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Navier-Stokes Equations

ve —VvAv+v-Vo+Vqg = f in €(t)
dive = 0 in (1)
v = wAy on 00(t)
UV — Uso at o0
v(0) = a at t =0
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Global Coordinate Transformation

T. Hishida: x = O1(t) y, u(z,t) = O (t)(v(y,t) — uso)

= modified Navier-Stokes system

u; — vAu +u - Vu — (01 (t)us) - Vu—
(wAz)-Vu+wAu+ Vp
div u

u

= f in Qx(0,00)
= 0 in Qx(0,00)

— 0 at o©
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The Spectral Problem |
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The Spectral Problem |
Linearize, replace u; by Au to get the spectral problem on {2:
Au—Au+kdsu — (wAx) - Vu+wAu+Vp = f
divu = 0
0 on 0f2

u

Apply Helmholtz projection P on L9, let A, = A, ., be defined by
D(A,) ={u e WINW, N LL: (wAz) - Vu e LI},

Asu=P(—Au+kdsu— (wAz) Vu+wAu)
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The Spectral Problem Il

For f € L1(€2) and A € C consider the resolvent problem

Au+A,u = f
divu = 0
v = 0 on 0Of)

Question 1 Determine o(—A,,) for all 1 < ¢ < oo, k = 0 (Stokes
case) and k # 0 (Oseen case)

Question 2 Determine the type of o(—A,,) forall 1 < ¢ < ¢
Recall: — A, generates a CV-semigroup which is not analytic!

(k = 0: Hishida 1999, Geissert, Heck, Hieber 2006)
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The Case R

Use cylindrical coordinates in z-space and in Fourier space =
explicit solution (k = 0)

i) - / T e OHEDE f(O(1)¢) dt

27
_ % /O e~ OHED FO(D)E) dt

where
D(£) = 1 — e~ 2rO+IER)



The Case R

Use cylindrical coordinates in z-space and in Fourier space =
explicit solution (k = 0)

i) - / T e OHEDE f(O(1)¢) dt

! /QW —OHEP)E §
= — € f(O()E) dt,
IGE/ (O(t)¢)
where
D(£) = 1 — e~ 2rO+IER)
Note:

D) #A0VE & Red>0 or ReA<0,Im\ ¢ Z

S AN¢EH, = U ((—oo,()]—ik)

kez



Lemma 1 (N-F 2007, N-N-F 2007)
Llet 1 < g < o0

e N¢H, = \€ p(—A,)
¢ (Aq,w)* — Aq’,—wv D((Aq,w)*) — D(Aq’,w)

o 0(—Ay) =H,



Lemma 1 (N-F 2007, N-N-F 2007)
Llet 1 < g < o0

e N¢H, = X€ p(—AL)

* (Agw)" = Ag,—w, D((Agw)’) = D(Agw)

o 0(—Au,) =Hu = Oess(—Au)

e =2 Q=R = o(-A,) = Ho =0.(—A,)
Proof: First assertion: Multiplier theory for R?

Question: What type of spectrum do we have?



Prove for () = R that

o(—Ay,) =0.(—A,) =H, forall g€ (1,00)



Prove for () = R that

o(—Ay,) =0.(—A,) =H, forall g€ (1,00)
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Spectra of A, Ay, A, in LI(R")

Theorem 1 (N-N-F 2009) Consider 2 =R", 1 < ¢ < o©

o 0(A) =0c55(A) = (—00,0] and 0 € 0.(A)
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Spectra of A, Ay, A, in LI(R")
Theorem 1 (N-N-F 2009) Consider 2 = R", 1 < ¢ < o©
o 0(A) =0cs5(A) = (—00,0] and 0 € 0.(A)
e for A € H,, the range R(A — A) is not closed

2n
O'T(A), ].2< q < n_-|—12 ;
= (—O0,0) C OC(A), n__fl < q < n_fl (5
Up(A)a % <q
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e A€ 0,(A)= mult(N) = o0

e A€ 0,.(A)= codimR(N—A) =



Spectra of A, Ay, A, in LI(R")
Theorem 1 (N-N-F 2009) Consider 2 = R", 1 < ¢ < o©
o 0(A) =0cs5(A) = (—00,0] and 0 € 0.(A)
e for A € H,, the range R(A — A) is not closed

o-(A), 1 <c_]<,,12—47f1

¢ (—00,0) C§ 0.(A), ZH<a<E (55¢<3, n=3)

op(A), % <q
e A€ 0,(A)= mult(N) = o0
e A€ 0,.(A)= codimR(N—A) =

e Same result for the Stokes operator —Ay (w = 0) and for —A,,
(with the set H,, instead of (—o0,0])



Spectrum in L9(€2)

Theorem 2 (N-N-F 2009) Consider an exterior domain  C R?,
1 <g< @

® Uess(_Aw) — Hw

e () axially symmetric = 0(—Ay) = 0ess(—Ay) = Hy



Spectrum in L9(€2)

