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Navier-Stokes Equations

vt � ��v + v � rv +rq = f in 
(t)

div v = 0 in 
(t)

v = ! ^ y on @
(t)

v ! u1 at 1

v(0) = a at t = 0

Main Problem: Time-dependent domain 
(t)
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Global Coordinate Transformation

T. Hishida: x = OT (t) y; u(x; t) = OT (t)(v(y; t)� u1)

V modi�ed Navier-Stokes system

ut � ��u+ u � ru� (OT (t)u1) � ru�

(! ^ x) � ru+ ! ^ u+rp = f in 
� (0;1)

div u = 0 in 
� (0;1)

u ! 0 at 1
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The Spectral Problem I

Linearize, replace ut by �u to get the spectral problem on 
:

�u��u+ k@3u� (! ^ x) � ru+ ! ^ u+rp = f

div u = 0

u = 0 on @
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The Spectral Problem I

Linearize, replace ut by �u to get the spectral problem on 
:

�u��u+ k@3u� (! ^ x) � ru+ ! ^ u+rp = f

div u = 0

u = 0 on @


Apply Helmholtz projection P on Lq, let A! = Aq;! be de�ned by

D(A!) = fu 2W 2;q \W 1;q
0 \ Lq� : (! ^ x) � ru 2 Lqg;

A!u = P
�
��u+ k@3u� (! ^ x) � ru+ ! ^ u

�
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The Spectral Problem II

For f 2 Lq�(
) and � 2 C consider the resolvent problem

�u+A!u = f

div u = 0

u = 0 on @
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The Spectral Problem II

For f 2 Lq�(
) and � 2 C consider the resolvent problem

�u+A!u = f

div u = 0

u = 0 on @


Question 1 Determine �(�A!) for all 1 < q <1, k = 0 (Stokes

case) and k 6= 0 (Oseen case)
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The Spectral Problem II

For f 2 Lq�(
) and � 2 C consider the resolvent problem

�u+A!u = f

div u = 0

u = 0 on @


Question 1 Determine �(�A!) for all 1 < q <1, k = 0 (Stokes

case) and k 6= 0 (Oseen case)

Question 2 Determine the type of �(�A!) for all 1 < q <1

Recall: �A! generates a C0-semigroup which is not analytic!

(k = 0: Hishida 1999, Geissert, Heck, Hieber 2006)
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The Case R3

Use cylindrical coordinates in x-space and in Fourier space V

explicit solution (k = 0)

û(�) =

Z 1

0

e�(�+j�j2)t f̂(O(t)�) dt

=
1

D(�)

Z 2�

0

e�(�+j�j2)t f̂(O(t)�) dt ;

where

D(�) = 1� e�2�(�+j�j2)
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The Case R3

Use cylindrical coordinates in x-space and in Fourier space V

explicit solution (k = 0)

û(�) =

Z 1

0

e�(�+j�j2)t f̂(O(t)�) dt

=
1

D(�)

Z 2�

0

e�(�+j�j2)t f̂(O(t)�) dt ;

where

D(�) = 1� e�2�(�+j�j2)

Note:

D(�) 6= 0 8� , Re� > 0 or Re� � 0; Im� =2 Z

, � =2 H! =
[
k2Z

�
(�1; 0]� ik

�
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Lemma 1 (N-F 2007, N-N-F 2007)

Let 1 < q <1

� � =2 H! ) � 2 �(�A!)

� (Aq;!)
� = Aq0;�!; D((Aq;!)

�) = D(Aq0;!)

� �(�A!) = H!
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Lemma 1 (N-F 2007, N-N-F 2007)

Let 1 < q <1

� � =2 H! ) � 2 �(�A!)

� (Aq;!)
� = Aq0;�!; D((Aq;!)

�) = D(Aq0;!)

� �(�A!) = H! = �ess(�A!)

� q = 2; 
 = R3 V �(�A!) = H! = �c(�A!)

