Spectral Properties of the Stokes and Oseen Operator with Rotation Effect in L^q -spaces

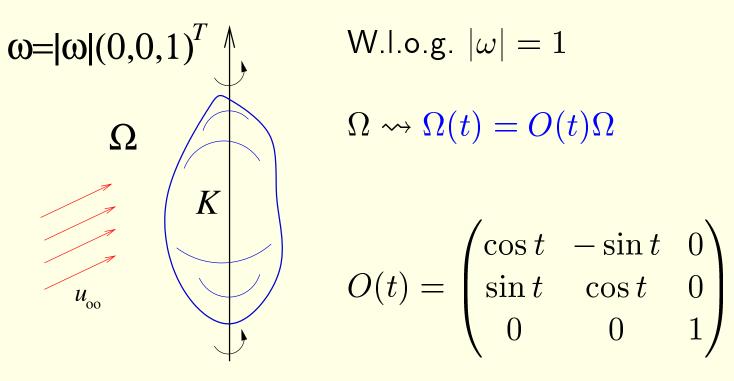
R. Farwig (TU Darmstadt) &

Š. Nečasová, J. Neustupa (Academy of Sciences, Prague)

International Workshop on Mathematical Fluid Dynamics Waseda University, Tokyo, March 8-16, 2010

Spectral Properties of the Stokes and Oseen Operator with Rotation Effect in L^q -spaces

R. Farwig (TU Darmstadt) & Š. Nečasová, J. Neustupa (Academy of Sciences, Prague) International Workshop on Mathematical Fluid Dynamics Waseda University, Tokyo, March 8-16, 2010



Navier-Stokes Equations

$$v_t - \nu \Delta v + v \cdot \nabla v + \nabla q = f \quad \text{in } \Omega(t)$$

$$\operatorname{div} v = 0 \quad \text{in } \Omega(t)$$

$$v = \omega \wedge y \quad \text{on } \partial \Omega(t)$$

$$v \to u_{\infty} \quad \text{at } \infty$$

$$v(0) = a \quad \text{at } t = 0$$

Main Problem: Time-dependent domain $\Omega(t)$

TU Darmstadt FB Mathematik

Global Coordinate Transformation

T. Hishida: $x = O^{T}(t) y, u(x,t) = O^{T}(t)(v(y,t) - u_{\infty})$

\Rightarrow modified Navier-Stokes system

$$\begin{aligned} u_t - \nu \Delta u + u \cdot \nabla u - (O^T(t)u_\infty) \cdot \nabla u - \\ (\omega \wedge x) \cdot \nabla u + \omega \wedge u + \nabla p &= f & \text{in } \Omega \times (0, \infty) \\ \text{div } u &= 0 & \text{in } \Omega \times (0, \infty) \\ u &\to 0 & \text{at } \infty \end{aligned}$$

References

Hishida: Semigroup theory in L^2_{σ} , *non-analytic* C^0 -semigroup **Geissert, Heck, Hieber** L^q-semigroup theory **Galdi, Galdi-Silvestre, Galdi-Kyed**: Strong L^2 -solutions, stability, PR-solutions, decay estimates, wake behaviour Hishida-Shibata: Stability, Oseen case, Oseen semigroup **Hansel**: Oseen case when u_{∞} not parallel to ω **F.– Hishida – D. Müller**: L^q –estimates, stationary case, $u_{\infty} = 0$ **F.–Neustupa 2007**: Spectrum in L^2 (Stokes and Oseen) **F.–Nečasová–Neustupa 2009**: Spectrum in L^q (Stokes and Oseen)

Linearize, replace u_t by λu to get the spectral problem on Ω :

$$\lambda u - \Delta u + k \partial_3 u - (\omega \wedge x) \cdot \nabla u + \omega \wedge u + \nabla p = f$$

div $u = 0$
 $u = 0 \text{ on } \partial \Omega$

Linearize, replace u_t by λu to get the spectral problem on Ω :

$$\lambda u - \Delta u + k \partial_3 u - (\omega \wedge x) \cdot \nabla u + \omega \wedge u + \nabla p = f$$

div $u = 0$
 $u = 0 \text{ on } \partial \Omega$

Apply Helmholtz projection P on L^q , let $A_\omega = A_{q,\omega}$ be defined by

$$\mathcal{D}(A_{\omega}) = \{ u \in W^{2,q} \cap W_0^{1,q} \cap L^q_{\sigma} : (\omega \wedge x) \cdot \nabla u \in L^q \}.$$