Theorem 2 (N-N-F 2009) Consider an exterior domain  C R?,
1 <g< @

® Uess(_Aw) — Hw
e () axially symmetric = 0(—Ay) = 0ess(—Ay) = Hy

e () not axially symmetric = o(—A,) \ Ho may contain isolated
eigenvalues of finite multiplicities in the open left half plane

e Such eigenvalues, if they do exist, are independent of g € (1, 00),

their multiplicity is independent of ¢, and the corresponding eigen-
functions lie in (), ., ... D(Aqw)



First ldeas

e Reduce A\ e H, withIm\A =k, k€ Z, tok =0:
(AN 4+ AL) (iR + RY)® = (iR, + Ry (X + ik + A,)

with the partial Riesz transforms R}, R, = (iR} + R,)* ~ e~tk%
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First ldeas

e Reduce A\ e H, withIm\A =k, k€ Z, tok =0:
(A + AL)(iR] + RY)® = (iR} + Ry)* (A + ik + Ay)
with the partial Riesz transforms R}, R, = (iR} + R,)* ~ e~tk%

o If 1 <qg<2and <0, then A ¢ g,. By analogy, A ¢ o,. for ¢ > 2
Proof: Assume (X + |£]2)a = 0. Since ¢ < 2, @ € L7 (R™)
= u(f) =0ae = u=0.

o If 1 <qg<2and A <0, then A — A is not surjective
Proof: Assume A\ = —1. Choose f € C3° equal to 1 near the unit
surface |€[* =1 and let (=1 - A)u = f
= (14 [¢f*)a = f (i L7)
= |u( )| > 2(1— |g|) for |€| ~1=u g—é Lq




Eigenvalues

Let jn = XoBy0) = (=14 [€[)jn =0, (-1 = A)j, =0 =
Jn(x) = cr(z_”)/QJ(n_Q)/g(r) with the Bessel function

> r/g)(wm)

Zo m!T(u+m+1)

sin r
T

Example: n =3 = j3(x) = ¢

2n

—1 is eigenvalue & j, € LY(R") & ¢ > n— 1




Eigenvalues

Let jn = XoBy0) = (=14 [€[)jn =0, (-1 = A)j, =0 =
Jn(x) = CT(Z_n)/QJ(n_Q)/2(T) with the Bessel function

> r/g)(u+m)

Zo m!T(u+m+1)

sin r
T

Example: n =3 = j3(x) = ¢

2
—1 is eigenvalue & j, € LY(R") & ¢ > nl
n S
The functions 7, 1Jn, - - ., 07 jn are linearly independent
eigenfunctions = mult(—1) = co =
2 2
(—00,0) =0, for g > nfl and (—o00,0) =0, for 1 <q< n—IT—Ll



Continuous Spectrum

Assertion Let = +1 <q< -5 Then -1 € 0.(A)



Continuous Spectrum

Assertion Let = < ¢ < =% Then —1 € 0.(A)

Proof Consider f e LY (R”) with
0=((—1—A)u, f) YueDA)

= suppf C 9B,

Show that f =0

If f =cxon,, i€, f=cjn = c=0since j, ¢ LI (R") for

2n
+1<q< e

n



Continuous Spectrum

Assertion Let = < ¢ < =% Then —1 € 0.(A)

Proof Consider f e LY (R”) with
0=((—1—A)u, f) YueDA)

= suppf C 9B,

Show that f =0

If f = cxon,, ie., f=cj, = c=0since j, ¢ LT (R™) for
2n

n—l—l <q <32

However, f may not be radially symmetric (e.g. f = 01j»)

(... take radial averages ... and ... Lebesgue’s Differentiation

Theorem to prove f =0...)

= R(—1—A) isdensein L? = —1 € 0.(A)



Exterior Domains ()

No explicit construction!
Note : A € 0., & nul’()\ + A,) = oo and

def’ (A + Ay) :==nul'(A + (4y)) =

Note : nul'(A + A,) = 00 &

3 (v,) C D(A,) noncompact : ||vl|lq =1, ||(A+ Aw)vm|lg = 0
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Exterior Domains ()

No explicit construction!
Note : A € 0., & nul’()\ + A,) = oo and

def’ (A + Ay) :==nul'(A + (4y)) =

Note : nul'(A + A,) = 00 &
3 (v,) C D(A,) noncompact : ||vl|lq =1, ||(A+ Aw)vm|lg = 0

By cut-off and Bogovskii's operator we transfer such a sequence
from € to R> and vice versa.
Analogous procedure for the condition def’ (A + A,) = oo

Theorem For 1 < q < 0o we get g.55(AL) = He
Non-/Existence of additional eigenvalues is open.



Oseen Case

Theorem (Neustupa-F. 2009) Let 1 < g < 0.

o Let Q = R3. Then o(—A, k) = 0.(—A, 1) consists of an infinite
set, P,.x, of parabola in the left half plane (replacing (—o0, 0] +
ik, k€ Z)

o Let 2 be an exterior domain. Then gcss(—Au k) = Pk

Y

Idea of Proof u € L4(IR?) be an eigenfunction for A € C with
Re A < 0. Then supp @ is a union of finitely many circles in R?

parallel to the &3, &3—plane = ... = u ¢ LI(R?)
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Thank you very much for your attention!



