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Diffuse interface models

Consider the flow of a binary mixture of macroscopically immiscible, viscous
compressible Newtonian fluids filling a domain 2 C R3.

In classical models: both fluids are separated by a sharp interface I (¢), across
which certain jump conditions are prescribed. Problem: Topological transitions
(e.g. due to droplet formation or coalescence) cannot be described.

This motivated the development of diffuse interface models: replace the sharp
interface by a narrow transition layer across which the fluids may mix. See
Anderson, McFadden, Wheeler (1998)

The following model is discussed in Lowengrub, Truskinovsky (1998), see also
Abels, Feireisl (2008).



Model

M . .
°c; = WJ mass concentration of the fluid j = 1, 2,

M = My + M5 total mass, = c1 + c» = 1,
°p; = % apparent mass density of the fluid y = 1, 2,
e p = p1 + po total density,
e u; velocity of the fluid j = 1, 2.

Mass balance for each component:
8tpj + div (p]u]) = 0.
Adding both equations gives
Orp + div (pu) = 0,

where u Is the mass-averaged velocity given by

pu = piul + pouo.



Let J; be the mass flux of the fluid j relative to the mean velocity w, 1.e.

8tpj + div (p]u) + div J] = 0.

Assume J; + Jo = 0, to ensure conservation of mass.

Let ¢ = ¢1 — ¢co» = 2¢q1 — 1 (order parameter), and J = J{ — Jo = 2J7.
Since p; = pc;, we obtain

Ot (pc) + div (pcu) + divJ = 0,
which, by conservation of mass, is equivalent to
pOrc + pu - Ve 4+ divJ = 0.
Conservation of momentum w.r.t. the mean velocity wu:

Ot(pu) + div (pu ® u) — divT = pg,

here: 7 is the stress tensor and g an external force. Using conservation of
mass we obtain

poru + p(u - V)u — div7T = pg.



Constitutive equations - the mass flux J

Assume that the relative motion of the fluids can be described by a diffusional
model. Introduce the total free energy in the form

F= | ¥(p(@).c(@), Ve(a)) da.
Then the chemical potential i« ("the driving force”) is defined as
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 pde p\dc oVe/)

o

Generalized Fick’s law:

J = —yVu, (v > 0 mobility).

Assume (cf. [LowTru], where 0 < £ = const)

0(pre, V) = p(B(0.0) + 5 20, IVel?).

- 1 1
= p=1e(p, ) + S ee(p, €)|Vel? - S div (p=(p, €)Ve).

— Cahn-Hilliard type equation for c.



Constitutive equations - the stress tensor 7

Following [LowTru] we assume that
T=S5S+7P,
where S (viscous stress tensor) and P (nonviscous contribution) have the form

S =n(p,c) (Vu + VuT) + X(p, c)divuZ,

o o
P=—p°——T—pV
oyt T PV® ey

~ 1
— —p2¢p(p, c)Z — Esp(p, &) p?|Ve|? — peVe ® Ve.

n(p,c), A(p, c) are the viscosity coefficients, m = inEp(p, c) is the pressure,
—pVe ® g—gc the Ericksen’s stress.

These constitutive laws lead to a thermodynamically consistent model. The
total energy is given by

Bt = [ (5 plul?® + p(p,e, V) da.



Mathematical problem

Let J = [0,7] and 2 C R"™ be a bounded domain with C* boundary I".
Consider the (compressible) NSCH-system

poru + p(u - V)u —divS —divP = pg (J x Q),
Op+div(pu) =0 (J x Q),

poc + pu - Ve — div (fy(p, C)V,u) =0 (JxQ),
’LL:O, 8VC:al/,LL:O (JXl_),

ult=0 = ug, clt=0 =co, plt=o=po (2),
where

S =n(p,c) <Vu -+ VuT> + X(p, c)divuZ,

1
P=—-nT— Epzep(p, 0)|Ve|?T — pe(p, c)Ve® Ve,
u=ve(p,c,Ve) — p~ tdiv (6(/0, C)pVC),

- 1 -
¥ =P(pc) + Se(p, IVe|?, m= pPp(p,c).



Literature

e Abels and Feireisl| (2008): Existence of global weak solutions for the NSCH-
model in the case ¢ = %, which corresponds to the free energy

F= [ (p0(p.0) + 5 IVel?) dx.

