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Variational Principle for Ideal Fluids

• It was Arnold [1966] who first derived motion of incompressible
ideal fluids as the geodesic spray of the group of volume
preserving diffeomorphisms of an oriented Riemaniann manifold
D with respect to the right invariant metric

T (v) =

∫
D

1

2
||v||2 d3x.

• It was shown by Marsden and Ratiu [1999] that Euler equations
for incompressible ideal fluids can be derived in the context of Euler-
Poincaré reduction:

δ

∫ t1

t0

l(ξ(t)) dt = 0,

with δξ = η̇ − [ξ, η], which yields Euler-Poincaré equations

d

dt

∂l

∂ξ
= −ad∗ξ

∂l

∂ξ
.
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•Cendra and Marsden [1987] showed that a variational princi-
ple using Clebsch potentials (see Marsden and Weinstein [1983])
enables us to incorporates the so-called “Lin constraints”.

• Based on Lagrangian semi-direct product theory, it was shown
by Holm, Marsden and Ratiu [1998] that reduced Hamilton’s
principle for a parameter dependent Lagrangian La0 : TG×V ∗ → R,

δ

∫ t1

t0

l(ξ(t), a(t)) dt = 0,

with δξ = η̇ − [ξ, η] and δa = −ηa, yields Euler-Poincaré equa-
tions with advected parameters such that

d

dt

∂l

∂ξ
= −ad∗ξ

∂l

∂ξ
+

∂l

∂a
� a,

where the diamond operator is defined as

� : V × V ∗ → g∗; (v, w) 7→ v � w := ρ∗v(w)

by using a linear map ρv : g → V ; ξ 7→ ρv(ξ) := vξ.
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Dirac Structures

• The notion of Dirac structures was developed by Courant and
Weinstein [1989] and Dorfmann [1987] as a generalized idea of
unifying pre-symplectic and Poisson structures.

• For a smooth manifold P , the duality paring between TP and T ∗P
is given by 〈·, ·〉.

The Pontryagin bundle TP ⊕ T ∗P is endowed with a non-
degenerate symmetric paring:〈〈

(X, α), (X̄, ᾱ)
〉〉

:=
〈
α, X̄

〉
+ 〈ᾱ, X〉

for all X, X̄ ∈ TP and α, ᾱ ∈ T ∗P .

•A Dirac structure DP on P is a subbundle

DP ⊂ TP ⊕ T ∗P

such that DP = D⊥
P , where, for each x ∈ P ,

D⊥
P (x) = {(ux, βx) ∈ TxP × T ∗xP |

αx(ux) + βx(vx) = 0, for all (vx, αx) ∈ DP (x)}.
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Lagrange-Dirac Systems on Lie Groups

•Recall the canonical Dirac structure on P = T ∗G is given by

DP = graph Ω[ or DP = graph B],

and an implicit Lagrangian system (E, DP , X) satisfies

(X,dE|TP ) ∈ DP ,

where X : TQ⊕ T ∗Q → TT ∗G is a partial vector field,

E = 〈p, v〉 − L(g, v)

is the generalized energy on TQ⊕ T ∗Q, and P = FL(TG) ⊂ T ∗G.

•One obtains implicit Euler-Lagrange equations:

ġ = v, ṗ =
∂L

∂g
, p =

∂L

∂v
.

•A solution curve is a curve in TG⊕ T ∗G,

(g(t), v(t), p(t)), t1 ≤ t ≤ t2,

such that (g(t), p(t) = (∂L/∂v)(t)) is an integral curve of the
partial vector field X .
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Hamilton-Pontryagin Principle on Lie Groups

• The Hamilton-Pontryagin principle states the stationary con-
dition of the action functional for curves (g(t), v(t), p(t)), t ∈ [a, b] in
the Pontryagin bundle TG⊕ T ∗G, which is given by

δ

∫ b

a
{L(g(t), v(t)) + 〈p(t), ġ(t)− v(t)〉} dt = 0,

with the endpoints of g(t) fixed.

