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The model under consideration (1/2)

> Q= Qi(t) UT(t) UQ(t) € R™1 bounded smooth domain,
(t) smooth interface, vr unit normal, Vi normal velocity.

» Velocity v and pressure 7 satisfy the incompressible
Navier-Stokes equations in Q \ ['(¢):

divu=0, 0(pu)+divipu®@u—S5)=0,

S =2uD — 7wl stress tensor, D = %(Vu +Vul),
p1,2 > 0 constant densities in 5,
1,2 > 0 constant viscosities in €y 5.

» No interfacial mass and no phase transition on I

[U] = wlr—wilr=0, Vir=u-vr, ur=u.



The model under consideration (2/2)
> Interfacial stress balance: —[S]vr = divr Sr,
surface stress tensor Sr defined by a constitutive equation:

» Surface tension: Sr = oPr, o0 > 0 constant surface tension,
Pr =1 — v ® v tangential projection, kr curvature.

=  —[Slvr = okrur (Laplace-Young law).

» This system was investigated by Tanaka (1996), Shibata &
Shimizu (2007-2009), Priiss & Simonett (2009) and Kéhne,
Priiss & Wilke (2010).

» Surface tension and surface viscosity (Boussinesq-Scriven law):
Sr=o0Pr + [(As — ps) divr u]Pr + 2usDr,
Dr = 2Pr(Vru+ Vru')Pr.
As > 0 dilatational surface viscosity,

1s > 0 surface shear viscosity, As > us,
divr surface divergence, Vr surface gradient.



The nonlinear problem

Goal: Find solution (u,m,T") of the nonlinear problem

I¢(pu) +div(pu @ u—S) =0, t>0, xeQ\TI(p),
divu=0 t>0, xeQ\I(p),

—divr Sr = [S]vr =0, t>0, xel(t),

[u] =0, t>0, xel(t),

Vi—u-1r =0, t>0, xel(t),

u=0, t>0, xe€09,

with initial conditions I'(0) = g, u(0) = wg in 2\ Ty.

This model was formally analyzed by Bothe & Priiss (2008). In
particular, the linearization of the system and linear stability of
equilibria are known.



The linearization at a state with zero velocity

Notation: J = [0, T], T =R" x {0}, R=R\ {0}, u = (v,w), Ar
Laplace-Beltrami operator.

pOru — pAu+ Vo =1, tGJ,XER”,yER,
dvu=1f, teJ, xeR" yeR,
—Prdivr Sr — Pr[Sv] = g», teJ, xeR",
—oArh—v-[Sv] =gw, t€J, xeR"
[u] =0, teJ, xeR",
Ooth—wlr=gp ted, xeR",
u(0) = wo, x €R", y R,
\ h(0) = ho, x € R,

Observe: Prdivr Sr = pusArv|r + As Vi divr v|r is of second order!
= We expect more spatial regularity for v/|r.



The result: Maximal regularity

There exist Banach spaces E and F such that the Stokes problem
(SP) admits a unique solution (u,, h) € E if and only if

(fua fdng7gW7gh7 up, hO) eF.
The solution operator S : F — E is an isomorphism.

(SP)

potu — pAu + V= 1y,
divu = fy,

—Prdivr St — Pr[Sv] = gv,
—oArh—v - [Sv] = gw,

|IU]] =0,
ath - W‘r = &h;
u(0) = wp,

h(0) = ho,

teJ, xeR" yeR,
teJ,xeR" yeR,
ted, xeR",
ted, xeR",
teJ, xeR",
ted, xeR",
x €R”, y R,
x € R,



Regularity of the solution

Let p € (1,00) \ {3/2,3}. The solution space EE consists of all
functions u = (v, w), 7 such that [u] =0 on R” x {0} and
u € By = HL(J; Ly(R™T) ™ A Ly(J; HA(RMTE))"HL,
vIr € By = Bpp® P (U; H2(RM) N Ly(J; Bay /P (R™)",
wlr €, = H;(J; B /P (R™)),
™€ By = Lp(J; HY(R™Y)),
h € By = Bay /*P(J; Lp(R")) N HA(J; B /P (R))
N Lp(J; B YP(R™)).

E has the norm of E, x E, x E,, x E; x [Ej,.