(see also Anderson, McFadden, Wheeler (1998) for this model, compare with
Lowengrub, Truskinovsky (1998):

~ 1
F = /Q (pzp(p, c) + 56,0|Vc|2) dux.
Problem: energy estimates do not provide any bound for V¢ in vacuum zones
e Abels (2007, 2009): incompressible NSCH-model

e Solonnikov (1976): Existence and uniqgueness of local strong solutions for the
compressible Navier-Stokes equ., here u € HZ}(J; Lp(2)) N Ly(J; Hg(Q))
and p € C1(J; Lp(2)) N C(J; Hy(2)), p > n.

e See also the monographs Feireisl (2004); Novotny, Straskraba (2004).



Setting
We are looking for strong solutions in the L,-setting. Consider first the
equation for cin Ly(J; Lp(£2)):

pOtc + pu - Ve — div (7(,0, c)V,u) = 0,

p=te(p,c) = p~tdiv ((p, c)pVe).
The natural regularity class is

c € Hy(J; Lp(2)) N Lp(J; Hy (S2)).

Problem: third order term of p, i.e. we need at least p € L, (J; HS(Q))

Remark: In the case ep = 1 only p € Ly(J; H7(£2)) is required.



Since p is governed by the hyperbolic equation

Otp + div (pu) = O,

we need u € Ly(J; Hlﬁf(Q; R™)). To obtain this regularity for u, we need to
consider the Navier-Stokes equation in Ly(J; Hg(Q; R™)):

poru + p(u - V)u —divS — divP = pg,
1
P=—-nT— Epzsp(p, O)|Vel|?T — pe(p,c)Ve ® Ve.
Note that
1
c € HE(J; Lp(2)) N Lp(J; Hy (2)) — HE (J; HZ(2)).

Therefore

1
divP ~ 0z;Ve € Hp (J; Lp(S2; R™)) N Lyp(J; HF (S, R™) =: X7,



Taking X1 as the base space for the Navier-Stokes equation one expects that

u € HE(J; Lp(S2; R™)) N H]}(J; Hg(Q; R™)) N Lp(J; H;‘(Q; R™)).

Using this regularity the continuity equation yields

o4 1
p € Hy T 3(J; Ly(Q)) N CH(J; H2(Q)) N C(J; H3(2)).
In fact, 8152,0 = —poh(V-u)+..., and

1
Ou € X1 = 0(V-u) € Hﬁ'(,]; Lp(S2)).



Main result

Theorem: Let 2 C R"™ be a bounded domain with C* boundary I, and let
n, \,7, €, and ¢ be (sufficiently) smooth. Let p > p« := max{4,n}, p # 5,

and assume that
1
() g € HZ(J; Lp(S2; R™) N Lyp(J; HZ (2, R™));

2 4

(i) ug € W;_E(Q), co € W;_E(Q), po € H3(2);

(iii) ug = 0on; —divS(pg, co, ug) — divP(pg, co) = pogli=o on I;
Jyco=0o0onT; ouu(pg,co) =0o0nT,ifp > 5;

(V) (0,20 + X\, 7,€)| p=pg.c=co € (0,00)*in Q; pg > 0in Q.

Then there exists T > 0 such that the NSCH-system has a unique solution

(u,c,p) € Z1 X Z» x Zzon J = [0,T] where

Zy = HJ (J; Ly(6 RY) 1 HL(J; H2(S6R™) 0 Ly(J; B3 R),
Zy = Hy (J; Lp(Q)) N Lyp(J; Hy (),
Z3 = H§+%(J; Lp(£2)) N cl(J; HE(Q)) NC(J; HS(Q)).



Basic ideas of the proof

1. Given pg and v with v = 0 on I, solve the continuity equation (e.g. by the
method of characterictics). «— p = ®(u).

2. Insert p = ®(u) into the equations for « and c.

3. Fixed point formulation for (u, ¢):

podru — divS(pg, co, w) + M (pg, cg)VZe = F1(u,c, ®(u)) (J x ),
koOic + V- (egVV - (egVe)) = Fo(u,c,P(u)) (J x 2),
u=0, Oyc=0, V- -(egVe)=0h(c,P(u)) (JxTI),
ult=0 = uo, clt=0 =co (£2),

where g := €(pg, co), Yo := v(po, co), ko = %. More abstractly,

Li1u + L1oc = F1(u,c, P(u)),
Looc = Fo(u,c,P(u)).



