Criterion for stability of the stationary solution to Navier-Stokes equations in half-space

Takayuki Kubo

University of Tsukuba

International Workshop on Mathematical Fluid Dynamics, Waseda, March 10-13

Contents of my talk

- Introduction
 - Open Problem
 - Known results
 - ★ Stationary solutions to Navier-Stokes equations
 - ★ Stability property for stationary solutions in exterior domains
- Main result
 - Stability theorem
- Outline of the proof
 - key estimate : resolvent estimate
 - key estimate : $L^p L^q$ estimates for certain semigroup.
 - Proof of stability theorem

1-1. Problem

Perturbed Navier-Stokes equations

$$\begin{cases} \partial_t v - \Delta v + (u_s \cdot \nabla)v + (v \cdot \nabla)u_s + (v \cdot \nabla)v + \nabla \pi = 0 & \text{in } H, \\ \nabla \cdot v = 0 & \text{in } H, \\ v = 0 & \text{on } \partial H, \\ v(0, x) = v_0. \end{cases}$$
 (PNS)

- $v=(v_1,\ldots,v_n)$: velocity field , π : pressure , [unknown]
- ullet u_s ; solution to the stationary Navier-Stokes equations,
- $H = \{x = (x', x_n) \in \mathbb{R}^n \mid x_n > 0\}.$

1-2. Known Results (Stationary solutions)

$$-\Delta u_s + (u_s \cdot \nabla)u_s + \nabla \pi_s = f$$

in Ω ,

For whole space case and exterior domain cases $(n \ge 3)$

When $f = \nabla \cdot F$ has the suitable decay rate for $|x| \gg 1$ and is sufficiently small, there exists a stationary solution satisfying

$$|u_s(x)| \le C_F/|x|^{n-2},$$

$$|\nabla u_s| \le C_F/|x|^{n-1}$$

for $|x| \gg 1$.

1-2. Known Results (Stationary solutions)

$$-\Delta u_s + (u_s \cdot \nabla)u_s + \nabla \pi_s = f$$

in Ω ,

For whole space case and exterior domain cases $(n \ge 3)$

When $f=\nabla\cdot F$ has the suitable decay rate for $|x|\gg 1$ and is sufficiently small, there exists a stationary solution satisfying

$$|u_s(x)| \le C_F/|x|^{n-2},$$

$$|\nabla u_s| \le C_F/|x|^{n-1}$$

for $|x| \gg 1$.

For half-space case $(n \ge 3)$

When $f=\nabla\cdot F$ has the suitable decay rate for $|x|\gg 1$ and is sufficiently small, there exists a stationary solution satisfying

$$|u_s(x)| \le C_F/|x|^{n-1},$$

$$|\nabla u_s| < C_F/|x|^n$$

for $|x| \gg 1$.

For exterior domain cases $(n \ge 3)$

The stationary solution u_s is stable when v_0 and the following quantity is sufficiently small:

Kozono-Ogawa(94)

$$||u_s||_n + ||\nabla u_s||_{n/2},$$

For exterior domain cases $(n \ge 3)$

The stationary solution u_s is stable when v_0 and the following quantity is sufficiently small:

Kozono-Ogawa (94)

$$||u_s||_n + ||\nabla u_s||_{n/2},$$

For n=3, the stationary solution has the decay estimates:

$$|u_s(x)| \le C/|x|,$$

$$|\nabla u_s| \le C/|x|^2$$
 for $|x| \gg 1$.

For exterior domain cases $(n \ge 3)$

The stationary solution u_s is stable when v_0 and the following quantity is sufficiently small:

ullet Kozono-Ogawa(94) $\|u_s\|_n + \|
abla u_s\|_{n/2},$

For n=3, the stationary solution has the decay estimates:

$$|u_s(x)| \le C/|x|,$$
 $|\nabla u_s| \le C/|x|^2$ for $|x| \gg 1$.