 $A_{\omega}u = P(-\Delta u + k\partial_{3}u - (\omega \wedge x) \cdot \nabla u + \omega \wedge u)$

For $f \in L^q_{\sigma}(\Omega)$ and $\lambda \in \mathbb{C}$ consider the resolvent problem

$$\lambda u + A_{\omega} u = f$$
$$\operatorname{div} u = 0$$
$$u = 0 \text{ on } \partial \Omega$$

For $f \in L^q_{\sigma}(\Omega)$ and $\lambda \in \mathbb{C}$ consider the resolvent problem

$$Au + A_{\omega}u = f$$

 $\operatorname{div} u = 0$
 $u = 0 \text{ on } \partial \Omega$

Question 1 Determine $\sigma(-A_{\omega})$ for all $1 < q < \infty$, k = 0 (Stokes case) and $k \neq 0$ (Oseen case)

For $f \in L^q_{\sigma}(\Omega)$ and $\lambda \in \mathbb{C}$ consider the resolvent problem

$$Au + A_{\omega}u = f$$

 $\operatorname{div} u = 0$
 $u = 0 \text{ on } \partial \Omega$

Question 1 Determine $\sigma(-A_{\omega})$ for all $1 < q < \infty$, k = 0 (Stokes case) and $k \neq 0$ (Oseen case)

Question 2 Determine the type of $\sigma(-A_{\omega})$ for all $1 < q < \infty$

For $f \in L^q_{\sigma}(\Omega)$ and $\lambda \in \mathbb{C}$ consider the resolvent problem

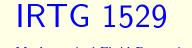
$$\lambda u + A_{\omega} u = f$$

 $\operatorname{div} u = 0$
 $u = 0 \text{ on } \partial \Omega$

Question 1 Determine $\sigma(-A_{\omega})$ for all $1 < q < \infty$, k = 0 (Stokes case) and $k \neq 0$ (Oseen case)

Question 2 Determine the type of $\sigma(-A_{\omega})$ for all $1 < q < \infty$ Recall: $-A_{\omega}$ generates a C^0 -semigroup which is not analytic! (k = 0: Hishida 1999, Geissert, Heck, Hieber 2006)

TU Darmstadt FB Mathematik



The Case \mathbb{R}^3

Use cylindrical coordinates in x-space and in Fourier space \Rightarrow explicit solution (k = 0)

$$\hat{u}(\xi) = \int_0^\infty e^{-(\lambda+|\xi|^2)t} \hat{f}(O(t)\xi) dt = \frac{1}{D(\xi)} \int_0^{2\pi} e^{-(\lambda+|\xi|^2)t} \hat{f}(O(t)\xi) dt ,$$

where

$$D(\xi) = 1 - e^{-2\pi(\lambda + |\xi|^2)}$$

The Case \mathbb{R}^3

Use cylindrical coordinates in x-space and in Fourier space \Rightarrow explicit solution (k = 0)

$$\hat{u}(\xi) = \int_0^\infty e^{-(\lambda+|\xi|^2)t} \hat{f}(O(t)\xi) dt$$

= $\frac{1}{D(\xi)} \int_0^{2\pi} e^{-(\lambda+|\xi|^2)t} \hat{f}(O(t)\xi) dt$

where

$$D(\xi) = 1 - e^{-2\pi(\lambda + |\xi|^2)}$$

Note:

 $D(\xi) \neq 0 \ \forall \xi \quad \Leftrightarrow \quad \operatorname{Re} \lambda > 0 \ \text{ or } \ \operatorname{Re} \lambda \leq 0, \ \operatorname{Im} \lambda \notin \mathbb{Z}$ $\Leftrightarrow \quad \lambda \notin \mathcal{H}_{\omega} = \bigcup_{k \in \mathbb{Z}} \left((-\infty, 0] - ik \right)$

Lemma 1 (N-F 2007, N-N-F 2007) Let $1 < q < \infty$

•
$$\lambda \notin \mathcal{H}_{\omega} \Rightarrow \lambda \in \rho(-A_{\omega})$$