• This variational principle induces implicit Euler–Lagrange equa-
tions on TG⊕ T ∗G:

p =
∂L

∂v
, ġ = v, ṗ =

∂L

∂g
.

• This Hamilton-Pontryagin principle is quite consistent with the canon-
ical Dirac structure !
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Hamilton-Pontryagin Principle on Lie Groups

• The Hamilton-Pontryagin principle states the stationary con-
dition of the action functional for curves (g(t), v(t), p(t)), t ∈ [a, b] in
the Pontryagin bundle TG⊕ T ∗G, which is given by

δ

∫ b

a
{L(g(t), v(t)) + 〈p(t), ġ(t)− v(t)〉} dt = 0,

with the endpoints of g(t) fixed.

• This variational principle induces implicit Euler–Lagrange equa-
tions on TG⊕ T ∗G:

p =
∂L

∂v
, ġ = v, ṗ =

∂L

∂g
.

• This Hamilton-Pontryagin principle is quite consistent with the canon-
ical Dirac structure !

Let us see how reduction procedure will be going !
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Reduced Hamilton-Pontryagin Principle

• The reduced Hamilton-Pontryagin principle is given by

δ

∫ t2

t1

{l(η(t)) + 〈µ(t), ξ(t)− η(t)〉} dt = 0,

with variations of ξ(t) = ġg−1 in the form

δξ(t) = ζ̇(t)− [ξ(t), ζ(t)],

where ζ(t) = δgg−1 ∈ g satisfies ζ(ti)=0.

• Then, the action functional vanishes for any δη ∈ g, ζ ∈ g and
δµ ∈ g∗ if and only if implicit Euer-Poincaré equations holds:

µ =
δl

δη
, ξ = η, µ̇ = −ad∗ξµ.
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Reduced Hamilton-Pontryagin Principle

• The reduced Hamilton-Pontryagin principle is given by

δ

∫ t2

t1

{l(η(t)) + 〈µ(t), ξ(t)− η(t)〉} dt = 0,

with variations of ξ(t) = ġg−1 in the form

δξ(t) = ζ̇(t)− [ξ(t), ζ(t)],

where ζ(t) = δgg−1 ∈ g satisfies ζ(ti)=0.

• Then, the action functional vanishes for any δη ∈ g, ζ ∈ g and
δµ ∈ g∗ if and only if implicit Euer-Poincaré equations holds:

µ =
δl

δη
, ξ = η, µ̇ = −ad∗ξµ.

• Let us call this reduction procedure Lie-Dirac reduction.
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The H-P Principle with Advected Parameters

•Using this basic construction, we can easily develop the Lie-Dirac
reduction for a parameter dependent Lagrangian La0 :
TG× V ∗ → R by

δ

∫ t1

t0

{l(η(t), a(t)) + 〈µ(t), ξ(t)− η(t)〉} dt = 0,

with variations of ξ = ġg−1 in the form

δξ = η̇ − [ξ, η]

and

δa = −ηa.

• This reduction theory induces the implicit Euer-Poincaré equa-
tions with advected variables as

µ =
δl

δη
, ξ = η, µ̇ = −ad∗ξµ +

∂l

∂a
� a.
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Incompressible Ideal Fluids

• The group of diffeomorphisms G=Diff(D) of a bounded region
D in R3 is a configuration space.

• Set a reference point X∈D, and a current point is denoted by

x = ηt(X) ∈ D,

where ηt : D → D is the diffeomorphism.

• In other words, a motion of a fluid is a family of time-dependent
elements of G, which is written by x = η(X, t).

D

v(x, t)
Trajectory of 

 Fluid Particle
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• The Lagrangian or material velocity field is defined by taking
the time derivative of the motion keeping the particle lable X fixed:

V(X, t) :=
∂η(X, t)

∂t
:=

∂

∂t

∣∣∣∣
X

ηt(X)

while the Eulerian or spatial velocity field is defined by taking
the time derivative of the motion keeping the particle lable x fixed:

v(x, t) := V(X, t) :=
∂

∂t

∣∣∣∣
x
ηt(X).