Therefore we see

$$u_s \notin L^3(\Omega) = L^n(\Omega), \qquad \nabla u_s \notin L^{3/2}(\Omega) = L^{n/2}(\Omega)$$

For exterior domain cases (n > 3)

The stationary solution u_s is stable when v_0 and the following quantity is sufficiently small:

- Kozono-Ogawa (94)
- Borchers-Miyakawa (95)

$$\|u_s\|_n + \|\nabla u_s\|_{n/2}$$
, $\||x|u_s\|_{\infty}$,

For n=3, the stationary solution has the decay estimates:

$$|u_s(x)| \le C/|x|,$$

$$|\nabla u_s| \le C/|x|^2$$
 for $|x| \gg 1$.

Therefore we see

$$u_s \notin L^3(\Omega) = L^n(\Omega),$$

$$\nabla u_s \notin L^{3/2}(\Omega) = L^{n/2}(\Omega)$$

For exterior domain cases (n > 3)

The stationary solution u_s is stable when v_0 and the following quantity is sufficiently small:

- Kozono-Ogawa (94)
- Borchers-Miyakawa (95)
- Kozono-Yamazaki(98)

$$||u_s||_n + ||\nabla u_s||_{n/2},$$

 $|||x|u_s||_{\infty},$
 $||u_s||_{n,\infty}$ $u_s \in L^{n,\infty}(\Omega).$

For n=3, the stationary solution has the decay estimates:

$$|u_s(x)| \leq C/|x|,$$

$$|\nabla u_s| \le C/|x|^2$$
 for $|x| \gg 1$.

Therefore we see

$$u_s \notin L^3(\Omega) = L^n(\Omega),$$

$$\nabla u_s \notin L^{3/2}(\Omega) = L^{n/2}(\Omega)$$

For exterior domain cases $(n \ge 3)$

The stationary solution u_s is stable when v_0 and the following quantity is sufficiently small:

- Kozono-Ogawa(94)
- Borchers-Miyakawa(95)
- Kozono-Yamazaki(98)

$$\|u_s\|_n + \|\nabla u_s\|_{n/2},$$

 $\||x|u_s\|_{\infty},$
 $\|u_s\|_{n,\infty}$ $u_s \in L^{n,\infty}(\Omega).$

Goal of my talk

- In this talk, we assume that $(1+x_n)u_s \in L^{\infty}(H)$.
- When $\|(1+x_n)u_s\|_{\infty}$ is small enough for $n \geq 2$, the stationary solution u_s is stable.

2-1. Main result

Main result [Stability theorem for the stationary solution]

Let $n\geq 2$ and $v_0\in J^n(H)$. Then there exist positive constant μ and δ such that if u_s and v_0 satisfy

$$||(1+x_n)u_s||_{\infty} \le \mu, \quad ||v_0||_n \le \delta,$$

(PNS) admits a global strong solution v. Moreover the following asymptotic behaviors hold:

$$||v(t)||_p = o(t^{-1/2+n/2p})$$
 $n \le p \le \infty,$
 $||\nabla v(t)||_p = o(t^{-1+n/2p})$ $n \le p < \infty.$

as $t \to \infty$.

2-1. Remark on main result

Main result [Stability theorem for the stationary solution]

Let $n\geq 2$ and $v_0\in J^n(H)$. Then there exist positive constant μ and δ such that if u_s and v_0 satisfy

$$||(1+x_n)u_s||_{\infty} \le \mu, \quad ||v_0||_n \le \delta,$$

(PNS) admits a global strong solution v.

ullet Since the stationary solution u_s has decay properties:

$$|u_s(x)| \le C/|x|^{n-1}$$
, $|\nabla u_s| \le C/|x|^n$ for $|x| \gg 1$,

This solution satisfies this assumption.

- This case is the result corresponding to Borhcers-Miyakawa (95).
- ullet For n=2, the existence of stationary solutions satisfying this assumption is unknown.

