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The model under consideration (1/2)

I Ω = Ω1(t) ∪ Γ(t) ∪ Ω2(t) ⊂ Rn+1 bounded smooth domain,
Γ(t) smooth interface, νΓ unit normal, VΓ normal velocity.

I Velocity u and pressure π satisfy the incompressible
Navier-Stokes equations in Ω \ Γ(t):

div u = 0, ∂t(ρu) + div(ρu ⊗ u − S) = 0,

S = 2µD − πI stress tensor, D = 1
2

(∇u +∇uT ),
ρ1,2 > 0 constant densities in Ω1,2,
µ1,2 > 0 constant viscosities in Ω1,2.

I No interfacial mass and no phase transition on Γ:

[[u]] := u2|Γ − u1|Γ = 0, VΓ = u · νΓ, uΓ = u.



The model under consideration (2/2)

I Interfacial stress balance: −[[S ]]νΓ = divΓ SΓ,
surface stress tensor SΓ de�ned by a constitutive equation:

I Surface tension: SΓ = σPΓ, σ > 0 constant surface tension,
PΓ = I − ν ⊗ ν tangential projection, κΓ curvature.

⇒ −[[S ]]νΓ = σκΓνΓ (Laplace-Young law).

I This system was investigated by Tanaka (1996), Shibata &
Shimizu (2007-2009), Prüss & Simonett (2009) and Köhne,
Prüss & Wilke (2010).

I Surface tension and surface viscosity (Boussinesq-Scriven law):

SΓ = σPΓ + [(λs − µs) divΓ u]PΓ + 2µsDΓ,

DΓ = 1
2
PΓ(∇Γu +∇Γu

T )PΓ.

λs > 0 dilatational surface viscosity,
µs > 0 surface shear viscosity, λs > µs ,
divΓ surface divergence, ∇Γ surface gradient.



The nonlinear problem

Goal: Find solution (u, π, Γ) of the nonlinear problem

∂t(ρu) + div(ρu ⊗ u − S) = 0, t > 0, x ∈ Ω \ Γ(t),

div u = 0 t > 0, x ∈ Ω \ Γ(t),

− divΓ SΓ − [[S ]]νΓ = 0, t > 0, x ∈ Γ(t),

[[u]] = 0, t > 0, x ∈ Γ(t),

VΓ − u · νΓ = 0, t > 0, x ∈ Γ(t),

u = 0, t > 0, x ∈ ∂Ω,

with initial conditions Γ(0) = Γ0, u(0) = u0 in Ω \ Γ0.
This model was formally analyzed by Bothe & Prüss (2008). In
particular, the linearization of the system and linear stability of
equilibria are known.



The linearization at a state with zero velocity

Notation: J = [0,T ], Γ = Rn × {0}, Ṙ = R \ {0}, u = (v ,w), ∆Γ

Laplace-Beltrami operator.

ρ∂tu − µ∆u +∇π = fu, t ∈ J, x ∈ Rn, y ∈ Ṙ,
div u = fd , t ∈ J, x ∈ Rn, y ∈ Ṙ,

−PΓ divΓ SΓ − PΓ[[Sν]] = gv , t ∈ J, x ∈ Rn,

−σ∆Γh − ν · [[Sν]] = gw , t ∈ J, x ∈ Rn,

[[u]] = 0, t ∈ J, x ∈ Rn,

∂th − w |Γ = gh, t ∈ J, x ∈ Rn,

u(0) = u0, x ∈ Rn, y ∈ Ṙ,
h(0) = h0, x ∈ Rn.

Observe: PΓ divΓ SΓ = µs∆Γv |Γ + λs∇Γ divΓ v |Γ is of second order!
⇒ We expect more spatial regularity for v |Γ.



The result: Maximal regularity

There exist Banach spaces E and F such that the Stokes problem
(SP) admits a unique solution (u, π, h) ∈ E if and only if
(fu, fd , gv , gw , gh, u0, h0) ∈ F.
The solution operator S : F→ E is an isomorphism.

ρ∂tu − µ∆u +∇π = fu, t ∈ J, x ∈ Rn, y ∈ Ṙ,
div u = fd , t ∈ J, x ∈ Rn, y ∈ Ṙ,

−PΓ divΓ SΓ − PΓ[[Sν]] = gv , t ∈ J, x ∈ Rn,

−σ∆Γh − ν · [[Sν]] = gw , t ∈ J, x ∈ Rn,

[[u]] = 0, t ∈ J, x ∈ Rn,

∂th − w |Γ = gh, t ∈ J, x ∈ Rn,

u(0) = u0, x ∈ Rn, y ∈ Ṙ,
h(0) = h0, x ∈ Rn.

(SP)



Regularity of the solution

Let p ∈ (1,∞) \ {3/2, 3}. The solution space E consists of all
functions u = (v ,w), π such that [[u]] = 0 on Rn × {0} and

u ∈ Eu := H1
p(J; Lp(Rn+1))n+1 ∩ Lp(J;H2

p(Ṙn+1))n+1,

v |Γ ∈ Ev := B
1/2−1/2p
pp (J;H2

p(Rn))n ∩ Lp(J;B
3−1/p
pp (Rn))n,

w |Γ ∈ Ew := H1
p(J; Ḃ

−1/p
pp (Rn)),

π ∈ Eπ := Lp(J; Ḣ1
p(Ṙn+1)),

h ∈ Eh := B
2−1/2p
pp (J; Lp(Rn)) ∩ H1

p(J;B
2−1/p
pp (Rn))

∩ Lp(J;B
3−1/p
pp (Rn)).