Thus, the Eulerian velocity v is a time dependent vector field on D,
namely, vt ∈ X(D), where vt(x) := v(x, t).

• The map from the space of (η, η̇) (material velocity) to the space
of v (spatial velocity) is given by

v = η̇ ◦ η−1, i.e., vt = Vt ◦ η−1
t ,

where Vt(X) := V(X, t).
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Implicit Euler-Poincaé Equations

• The reduced Lagrangian l : g× V ∗ → R is given by

l(u, ρ) =

∫
D

1

2
ρu·u d3x =

1

2
〈ρu,u〉 ,

where u ∈ X(D) denote some Eulerian velocity.

• Let us consider the reduced Hamilton-Pontryagin variational
principle in Eulerian coordinates:

δ

∫ t2

t1

∫
D

l(u, ρ) + p(1− ρ) + 〈Π,v − u〉 d3x dt = 0,

with variations of the form (Lin constraints)

δv = ẇ − [v,w] and δ(ρd3x) = −£w(ρd3x) = −∇ · (ρw) d3x,

where v = η̇ ◦ η−1,w = δη ◦ η−1 ∈ X(D) and ρ ⊗ d3x ∈ V ∗ ⊂
T(D)⊗ Den(D) denotes the mass density.

• In the above, we impose the constraint ρ = 1 associated with the
incompressibility by using the Lagrange multiplier p.
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•Notice that the Lagrange multipliers p ∈ V and Π⊗d3x ∈ X(D)∗ =
Ω1(D) ⊗ Den(D) are eventually to be the pressure and the tensor
product of the momentum density.

• The Neumann boundary conditions are given by

δη(x, ti) = 0, for x ∈ D; δη(x, t) · n(x) = 0, for all t1 ≤ t ≤ t2.

• Thus, we can obtain implicit Euler-Poincaré equations for in-
compressible ideal fluids as

(1) Π =
δl

δu
= ρu : Momentum,

(2) ρ = 1 : Incompressibility Constraint,

(3) v = u : Second-order Vector Field,

(4)
∂Π

∂t
+ ad∗v Π = ρ∇

(
1

2
|u|2 − p

)
: Equation of Motion.
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•Of course, by some rearrangements, we can obtain Euler equations
for motion of ideal incompressible fluids:

∂v

∂t
+ (v · ∇)v = −∇ p, ∇v = 0.
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•Of course, by some rearrangements, we can obtain Euler equations
for motion of ideal incompressible fluids:

∂v

∂t
+ (v · ∇)v = −∇ p, ∇v = 0.

•Kelvin’s Circulation Theorem: The implicit Euler-Poincaré
equation preserves the circulation integral I(t) associated to a
Lagrangian loop Ct as

I(t) =

∮
C(u)

u · dx =

∮
C(u)

1

ρ
· δl

δu
=

∮
C(u)

Π

ρ
,

since

d

dt

(∮
C(u)

1

ρ
· δl

δu

)
=

∮
C(u)

∇
(

1

2
|u|2 − p

)
· dx

=

∮
C(u)

d

(
1

2
|u|2 − p

)
= 0.
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Concluding Remarks

•Lagrange-Dirac Systems: We have considered the Hamilton-
Pontryagin principle on Lie groups. We have shown how implicit
Euler-Lagrange equations can be constructed associated with the canon-
ical Dirac structure.

•Lie-Dirac Reduction with Advected Parameters: For the
case in which a Lagrangian is dependent on advected parameters,
we have shown the implicit Euler-Poincaré equations with advected
parameters can be developed from the reduced Hamilton-Pontryagin
principle.

• Incompressible Ideal Fluids: We have demonstrated how the
Lie-Dirac reduction with advected parameters can be applied to in-
compressible ideal fluids and we have also demonstrated how the ideal
fluid dynamics can be formulated in the context of implicit Euler-
Poincaré equations with advected parameters.
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