3-1. Known results (Stokes operator)

Helmholtz decomposition

$$L^{p}(H) = J^{p}(H) \oplus G^{p}(H), \qquad 1$$

where

$$J^{p}(H) = \overline{\{u \mid u_{j} \in C_{0}^{\infty}(H), \ \nabla \cdot u = 0\}}^{\|\cdot\|_{p}},$$
$$G^{p}(H) = \{\nabla \pi \in L^{p}(H) \mid \pi \in L^{p}_{loc}(\overline{H})\}.$$

Analytic semigroup

$$P:\ L^p(H) \to J^p(H)$$
 : a continuous projection

The Stokes operator $A=-P\Delta$ is defined with dense domain

$$D(A) = \{ u \in J^p(H) \cap W^{2,p}(H) \mid u|_{\partial H} = 0 \}.$$

The Stokes operator -A generates a bounded analytic semigroup $\{e^{-tA}\}_{t\geq 0}$ in $J^p(H)$

3-1. Known results (Stokes operator)

Some estimates for Stokes op.

Let 1 .

(i) The following estimate holds.

$$\|\nabla^2 u\|_p \le C\|Au\|_p, \qquad u \in D(A).$$

(ii) $D(A^{1/2}) = J^p(H) \cap W_0^{1,p}(H)$ and we have in particular

$$\|\nabla u\|_p \le C\|A^{1/2}u\|_p, \qquad u \in D(A^{1/2})$$

(iii) If $u \in D(A^{\alpha})$, $0 < \alpha < 1$ and if $0 < 1/q = 1/p - 2\alpha/n < 1$, then $u \in L^q$ and we have the estimate

$$||u||_q \le C||A^{\alpha}u||_p, \qquad u \in D(A^{\alpha})$$

$$\partial_t v - \Delta v + (u_s \cdot \nabla)v + (v \cdot \nabla)u_s + (v \cdot \nabla)v + \nabla \pi = 0 \quad \text{in } H,$$

Let 1 .

Let P be a Helmholtz projection from $L^p(H) \to J^p(H)$,

• $Av = -P\Delta v$ $v \in D(A) := W^{2,p} \cap W_0^{1,p} \cap J^p(H)$,

$$\partial_t v - \Delta v + (\mathbf{u_s} \cdot \nabla) v + (\mathbf{v} \cdot \nabla) \mathbf{u_s} + (\mathbf{v} \cdot \nabla) v + \nabla \pi = 0 \quad \text{in } H,$$

Let 1 .

Let P be a Helmholtz projection from $L^p(H) \to J^p(H)$,

- $Av = -P\Delta v$ $v \in D(A) := W^{2,p} \cap W_0^{1,p} \cap J^p(H)$,
- $Bv = P[(u_s \cdot \nabla)v + (v \cdot \nabla)u_s]$ $v \in D(B) := W_0^{1,p} \cap J^p(H),$

$$\partial_t v - \Delta v + (u_s \cdot \nabla)v + (v \cdot \nabla)u_s + (v \cdot \nabla)v + \nabla \pi = 0 \quad \text{in } H,$$

Let 1 .

Let P be a Helmholtz projection from $L^p(H) \to J^p(H)$,

- $Av = -P\Delta v$ $v \in D(A) := W^{2,p} \cap W_0^{1,p} \cap J^p(H)$,
- $Bv = P[(u_s \cdot \nabla)v + (v \cdot \nabla)u_s]$ $v \in D(B) := W_0^{1,p} \cap J^p(H),$
- $\bullet \ L = A + B \qquad D(L) = D(A).$

$$\partial_t v - \Delta v + (u_s \cdot \nabla)v + (v \cdot \nabla)u_s + (v \cdot \nabla)v + \nabla \pi = 0 \quad \text{in } H,$$

Let 1 .

