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1 Introduction
4u + f(u) = 0 in Rn, n ≥ 2,

u > 0 in Rn,

lim
|x|→∞

u(x) = 0.

4 =
n∑

j=1

∂

∂xj
,

u : Rn 3 x =t (x1, . . . , xn) −→ u(x) ∈ R, C2.



Double Power:

f(u) = −ωu + up − u2p−1,

where p > 1, 0 < ω <
p

(p + 1)2
=: ωp .



Remark 1. (Motivation)

The Non Linear Schroedinger equation

(NLS) i∂tψ + 4ψ = −|ψ|2ψ + |ψ|4ψ,

ψ : R × Rn 3 (t, x) −→ ψ(t, x) ∈ C.

denotes Boson gas interaction.

Let standing wave solution ψ(t, x) = eiωtu(x)
with u > 0, solves (NLS). Then u solves our

elliptic equation with p = 3.



2 Known Results
Theorem 1. (Rad. Sym. of the Sol.)

For any p > 1 and ω > 0, any possible solution

to our elliptic problem is radially symmetric with

respect to some point.

(Gidas, Ni and Nirenberg ’79)

Theorem 2. (Exist. of Sol.)

For any p > 1 and 0 < ω < ωp, there exists at

least one solution. (Berestycki and Lions ’83)




urr +

n − 1
r

ur − ωu + up − u2p−1 = 0 in (0,∞),

u > 0 in [0,∞),
ur(0) = 0,

lim
r→∞

u(r) = 0.

u : [0,∞) 3 r −→ u(r) ∈ R, C2.



Theorem 3. (Nature of the rad. sol.)

u′ < 0 in (0,∞),

lim
r→∞

u′(r) = 0,

lim
r→∞

u′(r)
u(r)

= −
√

ω,

u has exp. decay at infty.,

(Peletier and Serrin ’83)



Remark 2. (Non Exist. of Sol.)

For any p > 1 and ω ≥ ωp, there can not exist a

solution. (Peletier and Serrin ’83)

Proof. Remark that ω ≥ ωp is equivalent to

F (u) :=
∫ u

0
f(s) ≤ 0 for any u > 0.

Assume that there exists a sol. u.

For the Energy

E(r) :=
u′(r)2

2
+ F (u(r)),



We have

E′(r) = u′′(r)u′(r)+f(u)u′(r) = −n − 1
r

u′(r)2,

lim
r→∞

E(r) = 0.

These facts assert E(0) = F (u(0)) > 0.



Theorem 4. (Uniqueess)

The solution is unique for ω which is ’sufficiently

close’ to ωp with any p > 1. (Mizumachi)

Proof. Using perturbation theory.

Remark 3. Uniqueness of rad. sol. in bouded

domain is proved by Ouyang and Shi ’98.



3 Main Result
Theorem 5. The solution is unique for

ap :=
p(7p − 5)

4(p + 1)(2p − 1)2
≤ ω < ωp

with any p > 1.



4 Outline of Proof
Lemma 1. The condition ap ≤ ω is equivalent

to
α ≤ β,

where α =
[

p
2(2p−1)

] 1
p−1

is the unique inflection

of our nonlinearity f and

β =
[

p
p+1

(
1 −

√
1 − (p+1)2

p ω

)] 1
p−1

is the first

zero of the integral F .



Lemma 2. (Peletier and Serrin ’83)

Let f satisfy the following condition;

G(u) :=
f(u)
u − β

is nonincreasing in (β, c),

where c =
[

1+
√

1−4ω
2

] 1
p−1

is the second zero of

the nonlinearity f .

Then our ODE has exactly one positive solution.



Proof. (of the Theorem.)

It is enough to show that if α ≤ β, then

G′(u)(u−β)2 = f ′(u)(u−β)−f(u) := k(u) ≤ 0 in (β, c).

We calculate the derivative of k(u)

k′(u) = f ′′(u)(u − β),

and note that

f ′′(u) > 0 in (0, α);

f ′′(u) < 0 in (α,∞).



So if α ≤ β, then k′(u) < 0 in (β, c),
i.e. k is decreasing in the interval.

Therefore

k(u) < k(β) = −f(β) < 0 for any u ∈ (β, c).

This completes the proof.



5 Remark
If α > β, we need to check that k(α) ≤ 0, i.e.

αf ′(α) − f(α)
f ′(α)

≤ β. (1)

This condition provides an implicit relation

between ω and p. Besides,



Remark 4. The condition (1) does not cover all

ω ∈ (0, ωp). That is for ω close to zero,

αf ′(α) − f(α)
f ′(α)

> β.

Proof. The left hand side is estimated from

below as



αf ′(α) − f(α)
f ′(α)

=
(p − 1)αp(1 − 2αp−1)

−ω + pαp−1 − (2p − 1)α2(p−1)

>
(p − 1)αp(1 − 2αp−1)

pαp−1 − (2p − 1)α2(p−1)
> 0,

for all ω ∈ (0, ωp), whereas the right hand side

β decreases to zero as ω decreases to zero.