•
$$(A_{q,\omega})^* = A_{q',-\omega}, \quad \mathcal{D}((A_{q,\omega})^*) = \mathcal{D}(A_{q',\omega})$$

• $\sigma(-A_{\omega}) = \mathcal{H}_{\omega}$

Lemma 1 (N-F 2007, N-N-F 2007) Let $1 < q < \infty$

•
$$\lambda \notin \mathcal{H}_{\omega} \Rightarrow \lambda \in \rho(-A_{\omega})$$

•
$$(A_{q,\omega})^* = A_{q',-\omega}, \quad \mathcal{D}((A_{q,\omega})^*) = \mathcal{D}(A_{q',\omega})$$

•
$$\sigma(-A_{\omega}) = \mathcal{H}_{\omega} = \sigma_{ess}(-A_{\omega})$$

•
$$q = 2, \ \Omega = \mathbb{R}^3 \implies \sigma(-A_\omega) = \mathcal{H}_\omega = \sigma_c(-A_\omega)$$

Proof: First assertion: Multiplier theory for \mathbb{R}^3

Question: What type of spectrum do we have?

Prove for $\Omega = \mathbb{R}^3$ that

$$\sigma(-A_{\omega}) = \sigma_c(-A_{\omega}) = \mathcal{H}_{\omega} \quad \text{for all} \quad q \in (1, \infty)$$

Prove for $\Omega = \mathbb{R}^3$ that

$$\sigma(-A_{\omega}) = \sigma_c(-A_{\omega}) = \mathcal{H}_{\omega} \text{ for all } q \in (1,\infty)$$

Theorem 1 (N-N-F 2009) Consider $\Omega = \mathbb{R}^n$, $1 < q < \infty$

• $\sigma(\Delta) = \sigma_{ess}(\Delta) = (-\infty, 0]$ and $0 \in \sigma_c(\Delta)$

- $\sigma(\Delta) = \sigma_{ess}(\Delta) = (-\infty, 0]$ and $0 \in \sigma_c(\Delta)$
- for $\lambda \in \mathcal{H}_{\omega}$ the range $\mathcal{R}(\lambda \Delta)$ is not closed

- $\sigma(\Delta) = \sigma_{ess}(\Delta) = (-\infty, 0]$ and $0 \in \sigma_c(\Delta)$
- for $\lambda \in \mathcal{H}_{\omega}$ the range $\mathcal{R}(\lambda \Delta)$ is not closed

•
$$(-\infty, 0) \subset \begin{cases} \sigma_r(\Delta), & 1 < q < \frac{2n}{n+1} \\ \sigma_c(\Delta), & \frac{2n}{n+1} \le q \le \frac{2n}{n-1} \\ \sigma_p(\Delta), & \frac{2n}{n-1} < q \end{cases}$$
 $(\frac{3}{2} \le q \le 3, n = 3)$

- $\sigma(\Delta) = \sigma_{ess}(\Delta) = (-\infty, 0]$ and $0 \in \sigma_c(\Delta)$
- for $\lambda \in \mathcal{H}_{\omega}$ the range $\mathcal{R}(\lambda \Delta)$ is not closed

•
$$(-\infty, 0) \subset \begin{cases} \sigma_r(\Delta), & 1 < q < \frac{2n}{n+1} \\ \sigma_c(\Delta), & \frac{2n}{n+1} \le q \le \frac{2n}{n-1} \\ \sigma_p(\Delta), & \frac{2n}{n-1} < q \end{cases}$$
 $(\frac{3}{2} \le q \le 3, n = 3)$

- $\lambda \in \sigma_p(\Delta) \Rrightarrow \operatorname{mult}(\lambda) = \infty$
- $\lambda \in \sigma_r(\Delta) \Rightarrow \operatorname{codim} \mathcal{R}(\lambda \Delta) = \infty$

- $\sigma(\Delta) = \sigma_{ess}(\Delta) = (-\infty, 0]$ and $0 \in \sigma_c(\Delta)$
- for $\lambda \in \mathcal{H}_{\omega}$ the range $\mathcal{R}(\lambda \Delta)$ is not closed