Let P be a Helmholtz projection from $L^p(H) \to J^p(H)$,

- $Av = -P\Delta v$ $v \in D(A) := W^{2,p} \cap W_0^{1,p} \cap J^p(H)$,
- $Bv = P[(u_s \cdot \nabla)v + (v \cdot \nabla)u_s]$ $v \in D(B) := W_0^{1,p} \cap J^p(H)$,
- $\bullet \ L = A + B \qquad D(L) = D(A).$

Applying Helmholtz projection P, we see

$$\partial_t v + Lv + P(v \cdot \nabla)v = 0$$

By Duhamel's principle, we can rewrite into the integral form:

$$v(t) = e^{-tL}v_0 - \int_0^t e^{-(t-s)L}P[(v \cdot \nabla)v](s)ds.$$

$$v(t) = e^{-tL}v_0 - \int_0^t e^{-(t-s)L}P[(v \cdot \nabla)v](s)ds.$$

By the contraction mapping principle and Key estimate (1), we can prove Main Theorem.

Key estimate(1): $L^p - L^q$ estimate of the semigroup e^{-tL}

Let $n\geq 2$ and the stationary solution u_s satisfy Assumption . Then the following estimates hold: for $f\in J^p(H)$

$$\begin{split} \|e^{-tL}f\|_q &\leq C_{p,q} \ t^{-\frac{n}{2}(\frac{1}{p}-\frac{1}{q})} \|f\|_p & 1$$

$$v(t) = e^{-tL}v_0 - \int_0^t e^{-(t-s)L} P[(v \cdot \nabla)v](s) ds.$$

If we set

$$H(u,v) = \int_0^t e^{-(t-s)L} P((u \cdot \nabla)v)(s) ds,$$

$$\Phi(v)(t) = e^{-tL} v_0 - H(v,v)(t),$$

then the integral equation is written in the form

$$v(t) = \Phi(v)(t).$$

To find the solution to the integral equation, we have to show that Φ is a contraction mapping of $\mathcal{I}_{\varepsilon}$ with suitable choice of ε and δ .

We set

$$\mathcal{I}_{\varepsilon} = \{ v \in BC([0, \infty); J^{n}(H)) \mid |||v|||_{t} \leq \varepsilon,$$

$$\lim_{t \to +0} \left([v(\cdot) - v_{0}]_{n,0,t} + [v]_{p,\mu(p),t} + [v]_{\infty,1/2,t} + [\nabla v]_{n,1/2,t} + [\nabla v]_{p,\mu'(p),t} \right)$$

$$= 0 \}$$

with p a fixed number in (n,∞) , ε is a small positive number determined later, and where

$$\begin{split} [v]_{p,\ell,t} &= \sup_{0 < s \le t} s^{\ell} \|u(\cdot,s)\|_{L^{p}}, \\ \||v\||_{t} &= [v(\cdot)]_{n,0,t} + [v]_{p,\mu(p),t} + [v]_{\infty,1/2,t} + [\nabla v]_{n,1/2,t} + [\nabla v]_{p,\mu'(p),t}, \\ \mu(p) &= 1/2 - n/2p, \qquad \mu'(p) = 1 - n/2p. \end{split}$$

We set

$$\mathcal{I}_{\varepsilon} = \{ v \in BC([0, \infty); J^{n}(H)) \mid |||v|||_{t} \leq \varepsilon,$$

$$\lim_{t \to +0} \left([v(\cdot) - v_{0}]_{n,0,t} + [v]_{p,\mu(p),t} + [v]_{\infty,1/2,t} + [\nabla v]_{n,1/2,t} + [\nabla v]_{p,\mu'(p),t} \right)$$

$$= 0 \}$$

with p a fixed number in (n,∞) , ε is a small positive number determined later, and where

$$\begin{split} [v]_{p,\ell,t} &= \sup_{0 < s \le t} s^{\ell} \|u(\cdot,s)\|_{L^{p}}, \\ \||v\||_{t} &= [v(\cdot)]_{n,0,t} + [v]_{p,\mu(p),t} + [v]_{\infty,1/2,t} + [\nabla v]_{n,1/2,t} + [\nabla v]_{p,\mu'(p),t}, \\ \mu(p) &= 1/2 - n/2p, \qquad \mu'(p) = 1 - n/2p. \end{split}$$

To show that Φ is a contraction mapping of $\mathcal{I}_{\varepsilon}$ with suitable choice of ε and δ , we check these conditions.