E has the norm of Eu × Ev × Ew × Eπ × Eh.



Compatibility conditions
Each solution (u, π, h) ∈ E to (SP) satis�es

[[u0]] = 0, (all p),

div u0 = fd (0), (all p),

−PΓ divΓ SΓ(v0)− PΓ[[S(u0)ν]] = gv (0), (p > 3).



ρ∂tu − µ∆u +∇π = fu, t ∈ J, x ∈ Rn, y ∈ Ṙ,
div u = fd , t ∈ J, x ∈ Rn, y ∈ Ṙ,

−PΓ divΓ SΓ − PΓ[[Sν]] = gv , t ∈ J, x ∈ Rn,

−σ∆Γh − ν · [[Sν]] = gw , t ∈ J, x ∈ Rn,

[[u]] = 0, t ∈ J, x ∈ Rn,

∂th − w |Γ = gh, t ∈ J, x ∈ Rn,

u(0) = u0, x ∈ Rn, y ∈ Ṙ,
h(0) = h0, x ∈ Rn.

(SP)



Regularity of the data

The space of data F consists of all data = (fu, fd , gv , gw , gh, u0, h0),
u0 = (v0,w0), which satisfy the compatibility conditions and

fu ∈ Fu := Lp(J × Rn+1)n+1,

fd ∈ Fd := H1
p(J; Ḣ−1p (Ṙn+1)) ∩ Lp(J;H1

p(Ṙn+1)),

gv ∈ Gv := B
1/2−1/2p
pp (J; Lp(Rn))n ∩ Lp(J;B

1−1/p
pp (Rn))n,

gw ∈ Gw := Lp(J; Ḃ
1−1/p
pp (Rn)),

gh ∈ Gh := B
1−1/2p
pp (J; Lp(Rn))n ∩ Lp(J;B

2−1/p
pp (Rn))n,

u0 ∈ trt Eu = B
2−2/p
pp (Ṙn+1)n+1,

h0 ∈ trt Eh = B
3−2/p
pp (Rn),

v0|Γ ∈ trt Ev =

{
B

4−6/p
pp (Rn)n if p ∈ (3/2, 3),

B
3−3/p
pp (Rn)n if p ∈ (3,∞).

F has the norm of the corresponding product space.



Strategy of the proof

For given data ∈ F we construct bounded linear operators

Si : F→ E, data 7→ (ui , πi , hi ),

such that (ui , πi , hi ) solve auxiliary problems (Pi ) and
(u, π, h) =

∑
i (ui , πi , hi ) solves (SP).

(P1) Parabolic problem: Only fu, u0, h0 6= 0.

(P2) Divergence condition: Only fd 6= 0.

(P3) Stress condition: Only gv , gw 6= 0.

(P4) Free boundary condition: Only gh 6= 0.



(P3) Stress condition (1/2)
Goal: Solve the "Neumann" problem AN(u, π) = (gv , gw ), i. e.

ρ∂tu − µ∆u +∇π = 0, t ∈ J, x ∈ Rn, y ∈ Ṙ,
div u = 0, t ∈ J, x ∈ Rn, y ∈ Ṙ,

− divΓ SΓ − PΓ[[Sν]] = gv , t ∈ J, x ∈ Rn,

−ν · [[Sν]] = gw , t ∈ J, x ∈ Rn,

[[u]] = 0, t ∈ J, x ∈ Rn,

u(0) = 0, x ∈ Rn, y ∈ Ṙ.

(P3)

Consider also the Dirichlet problem AD(u, π) = (gv , gw ), i. e.
ρ∂tu − µ∆u +∇π = 0, t ∈ J, x ∈ Rn, y ∈ Ṙ,

div u = 0, t ∈ J, x ∈ Rn, y ∈ Ṙ,
u|Γ = ub, t ∈ J, x ∈ Rn,

u(0) = 0, x ∈ Rn, y ∈ Ṙ,

(P3′)



(P3) Stress condition (2/2)

I The Dirichlet problem has maximal regularity, i. e.
AD : (u, π) 7→ ub is an isomorphism [Prüss, Simonett 2009].

I De�ne Dirichlet-Neumann operator N by

N = ANA
−1
D : ub 7→ (gv , gw ).

I Show that N is an isomorphism:
I Fourier-Laplace transform  symbol (nij)(λ, |ξ|), (λ, |ξ| ∈ C).
I Invertibility of n: [Bothe, Prüss 2008].
I Asymptotic behaviour of n, n−1 for |λ| → 0,∞, |ξ| → 0,∞.
I Joint functional calculus: N = n(∂t ,

√
−∆).

I Then S3 := A−1N = A−1D N
−1 : (gv , gw ) 7→ (u3, π3) bounded.



(P4) Free boundary condition

I Free boundary condition: ∂th + w |Γ = gh.

I Apply Dirichlet-Neumann operator to (gv , gw ) = (0, σ∆Γh).

⇒ w |Γ = (N−1)n+1,n+1 σ∆Γh.

I De�ne the boundary operator Ah by

Ah = ∂t + (N−1)n+1,n+1σ∆Γ : h 7→ gh.

I Prove that Ah is an isomorphism:
I Fourier-Laplace transform  boundary symbol s(λ, |ξ|).
I Invertibility the boundary symbol:

c(|λ|+ |τ |) ≤ s(λ, τ) ≤ C (|λ|+ |τ |).

I Joint functional calculus: Ah = s(∂t ,
√
−∆).

I Then S4 : (gh) 7→ (u4, π4, h4) bounded.