Proof: First assertion: Multiplier theory for R3

Question: What type of spectrum do we have?
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Prove for 
 = R3 that

�(�A!) = �c(�A!) = H! for all q 2 (1;1)



10

Prove for 
 = R3 that

�(�A!) = �c(�A!) = H! for all q 2 (1;1)
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Spectra of �, A0, A! in Lq(Rn)

Theorem 1 (N-N-F 2009) Consider 
 = Rn, 1 < q <1

� �(�) = �ess(�) = (�1; 0] and 0 2 �c(�)
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Spectra of �, A0, A! in Lq(Rn)

Theorem 1 (N-N-F 2009) Consider 
 = Rn, 1 < q <1

� �(�) = �ess(�) = (�1; 0] and 0 2 �c(�)

� for � 2 H! the range R(���) is not closed
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Spectra of �, A0, A! in Lq(Rn)

Theorem 1 (N-N-F 2009) Consider 
 = Rn, 1 < q <1

� �(�) = �ess(�) = (�1; 0] and 0 2 �c(�)

� for � 2 H! the range R(���) is not closed

� (�1; 0) �

8><
>:

�r(�); 1 < q < 2n
n+1

�c(�); 2n
n+1 � q � 2n

n�1 (32 � q � 3; n = 3)

�p(�); 2n
n�1 < q
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Spectra of �, A0, A! in Lq(Rn)

Theorem 1 (N-N-F 2009) Consider 
 = Rn, 1 < q <1

� �(�) = �ess(�) = (�1; 0] and 0 2 �c(�)

� for � 2 H! the range R(���) is not closed

� (�1; 0) �

8><
>:

�r(�); 1 < q < 2n
n+1

�c(�); 2n
n+1 � q � 2n

n�1 (32 � q � 3; n = 3)

�p(�); 2n
n�1 < q

� � 2 �p(�)V mult(�) =1

� � 2 �r(�)V codimR(���) =1
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Spectra of �, A0, A! in Lq(Rn)

Theorem 1 (N-N-F 2009) Consider 
 = Rn, 1 < q <1

� �(�) = �ess(�) = (�1; 0] and 0 2 �c(�)

� for � 2 H! the range R(���) is not closed

� (�1; 0) �

8><
>:

�r(�); 1 < q < 2n
n+1

�c(�); 2n
n+1 � q � 2n

n�1 (32 � q � 3; n = 3)

�p(�); 2n
n�1 < q

� � 2 �p(�)V mult(�) =1

� � 2 �r(�)V codimR(���) =1

� Same result for the Stokes operator �A0 (! = 0) and for �A!

(with the set H! instead of (�1; 0])
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Spectrum in Lq(
)

Theorem 2 (N-N-F 2009) Consider an exterior domain 
 � R3,

1 < q <1

� �ess(�A!) = H!

� 
 axially symmetric V �(�A!) = �ess(�A!) = H!
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Spectrum in Lq(
)

Theorem 2 (N-N-F 2009) Consider an exterior domain 
 � R3,

1 < q <1

� �ess(�A!) = H!

� 
 axially symmetric V �(�A!) = �ess(�A!) = H!

� 
 not axially symmetric V �(�A!) n H! may contain isolated

eigenvalues of �nite multiplicities in the open left half plane

� Such eigenvalues, if they do exist, are independent of q 2 (1;1),

their multiplicity is independent of q, and the corresponding eigen-

functions lie in
T

1<q<1D(Aq;!)
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First Ideas

� Reduce � 2 H! with Im� = k, k 2 Z, to k = 0:

(�+A!)(iR
0
1 +R0

2)
k = (iR0

1 +R0
2)
k(�+ ik +A!)

with the partial Riesz transforms R0
1; R

0
2 V (iR0

1 +R0
2)
k � e�ik'
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First Ideas

� Reduce � 2 H! with Im� = k, k 2 Z, to k = 0:

(�+A!)(iR
0
1 +R0

2)
k = (iR0

1 +R0
2)
k(�+ ik +A!)

with the partial Riesz transforms R0
1; R

0
2 V (iR0

1 +R0
2)
k � e�ik'

� If 1 < q � 2 and � < 0, then � =2 �p. By analogy, � =2 �r for q � 2

Proof: Assume (�+ j�j2)û = 0. Since q � 2, û 2 Lq
0

(Rn)

V û(�) = 0 a.e. V u = 0.
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First Ideas

� Reduce � 2 H! with Im� = k, k 2 Z, to k = 0:

(�+A!)(iR
0
1 +R0

2)
k = (iR0

1 +R0
2)
k(�+ ik +A!)

with the partial Riesz transforms R0
1; R

0
2 V (iR0

1 +R0
2)
k � e�ik'

� If 1 < q � 2 and � < 0, then � =2 �p. By analogy, � =2 �r for q � 2

Proof: Assume (�+ j�j2)û = 0. Since q � 2, û 2 Lq
0

(Rn)

V û(�) = 0 a.e. V u = 0.