 $L^p - L^q$ estimates:

$$\|\nabla^k e^{-tL} f\|_q \le C_{p,q} t^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{q}) - \frac{k}{2}} \|f\|_p, \qquad k = 0, 1.$$

we can prove some estimates for the nonlinear term H(u,v): for example,

$$[H(u,v)]_{r,\mu(r),t} \le C[u]_{p,\mu(p),t} [\nabla v]_{n,1/2,t}, \qquad n \le r \le \infty.$$

nonlinear term:

$$H(u,v) = \int_0^t e^{-(t-s)L} P((u \cdot \nabla)v)(s) ds,$$

 $L^p - L^q$ estimates:

$$\|\nabla^k e^{-tL} f\|_q \le C_{p,q} t^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{q}) - \frac{k}{2}} \|f\|_p, \qquad k = 0, 1.$$

we can prove some estimates for the nonlinear term H(u,v): for example,

$$[H(u,v)]_{r,\mu(r),t} \leq C[u]_{p,\mu(p),t} [\nabla v]_{n,1/2,t}, \qquad n \leq r \leq \infty.$$

nonlinear term:

$$H(u,v) = \int_0^t e^{-(t-s)L} P((u \cdot \nabla)v)(s) ds,$$

By standard argument (Kato's method), we can prove Φ is a contraction mapping of $\mathcal{I}_{\varepsilon}$.

3-3. Outline of the proof of key estimate (1)

Therefore we need to show that

- \bullet the operator -L generates a bounded analytic semigroup $\{e^{-tL}\}_{t\geq 0}$,
- the semigroup e^{-tL} has the $L^p L^q$ estimates:

$$\|\nabla^k e^{-tL} f\|_q \le C_{p,q} \ t^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{q}) - \frac{k}{2}} \|f\|_p, \qquad k = 0, 1.$$

3-3. Outline of the proof of key estimate (1)

Therefore we need to show that

- \bullet the operator -L generates a bounded analytic semigroup $\{e^{-tL}\}_{t\geq 0}$,
- the semigroup e^{-tL} has the $L^p L^q$ estimates:

$$\|\nabla^k e^{-tL} f\|_q \le C_{p,q} t^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{q}) - \frac{k}{2}} \|f\|_p, \qquad k = 0, 1.$$

Key estimate (2): resolvent estimate

Let $1 . There exists a positive number <math>\mu$ such that if $\|(1+x_n)u_s\|_\infty \le \mu$, the following resolvent estimate holds:

$$\|(\lambda+L)^{-1}\|_{\mathcal{L}(J^p)} \le \frac{C}{|\lambda|},$$

where $\lambda \in \Sigma_{\varepsilon} = \{\lambda \in \mathbb{C} \setminus \{0\} \mid |\arg \lambda| < \pi - \varepsilon\} \ (\varepsilon \in (0, \pi/2)).$

3-3. Outline of proof of key estimate (1)

$$\|(\lambda+L)^{-1}\|_{\mathcal{L}(J^p)} \le \frac{C}{|\lambda|},$$

By using the resolvent estimate and the representation formula of semigroup:

$$e^{-tL}f = \frac{1}{2\pi i} \int_{\Gamma} e^{t\lambda} (\lambda + L)^{-1} f d\lambda,$$

we can obtain

$$||e^{-tL}f||_p \le C_p ||f||_p,$$

for 1 .