•
$$(-\infty, 0) \subset \begin{cases} \sigma_r(\Delta), & 1 < q < \frac{2n}{n+1} \\ \sigma_c(\Delta), & \frac{2n}{n+1} \le q \le \frac{2n}{n-1} \\ \sigma_p(\Delta), & \frac{2n}{n-1} < q \end{cases}$$
 $(\frac{3}{2} \le q \le 3, n = 3)$

- $\lambda \in \sigma_p(\Delta) \Longrightarrow \operatorname{mult}(\lambda) = \infty$
- $\lambda \in \sigma_r(\Delta) \Rightarrow \operatorname{codim} \mathcal{R}(\lambda \Delta) = \infty$
- Same result for the Stokes operator $-A_0$ ($\omega = 0$) and for $-A_\omega$ (with the set \mathcal{H}_ω instead of $(-\infty, 0]$)

Spectrum in $L^q(\Omega)$

Theorem 2 (N-N-F 2009) Consider an exterior domain $\Omega \subset \mathbb{R}^3$, $1 < q < \infty$

- $\sigma_{ess}(-A_{\omega}) = \mathcal{H}_{\omega}$
- Ω axially symmetric $\Rightarrow \sigma(-A_{\omega}) = \sigma_{ess}(-A_{\omega}) = \mathcal{H}_{\omega}$

Spectrum in $L^q(\Omega)$

Theorem 2 (N-N-F 2009) Consider an exterior domain $\Omega \subset \mathbb{R}^3$, $1 < q < \infty$

- $\sigma_{ess}(-A_{\omega}) = \mathcal{H}_{\omega}$
- Ω axially symmetric $\Rightarrow \sigma(-A_{\omega}) = \sigma_{ess}(-A_{\omega}) = \mathcal{H}_{\omega}$
- Ω not axially symmetric $\Rightarrow \sigma(-A_{\omega}) \setminus \mathcal{H}_{\omega}$ may contain isolated eigenvalues of finite multiplicities in the open left half plane
- Such eigenvalues, if they do exist, are independent of $q \in (1, \infty)$, their multiplicity is independent of q, and the corresponding eigenfunctions lie in $\bigcap_{1 < q < \infty} \mathcal{D}(A_{q,\omega})$

First Ideas

• Reduce $\lambda \in \mathcal{H}_{\omega}$ with $\operatorname{Im} \lambda = k$, $k \in \mathbb{Z}$, to k = 0:

$$(\lambda + A_{\omega})(iR'_1 + R'_2)^k = (iR'_1 + R'_2)^k(\lambda + ik + A_{\omega})$$

with the partial Riesz transforms $R_1', R_2' \Rrightarrow (iR_1' + R_2')^k \sim e^{-ik\varphi}$

First Ideas

• Reduce $\lambda \in \mathcal{H}_{\omega}$ with $\operatorname{Im} \lambda = k$, $k \in \mathbb{Z}$, to k = 0:

$$(\lambda + A_{\omega})(iR'_1 + R'_2)^k = (iR'_1 + R'_2)^k(\lambda + ik + A_{\omega})$$

with the partial Riesz transforms $R'_1, R'_2 \Rightarrow (iR'_1 + R'_2)^k \sim e^{-ik\varphi}$

• If $1 < q \leq 2$ and $\lambda < 0$, then $\lambda \notin \sigma_p$. By analogy, $\lambda \notin \sigma_r$ for $q \geq 2$ *Proof*: Assume $(\lambda + |\xi|^2)\hat{u} = 0$. Since $q \leq 2$, $\hat{u} \in L^{q'}(\mathbb{R}^n)$ $\Rightarrow \hat{u}(\xi) = 0$ a.e. $\Rightarrow u = 0$.