Fixed point argument

Define reference functions @ € Z{O, c € ZQTO by means of

L(a,¢) = F(ug, co, po);
(ﬂ'a 5)|t=0 — (’U,O, CO)'
For T € (0,Tg] and r € (0,7¢] let =} := {(u,c) € Z{ x Z4 : w = 0on
J x T, (u,c)|i=0 = (ug, cg), and |(u, c) — (u, 5)|ZlT><Zg <r}.
Define the mapping A : 1" — Z¥ x Z1 by A(u, c) := (@, ¢) where
L(u,c) = F(u,c, ®(u)),
(4, ¢)|t=0 = (uo, co)-
Show that for sufficiently small 7" and »: (i) A leaves Z,,T iInvariant, (i) A is a
strict contraction in the space Y{! x Y4 (weaker topology!) with
Y] = Hy(J; Ly( R™) N Lp(J; HF (2, RM),
1
Y5 = HP(J; Lp(2)) N Lp(J; HF ().

> lis closed in Y{'' x Y4, so the contraction mapping principle is applicable.



Some auxiliary results

(i) For the Cahn-Hilliard equation we need maximal Ly-regularity (c € Z5) for
the problem

koOrc+ V- (egVV - (egVe)) = f (J x Q),
dce=0, 0,V-(egVe)=¢p (JxTI),
clt=0 =co (£2).
Natural regularity class for boundary data:

1_1 11
pw € Wy P(J; Lp(T)) N Lp(J; W, P(1)).

See e.g. Pruss, Racke, Zheng (2006); Priuss, Wilke (2006); Denk, Hieber,
Priss (2007).



(i) Maximal Ly-regularity and higher regularity with base space X1, i.e.

3
u € Z1 = HF(J; Lp(S;R™) N Hy (J; HE (2, R™)) N Lp(J; Hy (2, R™)),
for the parabolic system

Poatu - diVS(p07 CO)“’) = ('] X Q)a
u=20 (J X F), u|t:O = uQ (Q)

In case of constant coefficients the PDE reads

poOiu — noAu — (Ao +n10)VV - u = f.

Assumptions: pg, ng, 210 + Mg > 0. Symbol of —ngA — (\g + ng) V div:
A(E) = nolél2 4+ (Mg +m0)ERE. For € # 0 the eigenvalues are g, 219+ \o.
— ellipticity in the sense of Denk, Hieber, Priss (2003), (2007). Further, con-
dition (LS) is satisfied. = max. Lp-regularity. See also Solonnikov (1965).

Higher regularity: reduction to model problems (full and half space) by lo-
calization and perturbation arguments, Fourier transform w.r.t. tangential vari-

ables, Newton polygon trace theory natural regularlty class for Dirichlet data:
3 1 1

Wy *(J; Lp(T)) N HA(J; Wp p(l_))ﬂLp(J Wp P(N)).



Estimates for the continuity equation

Let T € (0,Tg], v € (0,70] and (u,c) € L. Thenw = 0o0n [0,7] x I" and

< — U U < U < U :
|u|Zip < |u u|Zip + |u|Zip <r-+ |u|ZiFO <rg-+ |u|ZiFO

Suppose pg € HS(Q), p > ps, po > 0 in €. Then the continuity equation,
together with p|;—g = pg, has a unigue positive solution p = P (u) € Zg,
and we have the a priori estimate

|10|Zg S 007

where Cy Is independent of T', r, .

For the contraction estimate we use that (J = [0, T])

[P (u1) = )11, )noEL Q) S C1(T)|ur — vl 1,

for all (u;,¢;) € L, i = 1,2, where C1(T) — OasT — 0 and Cq is
independent of r.



A weak estimate for Cahn-Hilliard

Recall the fixed point formulation for (CH):
ko Otc + V- (egVV - (egVE)) = Fo(u,c,P(u)) (J x Q),
¢ =0, 0,V-(egVe) =0vh(c,P(u)) (JxTI),
Clt=0 =co (£2).
Here h(c,p) = V- ([e(p, ¢) — 0l Ve) + p~te(p,€)Vp - Ve — 8cp(p, ¢, Ve).
Recall Y := Hy/?(J; Lp(9)) N Lp(J; H2(Q)).

For (u;,¢;) € =1L, p; = ®(u;), s = 1,2, we can show that

21 — Glyr < 02(|h(617P1) = Me2, )l (1) T 1O 2 o

+ 19l + ho—nleenyler = ealp,z) + T Y4y - ’72|0(H]})),

where v; = v(p;, ¢i), © = (po — p1)(c1 — c2) — (p1 — p2)co, and
© = c1prul — copou.

Pf.. Uses the divergence structure, duality relations, and max. reg. methods.



Final remarks

e The local solution can be extended to a maximally defined solution.

e The main result can be generalized to cover other boundary conditions
like the pure slip condition:

u-v=0 (Z—-v®v)Sy=0 on[0,T]xT.