Compatibility conditions
Each solution (u, 7, h) € E to (SP) satisfies

[uo] =0, (all p),
divug = fd(O), (a” P),
—Prdivr Sr(vo) — Pr[S(uw)v] = &v(0), (p > 3).

poru —pAu+Vr=1£, tel xecR" yeR,
dvu="~fy, tel xeR" yeR,
—Prdivr 5r — Pr[Sv] =g, teJ, xeR",
—oArh—v-[Sv]=gw, teJ, xeR"
[u] =0, ted xeR",
Ooth—wlr=gp ted, xeR",
u(0) = wo, x €R", y e R,
h(0) = ho, x € R

(SP)




Regularity of the data

The space of data F consists of all data = (7, f4, gv, 8w, &n, to, ho)
up = (vo, wp), which satisfy the compatibility conditions and

fu € Ty = Lp(J x R

fy € Fy := HL(J; HyH(R™1)) N Ly(J; HE(R™HL)),
g0 € Gy 1= Bp)™ /PP (J; Lp(R™)" 1 Lp(J; Bay /P (RT))",

8w € G 1= Lp(J: Bpp /P(R)),
&h € Gy 1= Bpp /2P(J; Lp(R™)" 1 Lp(J; By /P (R))",
up € tre Eu — B2 2/17(]Rn+1)n+17

ho € tre Ep = B35 2/P(R™),

B“ S/PRMT i pe (3/2,3),
vlr € treEy =3
B2 *P(R

SPRMT i pe (3,00).

[F has the norm of the corresponding product space



Strategy of the proof

For given data € IF we construct bounded linear operators
Si:F—E, datar— (U,‘,7T,',h,'),

such that (u;, 7, h;) solve auxiliary problems (P;) and

(u,m, h) =>;(uj,m;, h;) solves (SP).

(P1) Parabolic problem: Only f,, ug, hg # 0.

(P») Divergence condition: Only fy # 0.

(P3) Stress condition: Only gy, gw # 0.

(P4) Free boundary condition: Only g, # 0.



(P3) Stress condition (1/2)

Goal: Solve the "Neumann" problem Ay(u,7) = (gv, 8w), i. €.

poru — pAu+Vr =0, ted xeR" yeR,

dvu=0 teJ xeR" yeR,
—divr S — Pr[Sv] =gv, teJ, xeR",
—v-[Sv]=gw, teJ, xeR",
[u] =0, ted xeR",

u(0) =0, xeR", yeR.

Consider also the Dirichlet problem Ap(u,7) = (gv,&w). i. e.

pOru — pAu+Vr =0, ted xeR" yeR,
dvu=0, teJ xeR" yeR,
ulp =up, ted, xeR"
u(0) =0, x ER", y €R,

(Ps)



(P3) Stress condition (2/2)

» The Dirichlet problem has maximal regularity, i. e.
Ap : (u, ) — up is an isomorphism [Priiss, Simonett 2009].

» Define Dirichlet-Neumann operator N by
N = ANAR" : up = (8v: 8w)-

» Show that N\ is an isomorphism:
» Fourier-Laplace transform ~~ symbol (n;)(X, [¢]), (A, €] € C).
» Invertibility of n: [Bothe, Priiss 2008].
» Asymptotic behaviour of n, n=! for |A\| — 0,00, |£] — 0, c0.
» Joint functional calculus: NV = n(0;, vV/—A).

> Then S3:= Ay = AS'N ™1 (gv, gw) — (u3,73) bounded.



(P4) Free boundary condition

v

Free boundary condition: 0:h + w|r = gp.

v

Apply Dirichlet-Neumann operator to (gv, gw) = (0,0 Arh).

= wlr=N""at101 oArh

v

Define the boundary operator Aj by

Ah = 81’ + (N_l)n+]_7n+]_O-Ar . h — gh

v

Prove that Ap is an isomorphism:

» Fourier-Laplace transform ~~ boundary symbol s(}, |£]).
» Invertibility the boundary symbol:

c([Al+7]) < (A7) < C(IA[+ 7))

» Joint functional calculus: A, = s(0r, v —A).
Then Sy : (gr) — (ua, 7a, ha) bounded.

v