First Ideas

• Reduce $\lambda \in \mathcal{H}_{\omega}$ with $\operatorname{Im} \lambda = k$, $k \in \mathbb{Z}$, to k = 0:

$$(\lambda + A_{\omega})(iR'_1 + R'_2)^k = (iR'_1 + R'_2)^k(\lambda + ik + A_{\omega})$$

with the partial Riesz transforms $R'_1, R'_2 \Rightarrow (iR'_1 + R'_2)^k \sim e^{-ik\varphi}$

- If $1 < q \leq 2$ and $\lambda < 0$, then $\lambda \notin \sigma_p$. By analogy, $\lambda \notin \sigma_r$ for $q \geq 2$ *Proof*: Assume $(\lambda + |\xi|^2)\hat{u} = 0$. Since $q \leq 2$, $\hat{u} \in L^{q'}(\mathbb{R}^n)$ $\Rightarrow \hat{u}(\xi) = 0$ a.e. $\Rightarrow u = 0$.
- If $1 < q \leq 2$ and $\lambda < 0$, then $\lambda \Delta$ is not surjective *Proof*: Assume $\lambda = -1$. Choose $\hat{f} \in C_0^{\infty}$ equal to 1 near the unit surface $|\xi|^2 = 1$ and let $(-1 - \Delta)u = f$ $\Rightarrow (-1 + |\xi|^2)\hat{u} = \hat{f}$ (in $L^{q'}$) $\Rightarrow |\hat{u}(\xi)| \geq \frac{1}{2(1 - |\xi|)}$ for $|\xi| \sim 1 \Rightarrow \hat{u} \notin L^{q'}$

Eigenvalues

Let $\hat{j}_n = \chi_{\partial B_1(0)} \Longrightarrow (-1 + |\xi|^2) \hat{j}_n = 0$, $(-1 - \Delta) j_n = 0 \Longrightarrow j_n(x) = cr^{(2-n)/2} J_{(n-2)/2}(r)$ with the Bessel function

$$J_{\mu}(x) = \sum_{m=0}^{\infty} (-1)^m \frac{(r/2)^{(\mu+m)}}{m! \,\Gamma(\mu+m+1)}$$

Example: $n = 3 \Rightarrow j_3(x) = c \frac{\sin r}{r}$

-1 is eigenvalue $\Leftrightarrow j_n \in L^q(\mathbb{R}^n) \Leftrightarrow q > \frac{2n}{n-1}$

Eigenvalues

Let $\hat{j}_n = \chi_{\partial B_1(0)} \Longrightarrow (-1 + |\xi|^2) \hat{j}_n = 0$, $(-1 - \Delta) j_n = 0 \Longrightarrow j_n(x) = cr^{(2-n)/2} J_{(n-2)/2}(r)$ with the Bessel function

$$J_{\mu}(x) = \sum_{m=0}^{\infty} (-1)^m \frac{(r/2)^{(\mu+m)}}{m! \,\Gamma(\mu+m+1)}$$

Example: $n = 3 \Rightarrow j_3(x) = c \frac{\sin r}{r}$

-1 is eigenvalue $\Leftrightarrow j_n \in L^q(\mathbb{R}^n) \Leftrightarrow q > \frac{2n}{n-1}$

The functions $j_n, \partial_1 j_n, \dots, \partial_1^k j_n$ are linearly independent eigenfunctions $\Rightarrow \operatorname{mult}(-1) = \infty \Rightarrow$

$$(-\infty, 0) = \sigma_p \text{ for } q > \frac{2n}{n-1} \text{ and } (-\infty, 0) = \sigma_r \text{ for } 1 < q < \frac{2n}{n+1}$$

Continuous Spectrum

Assertion Let $\frac{2n}{n+1} \leq q \leq \frac{2n}{n-1}$. Then $-1 \in \sigma_c(\Delta)$

Continuous Spectrum

Assertion Let $\frac{2n}{n+1} \leq q \leq \frac{2n}{n-1}$. Then $-1 \in \sigma_c(\Delta)$ Proof Consider $f \in L^{q'}(\mathbb{R}^n)$ with

$$0 = \langle (-1 - \Delta)u, f \rangle \quad \forall u \in \mathcal{D}(\Delta)$$

 $\Rightarrow \operatorname{supp} \hat{f} \subset \partial B_1$

Show that f = 0

If $\hat{f} = c\chi_{\partial B_1}$, i.e., $f = cj_n \Rightarrow c = 0$ since $j_n \notin L^{q'}(\mathbb{R}^n)$ for $\frac{2n}{n+1} \leq q' \leq \frac{2n}{n-1}$.

