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The Euler hydrodynamic equation on manifolds

I Let M denote a compact oriented Riemannian manifold with a
metric ( , ) and a volume form µ, i.e., a nonvanishing
differential form of the highest degree n.

I The group G = SDiff (M) of all diffeomorphisms of M
preserving the volume form µ is a Lie group.

I The Lie algebra g = SVect(M) for this group is formed by
divergence-free vector fields on M(tangent to the boundary if
∂M 6= ∅).
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The Euler hydrodynamic equation on manifolds

Definition
The Euler equation of an ideal incompressible fluid on M is the
following evolution equation on the velocity field v of the fluid on
the manifold: 

∂v
∂t = −(v ,∇)v −∇p,

divµv = 0,

(1)

where the second equation means that the field v preserves the
volume form µ. Here p is a time-dependent function on M. The
expression (v ,∇)v denotes the covariant derivative ∇v v of the
field v along itself on M.



The goal of this talk

The goal of this talk is to obtain the generalized Euler equation on
the dual space g∗ of the Lie algebra of divergence-free vector fields
on M using the relation of the covariant and Lie derivates.



Relation of the covariant and Lie derivatives

I Every vector field on a Riemannian manifold defines a
differential 1-form: the pointwise inner product with vectors of
the field. For a vector field v we denote by vb the 1-form
whose value on a tangent vector at a point x is the inner
product of the tangent vector with the vector v(x).

I Every vector field also defines a flow, which transports
differential forms. For instance, one might transport the
1-form corresponding to some vector field by means of the
flow of this field and get a new differential 1-form.

I Infinitesimally this transport is described by the Lie derivative
of the 1-form(corresponding to the field) along the field itself,
and the result is again a 1-form. This natural derivative of a
1-form is related to the covariant derivative of the
corresponding vector field along itself by the following formula.
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Relation of the covariant and Lie derivatives

Theorem
The Lie derivative of the one-form corresponding to a vector field
on a Riemannian manifold differs from the one-form corresponding
to the covariant derivative of the field along itself by a complete
differential:

Lv (vb) = (∇v v)b +
1

2
d〈v , v〉. (2)

Here 〈v , v〉 is the function on the manifold equal at each point x
to the Riemannian square of the vector v(x).



The dual space to the Lie algebra of divergence-free fields

Theorem
For an n-dimensional compact manifold M with boundary ∂M, the
dual space g∗ of the Lie algeba g = SVect(M) of divergence-free
vector fields on M (tangent to ∂M) is naturally isomorphic to the
quotient space Ω1/dΩ0 of all differential 1-forms on M, modulo all
exact 1-forms (i.e., modulo differentials of all functions) on M in
the following sense:



The dual space to the Lie algebra of divergence-free fields

I If α is the differential of a function (α = df ) and v ∈ g, then∫∫
M

ωv ∧ α = 0.

I If
∫∫
M

ωv ∧ α = 0 for all v ∈ g, then the 1-form α is the

differential of a function.

I If
∫∫
M

ωv ∧ α = 0 for all α = df , then v ∈ g(i.e., v is a

divergence-free field on M tangent to ∂M).
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The generalized Euler equation on the dual space
g∗ = Ω1/dΩ0 of the Lie algebra of divergence-free vector
fields on M

Theorem
The Euler equation

∂v

∂t
= −∇v v −∇p (3)

on the Lie algebra g = SVect(M) of divergence-free vector fields is
mapped by the inertia operator A : g→ g∗ to the Euler equation

∂[u]

∂t
= −Lv [u] (4)

on the dual space g∗ = Ω1/dΩ0 of this algebra. Here the field v
and the 1-form u are related by means of the Riemannian metric:
u = vb, and [u] ∈ Ω1/dΩ0 is the coset of the form u.



Proof

The inertia operator A : SVect(M)→ Ω1/dΩ0 sends a
divergence-free field v to the 1-form u = vb considered up to the
differential of a function. By the above theorem, it also sends the
covariant derivate ∇v v to the Lie derivate Lv u modulo the
differential of another function. Hence the Euler equation for the
1-form u assumes the form

∂u

∂t
= −Lv u − df ,

with the function f = p − 1
2〈v , v〉. It is equivalent to equation (4)

for the coset [u].



Thank you for your attentions!


