}\left(L_{p}\right)}\right. \\
& \left.\quad+|\tilde{\Theta}|_{L_{p}\left(L_{p}\right)}+\left|\gamma_{0}-\gamma_{1}\right|_{C\left(C^{1}\right)}\left|c_{1}-c_{2}\right|_{L_{p}\left(H_{p}^{2}\right)}+T^{1 / 4}\left|\gamma_{1}-\gamma_{2}\right|_{C\left(H_{p}^{1}\right)}\right)
\end{aligned}
$$

where $\gamma_{i}=\gamma\left(\rho_{i}, c_{i}\right), \Theta=\left(\rho_{0}-\rho_{1}\right)\left(c_{1}-c_{2}\right)-\left(\rho_{1}-\rho_{2}\right) c_{2}$, and
$\tilde{\Theta}=c_{1} \rho_{1} u_{1}-c_{2} \rho_{2} u_{2}$.
Pf.: Uses the divergence structure, duality relations, and max. reg. methods.

Final remarks

- The local solution can be extended to a maximally defined solution.
- The main result can be generalized to cover other boundary conditions like the pure slip condition:

$$
u \cdot \nu=0, \quad(\mathcal{I}-\nu \otimes \nu) \mathcal{S} \nu=0 \quad \text { on }[0, T] \times \Gamma .
$$