Continuous Spectrum

Assertion Let $\frac{2n}{n+1} \leq q \leq \frac{2n}{n-1}$. Then $-1 \in \sigma_c(\Delta)$ Proof Consider $f \in L^{q'}(\mathbb{R}^n)$ with

$$0 = \langle (-1 - \Delta)u, f \rangle \quad \forall u \in \mathcal{D}(\Delta)$$

 $\Rightarrow \operatorname{supp} \hat{f} \subset \partial B_1$

Show that f = 0

If $\hat{f} = c\chi_{\partial B_1}$, i.e., $f = cj_n \Rightarrow c = 0$ since $j_n \notin L^{q'}(\mathbb{R}^n)$ for $\frac{2n}{n+1} \leq q' \leq \frac{2n}{n-1}$. However, f may not be radially symmetric (e.g. $f = \partial_1 j_n$) (... take radial averages ... and ... Lebesgue's Differentiation Theorem to prove f = 0...) $\Rightarrow \mathcal{R}(-1 - \Delta)$ is dense in $L^q \Rightarrow -1 \in \sigma_c(\Delta)$

Exterior Domains Ω

No explicit construction! Note : $\lambda \in \sigma_{ess} \Leftrightarrow \operatorname{nul}'(\lambda + A_{\omega}) = \infty$ and

$$def'(\lambda + A_{\omega}) := nul'(\lambda + (A_{\omega})') = \infty$$

Note : $\operatorname{nul}'(\lambda + A_{\omega}) = \infty \Leftrightarrow$

 $\exists (v_m) \subset \mathcal{D}(A_\omega) \text{ noncompact} : ||v_m||_q = 1, ||(\lambda + A_\omega)v_m||_q \to 0$

Exterior Domains Ω

No explicit construction! Note : $\lambda \in \sigma_{ess} \Leftrightarrow \operatorname{nul}'(\lambda + A_{\omega}) = \infty$ and

 $def'(\lambda + A_{\omega}) := \operatorname{nul}'(\lambda + (A_{\omega})') = \infty$

Note : $\operatorname{nul}'(\lambda + A_{\omega}) = \infty \Leftrightarrow$

 $\exists (v_m) \subset \mathcal{D}(A_\omega) \text{ noncompact} : ||v_m||_q = 1, ||(\lambda + A_\omega)v_m||_q \to 0$

By cut-off and Bogovskii's operator we transfer such a sequence from Ω to \mathbb{R}^3 and vice versa. Analogous procedure for the condition $def'(\lambda + A_{\omega}) = \infty$

Exterior Domains Ω

No explicit construction! Note : $\lambda \in \sigma_{ess} \Leftrightarrow \operatorname{nul}'(\lambda + A_{\omega}) = \infty$ and

 $def'(\lambda + A_{\omega}) := \operatorname{nul}'(\lambda + (A_{\omega})') = \infty$

Note : $\operatorname{nul}'(\lambda + A_{\omega}) = \infty \Leftrightarrow$

 $\exists (v_m) \subset \mathcal{D}(A_\omega) \text{ noncompact} : ||v_m||_q = 1, ||(\lambda + A_\omega)v_m||_q \to 0$

By cut-off and Bogovskii's operator we transfer such a sequence from Ω to \mathbb{R}^3 and vice versa.

Analogous procedure for the condition $def'(\lambda + A_{\omega}) = \infty$

Theorem For $1 < q < \infty$ we get $\sigma_{ess}(A_{\omega}) = \mathcal{H}_{\omega}$ Non-/Existence of additional eigenvalues is open.

Oseen Case

Theorem (Neustupa-F. 2009) Let $1 < q < \infty$.

- Let Ω = ℝ³. Then σ(-A_{ω,k}) = σ_c(-A_{ω,k}) consists of an infinite set, P_{ω,k}, of parabola in the left half plane (replacing (-∞, 0] + ik, k ∈ ℤ)
- Let Ω be an exterior domain. Then $\sigma_{ess}(-A_{\omega,k}) = \mathcal{P}_{\omega,k}$

Idea of Proof $u \in L^q_{\sigma}(\mathbb{R}^3)$ be an eigenfunction for $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda < 0$. Then supp \hat{u} is a union of finitely many circles in \mathbb{R}^3 parallel to the ξ_2, ξ_3 -plane $\Rightarrow \ldots \Rightarrow u \notin L^q(\mathbb{R}^3)$

TU Darmstadt FB Mathematik

Thank you very much for your attention!