� If 1 < q � 2 and � < 0, then ��� is not surjective

Proof: Assume � = �1. Choose f̂ 2 C1
0 equal to 1 near the unit

surface j�j2 = 1 and let (�1��)u = f

V (�1 + j�j2)û = f̂ (in Lq
0

)

V jû(�)j � 1
2(1�j�j) for j�j � 1 V û =2 Lq

0
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Eigenvalues

Let ĵn = �@B1(0) V (�1 + j�j2)ĵn = 0, (�1��)jn = 0 V

jn(x) = cr(2�n)=2J(n�2)=2(r) with the Bessel function

J�(x) =
1X

m=0

(�1)m
(r=2)(�+m)

m! �(�+m+ 1)

Example: n = 3 V j3(x) = csin rr

�1 is eigenvalue , jn 2 Lq(Rn) , q >
2n

n� 1
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Eigenvalues

Let ĵn = �@B1(0) V (�1 + j�j2)ĵn = 0, (�1��)jn = 0 V

jn(x) = cr(2�n)=2J(n�2)=2(r) with the Bessel function

J�(x) =
1X

m=0

(�1)m
(r=2)(�+m)

m! �(�+m+ 1)

Example: n = 3 V j3(x) = csin rr

�1 is eigenvalue , jn 2 Lq(Rn) , q >
2n

n� 1

The functions jn; @1jn; : : : ; @
k
1jn are linearly independent

eigenfunctions V mult(�1) =1 V

(�1; 0) = �p for q >
2n

n� 1
and (�1; 0) = �r for 1 < q <

2n

n+ 1
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Continuous Spectrum

Assertion Let 2n
n+1 � q � 2n

n�1. Then �1 2 �c(�)
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Continuous Spectrum

Assertion Let 2n
n+1 � q � 2n

n�1. Then �1 2 �c(�)

Proof Consider f 2 Lq
0

(Rn) with

0 = h(�1��)u; fi 8u 2 D(�)

V suppf̂ � @B1

Show that f = 0

If f̂ = c�@B1
, i.e., f = cjn V c = 0 since jn =2 Lq

0

(Rn) for
2n
n+1 � q0 � 2n

n�1.
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Continuous Spectrum

Assertion Let 2n
n+1 � q � 2n

n�1. Then �1 2 �c(�)

Proof Consider f 2 Lq
0

(Rn) with

0 = h(�1��)u; fi 8u 2 D(�)

V suppf̂ � @B1

Show that f = 0

If f̂ = c�@B1
, i.e., f = cjn V c = 0 since jn =2 Lq

0

(Rn) for
2n
n+1 � q0 � 2n

n�1.

However, f may not be radially symmetric (e.g. f = @1jn)

(... take radial averages ... and ... Lebesgue's Di�erentiation

Theorem to prove f = 0...)

V R(�1��) is dense in Lq V �1 2 �c(�)
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Exterior Domains 


No explicit construction!

Note : � 2 �ess , nul0(�+A!) =1 and

def 0(�+A!) := nul0(�+ (A!)
0) =1

Note : nul0(�+A!) =1 ,

9 (vm) � D(A!) noncompact : kvmkq = 1; k(�+A!)vmkq ! 0
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16

Exterior Domains 


No explicit construction!

Note : � 2 �ess , nul0(�+A!) =1 and

def 0(�+A!) := nul0(�+ (A!)
0) =1

Note : nul0(�+A!) =1 ,

9 (vm) � D(A!) noncompact : kvmkq = 1; k(�+A!)vmkq ! 0

By cut-o� and Bogovskii's operator we transfer such a sequence

from 
 to R3 and vice versa.

Analogous procedure for the condition def 0(�+A!) =1

Theorem For 1 < q <1 we get �ess(A!) = H!

Non-/Existence of additional eigenvalues is open.
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Oseen Case

Theorem (Neustupa-F. 2009) Let 1 < q <1.

� Let 
 = R3. Then �(�A!;k) = �c(�A!;k) consists of an in�nite

set, P!;k, of parabola in the left half plane (replacing (�1; 0] +

ik; k 2 Z)

� Let 
 be an exterior domain. Then �ess(�A!;k) = P!;k

Idea of Proof u 2 Lq�(R
3) be an eigenfunction for � 2 C with

Re� < 0. Then supp û is a union of �nitely many circles in R3

parallel to the �2; �3�plane V ... V u =2 Lq(R3)
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Thank you very much for your attention!