3-3. Outline of proof of key estimate (1)

$$\|\nabla(\lambda+L)^{-1}\|_{\mathcal{L}(J^p)} \le \frac{C}{|\lambda|^{1/2}},$$

By using the resolvent estimate and the representation formula of semigroup:

$$e^{-tL}f = \frac{1}{2\pi i} \int_{\Gamma} e^{t\lambda} (\lambda + L)^{-1} f d\lambda,$$

we can obtain

$$||e^{-tL}f||_p \le C_p ||f||_p, \qquad ||\nabla e^{-tL}f||_p \le C_p ||f^{-1/2}||f||_p$$

for 1 .

3-3. Outline of proof of key estimate (1)

$$\|\nabla(\lambda+L)^{-1}\|_{\mathcal{L}(J^p)} \le \frac{C}{|\lambda|^{1/2}},$$

By using the resolvent estimate and the representation formula of semigroup:

$$e^{-tL}f = \frac{1}{2\pi i} \int_{\Gamma} e^{t\lambda} (\lambda + L)^{-1} f d\lambda,$$

we can obtain

$$||e^{-tL}f||_p \le C_p ||f||_p, \qquad ||\nabla e^{-tL}f||_p \le C_p ||f^{-1/2}||f||_p$$

for $1 . By these estimates and Sobolev's embedding theorem, we can prove <math>L^p - L^q$ estimates.

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3-4. Proof of Key estimate (2)

Key estimate (2): resolvent estimate

$$\|(1+x_n)u_s\|_{\infty} \le \exists \mu \qquad \Rightarrow \qquad \|(\lambda+L)^{-1}\|_{\mathcal{L}(J^p)} \le \frac{C}{|\lambda|},$$

We shall prove key estimate (2) by following the method due to Kozono-Yamazaki(98). We notice

$$\lambda + L = \lambda + A + B$$

= $(\lambda + A)^{1/2} [1 + (\lambda + A)^{-1/2} B(\lambda + A)^{-1/2}] (\lambda + A)^{1/2}.$

Therefore we see

$$(\lambda + L)^{-1} = (\lambda + A)^{-1/2} \left[1 + (\lambda + A)^{-1/2} B(\lambda + A)^{-1/2} \right]^{-1} (\lambda + A)^{-1/2}.$$

In order to use the standard argument of Neumann series, we need

$$\|(\lambda + A)^{-1/2}B(\lambda + A)^{-1/2}\|_{\mathcal{L}(J^p)} \le 1/2.$$

We see

$$\langle (\lambda + A)^{-1/2}B(\lambda + A)^{-1/2}f, \phi \rangle$$

$$= \langle (u_s \cdot \nabla)(\lambda + A)^{-1/2}f + ((\lambda + A)^{-1/2}f \cdot \nabla)u_s, (\overline{\lambda} + A^*)^{-1/2}\phi \rangle$$

$$= -\langle (\lambda + A)^{-1/2}f, u_s \cdot \nabla(\overline{\lambda} + A^*)^{-1/2}\phi \rangle$$

$$- \langle u_s, ((\lambda + A)^{-1/2}f \cdot \nabla)(\overline{\lambda} + A^*)^{-1/2}\phi \rangle$$

for $\phi \in C^{\infty}_{0,\sigma}(H), f \in J^p(H)$. Therefore we obtain

$$\begin{aligned} &|\langle (\lambda + A)^{-1/2} B(\lambda + A)^{-1/2} f, \phi \rangle| \\ &\leq \|\frac{1}{1 + x_n} (\lambda + A)^{-1/2} f\|_p \|(1 + x_n) u_s\|_{\infty} \|\nabla(\overline{\lambda} + A^*)^{-1/2} \phi\|_{p'} \\ &+ \|(1 + x_n) u_s\|_{\infty} \|\frac{1}{1 + x_n} (\lambda + A)^{-1/2} f\|_p \|\nabla(\overline{\lambda} + A^*)^{-1/2} \phi\|_{p'} \\ &= 2 \|(1 + x_n) u_s\|_{\infty} \|\frac{1}{1 + x_n} (\lambda + A)^{-1/2} f\|_p \|\nabla(\overline{\lambda} + A^*)^{-1/2} \phi\|_{p'} \end{aligned}$$

