A remark on the uniqueness of positive solutions to semilinear elliptic equations with double power nonlinearities

Shinji Kawano

(Hokkaido/Waseda)

1 Introduction

$$
\left\{\begin{array}{cl}
\triangle u+f(u)=0 & \text { in } \mathbb{R}^{n}, \quad n \geq 2 \\
u>0 & \text { in } \mathbb{R}^{n} \\
\lim _{|x| \rightarrow \infty} u(x)=0 &
\end{array}\right.
$$

$$
\triangle=\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}
$$

$$
u: \mathbb{R}^{n} \ni x==^{t}\left(x_{1}, \ldots, x_{n}\right) \longrightarrow u(x) \in \mathbb{R}, \quad C^{2}
$$

Double Power:

$$
f(u)=-\omega u+u^{p}-u^{2 p-1}
$$

where $p>1, \quad 0<\omega<\frac{p}{(p+1)^{2}}=: \omega_{p}$.

Remark 1. (Motivation)

The Non Linear Schroedinger equation

$$
\begin{gathered}
(\mathrm{NLS}) ~ \\
i \partial_{t} \psi+\Delta \psi=-|\psi|^{2} \psi+|\psi|^{4} \psi, \\
\psi: \mathbb{R} \times \mathbb{R}^{n} \ni(t, x) \longrightarrow \psi(t, x) \in \mathbb{C} .
\end{gathered}
$$

denotes Boson gas interaction.
Let standing wave solution $\psi(t, x)=e^{i \omega t} u(x)$
with $u>0$, solves (NLS). Then u solves our elliptic equation with $p=3$.

2 Known Results

Theorem 1. (Rad. Sym. of the Sol.)
For any $p>1$ and $\omega>0$, any possible solution to our elliptic problem is radially symmetric with respect to some point.
(Gidas, Ni and Nirenberg '79)
Theorem 2. (Exist. of Sol.)
For any $p>1$ and $0<\omega<\omega_{p}$, there exists at least one solution. (Berestycki and Lions '83)

$$
\begin{cases}u_{r r}+\frac{n-1}{r} u_{r}-\omega u+u^{p}-u^{2 p-1}=0 \text { in }(0, \infty), \\ u>0 & \text { in }[0, \infty), \\ u_{r}(0)=0, & \end{cases}
$$

$\lim _{r \rightarrow \infty} u(r)=0$.

$$
u:[0, \infty) \ni r \longrightarrow u(r) \in \mathbb{R}, \quad C^{2} .
$$

Theorem 3. (Nature of the rad. sol.)

$$
\begin{gathered}
u^{\prime}<0 \text { in }(0, \infty), \\
\lim _{r \rightarrow \infty} u^{\prime}(r)=0, \\
\lim _{r \rightarrow \infty} \frac{u^{\prime}(r)}{u(r)}=-\sqrt{\omega},
\end{gathered}
$$

u has exp. decay at infty.,
(Peletier and Serrin '83)

Remark 2. (Non Exist. of Sol.)
For any $p>1$ and $\omega \geq \omega_{p}$, there can not exist a solution. (Peletier and Serrin '83)

Proof. Remark that $\omega \geq \omega_{p}$ is equivalent to $F(u):=\int_{0}^{u} f(s) \leq 0$ for any $u>0$.
Assume that there exists a sol. u.
For the Energy

$$
E(r):=\frac{u^{\prime}(r)^{2}}{2}+F(u(r)),
$$

We have

$$
\begin{gathered}
E^{\prime}(r)=u^{\prime \prime}(r) u^{\prime}(r)+f(u) u^{\prime}(r)=-\frac{n-1}{r} u^{\prime}(r)^{2}, \\
\lim _{r \rightarrow \infty} E(r)=0 .
\end{gathered}
$$

These facts assert $E(0)=F(u(0))>0$.

Theorem 4. (Uniqueess)
The solution is unique for ω which is 'sufficiently close' to ω_{p} with any $p>1$. (Mizumachi)

Proof. Using perturbation theory.
Remark 3. Uniqueness of rad. sol. in bouded domain is proved by Ouyang and Shi '98.

3 Main Result

Theorem 5. The solution is unique for

$$
a_{p}:=\frac{p(7 p-5)}{4(p+1)(2 p-1)^{2}} \leq \omega<\omega_{p}
$$

with any $p>1$.

4 Outline of Proof

Lemma 1. The condition $a_{p} \leq \omega$ is equivalent to

$$
\alpha \leq \beta
$$

where $\alpha=\left[\frac{p}{2(2 p-1)}\right]^{\frac{1}{p-1}}$ is the unique inflection of our nonlinearity f and
$\beta=\left[\frac{p}{p+1}\left(1-\sqrt{1-\frac{(p+1)^{2}}{p} \omega}\right)\right]^{\frac{1}{p-1}}$ is the first
zero of the integral F.

Lemma 2. (Peletier and Serrin '83)
Let f satisfy the following condition;

$$
G(u):=\frac{f(u)}{u-\beta} \text { is nonincreasing in }(\beta, c)
$$

where $c=\left[\frac{1+\sqrt{1-4 \omega}}{2}\right]^{\frac{1}{p-1}}$ is the second zero of the nonlinearity f.
Then our ODE has exactly one positive solution.

Proof. (of the Theorem.)

It is enough to show that if $\alpha \leq \beta$, then
$G^{\prime}(u)(u-\beta)^{2}=f^{\prime}(u)(u-\beta)-f(u):=k(u) \leq 0$
We calculate the derivative of $k(u)$

$$
k^{\prime}(u)=f^{\prime \prime}(u)(u-\beta),
$$

and note that

$$
\begin{array}{ll}
f^{\prime \prime}(u)>0 & \text { in }(0, \alpha) ; \\
f^{\prime \prime}(u)<0 & \text { in }(\alpha, \infty) .
\end{array}
$$

So if $\alpha \leq \beta$, then $k^{\prime}(u)<0$ in (β, c),

i.e. k is decreasing in the interval.

Therefore

$$
k(u)<k(\beta)=-f(\beta)<0 \quad \text { for any } u \in(\beta, c) .
$$

This completes the proof.

5 Remark

If $\alpha>\beta$, we need to check that $k(\alpha) \leq 0$, i.e.

$$
\begin{equation*}
\frac{\alpha f^{\prime}(\alpha)-f(\alpha)}{f^{\prime}(\alpha)} \leq \beta \tag{1}
\end{equation*}
$$

This condition provides an implicit relation between ω and p. Besides,

Remark 4. The condition (1) does not cover all $\omega \in\left(0, \omega_{p}\right)$. That is for ω close to zero,

$$
\frac{\alpha f^{\prime}(\alpha)-f(\alpha)}{f^{\prime}(\alpha)}>\beta
$$

Proof. The left hand side is estimated from below as

$$
\begin{aligned}
\frac{\alpha f^{\prime}(\alpha)-f(\alpha)}{f^{\prime}(\alpha)} & =\frac{(p-1) \alpha^{p}\left(1-2 \alpha^{p-1}\right)}{-\omega+p \alpha^{p-1}-(2 p-1) \alpha^{2(p-1)}} \\
& >\frac{(p-1) \alpha^{p}\left(1-2 \alpha^{p-1}\right)}{p \alpha^{p-1}-(2 p-1) \alpha^{2(p-1)}}>0,
\end{aligned}
$$

for all $\omega \in\left(0, \omega_{p}\right)$, whereas the right hand side β decreases to zero as ω decreases to zero.