Hardy type inequality

$$\left\| \frac{g}{1+x_n} \right\|_p \le C \|\nabla g\|_p \qquad \text{for } g \in W_0^{1,p}(H).$$

We use Hardy's inequality and Assumption: $||(1+x_n)u_s||_{\infty} \leq \mu$.

$$2\|(1+x_n)u_s\|_{L^{\infty}} \left\| \frac{1}{1+x_n} (\lambda+A)^{-1/2} f \right\|_{L^p} \left\| \nabla (\overline{\lambda}+A^*)^{-1/2} \phi \right\|_{L^{p'}}$$

$$\leq 2\mu \|\nabla (\lambda+A)^{-1/2} f\|_{L^p} \left\| \nabla (\overline{\lambda}+A^*)^{-1/2} \phi \right\|_{L^{p'}}$$

$$\leq 2\mu C \|A^{1/2} (\lambda+A)^{-1/2} f\|_{L^p} \left\| A^{1/2} (\overline{\lambda}+A^*)^{-1/2} f \right\|_{L^{p'}}$$

$$\leq 2\mu C \|f\|_{L^p} \|\phi\|_{L^{p'}}.$$

By duality argument, we obtain

$$\|(\lambda+A)^{-1/2}B(\lambda+A)^{-1/2}f\|_{L^p} \le 2C\mu\|f\|_{L^p}.$$

Therefore choosing μ sufficiently small, we have

$$\|(\lambda+A)^{-1/2}B(\lambda+A)^{-1/2}\|_{\mathcal{L}(J^p)} \le \frac{1}{2}.$$

It follows from the standard theory of Neumann series that

$$\begin{aligned} &\|(\lambda + L)^{-1}\|_{\mathcal{L}(J^{p})} \\ &= \|(\lambda + A + B)^{-1}\|_{\mathcal{L}(J^{p})} \\ &= \|(\lambda + A)^{-1/2}[1 + (\lambda + A)^{-1/2}B(\lambda + A)^{-1/2}]^{-1}(\lambda + A)^{-1/2}\|_{\mathcal{L}(J^{p})} \\ &\leq \|(\lambda + A)^{-1/2}\|_{\mathcal{L}(J^{p})}^{2} \left(\sum_{k=0}^{\infty} \|(\lambda + A)^{-1/2}B(\lambda + A)^{-1/2}\|_{\mathcal{L}(J^{p})}^{k}\right) \\ &< C|\lambda|^{-1} \end{aligned}$$

Conclusion

Main result [Stability theorem for the stationary solution]

Let $n\geq 2$ and $v_0\in J^n(H)$. Then there exist positive constant μ and δ such that if u_s and v_0 satisfy

$$||(1+x_n)u_s||_{\infty} \le \mu, \quad ||v_0||_n \le \delta,$$

(PNS) admits a global strong solution v.

- ullet Main results is proved by L^p-L^q estimates of certain semigroup.
- ullet L^p-L^q estimates are obtained by resolvent estimate.
- Resolvent estimate is shown by using Hardy type inequality and duality argument.

Appendix: Proof of Hardy type inequality

Hardy type inequality

$$\left\| \frac{g}{1+x_n} \right\|_p \le C \|\nabla g\|_p \qquad \text{for } g \in W_0^{1,p}(H).$$

By $g \in W_0^{1,p}(H)$, we see

$$\left\| \frac{g(x)}{1+x_n} \right\|_{p} \le \left\| \frac{g(x', x_n) - g(x', 0)}{1+x_n} \right\|_{p}$$

$$\le \left\| \frac{1}{x_n} \int_{0}^{x_n} \partial_{y_n} g(x', y_n) dy_n \right\|_{p}$$

$$\le C_p \|\partial_{x_n} g(x', x_n)\|_{p}$$

$$\le C_n \|\nabla g\|_{p}.$$