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0. Motivation

• Object:

Dynamics of viscous, incompressible fluids subject to a random external

forcing.

• The most studied model so far:

A stochastic PDE called the stochastic Navier-Stokes eq.(SNS):

• The stochastic power law fluids (SPLF)p, p > 0 are generalization

of (SNS) such that:

(SPLF)p =

{
(SNS) for p = 2,
stochastic non-Newtonian fluid for p 6= 2.

(“shear thinning” for p < 2, “shear thickening” for p > 2).



Newtonian vs. non-Newtonian fluids

• u = (uj)
d
j=1: the velocity field of the fluid.

• The force exerted to the fluid per volume is given by:

−∇Π + div τ ∈ Rd,

where

Π = Π(u) ∈ R (pressure)
τ = τ(u) ∈ Rd ⊗ Rd (extra stress)

div τ =
(∑d

j=1 ∂jτij

)d

i=1
∈ Rd (friction)

• τ(u) is a function of the (symmetrized) velocity gradient:

e(u) =

(
∂iuj + ∂jui

2

)
∈ Rd ⊗ Rd.



• Newtonian fluids (e.g., air, water,...) are characterized by:

Stokes’ law: τ(u) = 2νe(u) (ν = viscosity > 0).

This, together with div u = 0 implies that:

div τ(u) = ν∆u (⇒ Navier-Stokes eq.).

• More generally, the viscosity can be variable in |e(u)|:

τ(u) = 2 F (|e(u)|)︸ ︷︷ ︸
viscosity > 0

e(u).

Many non-Newtonian fluids (F 6≡const.) are applied in science and

engineering. Typical ones are:

• Shear thinnig fluid: (F is ↘ in |e(u)|)
automobile engine oil, pipelines for crude oil,...

• Shear thickening fluid: (F is ↗ in |e(u)|)
bullet proof vests, automobile 4WD systems,...



• PDE results for non-Newtonian fluids:

[ Málek, Nec̆as, Rokyta, R
◦
uz̆ic̆ka, 1996 ]

∃ sol. and ∃1 sol. in some cases.



Plan for the rest of the talk:

1. The stochastic power law fluid (SPLF)

2. The existence thm for a weak solution

3. The proof of the existence thm

4. Future works



1. The stochastic power law fluid (SPLF)

• Container of the fluid:

I Td = (R/Z)d ∼= [0,1]d

Given the velocity field u = (uj)
d
j=1, the extra stress is given by:

I τ(u) = 2 (1 + |e(u)|2)
p−2
2︸ ︷︷ ︸

viscosity

e(u) : Td → Rd ⊗ Rd,

with p ∈ (1,∞).

Note

p


< 2 “shear thinning”
= 2 “Newtonian”
> 2 “shear thickening”



• SPDE for Stochastic Power Law Fluids:

I u = (ui(t, x))
d
i=1: velocity of the fluid,

I Π = Π(t, x): pressure,

I W = (Wi(t, x))
d
i=1: BM in L2(Td → Rd), trace class cov., div W = 0.

I (SPLF)p:

2) div u = 0 (imcompressible);

2’) ∂tu + (u · ∇)u︸ ︷︷ ︸
“acceleration”

= −∇Π + div τ(u)︸ ︷︷ ︸
“friction”

+∂tW.

(SPLF)p =

{
(SNS) for p = 2,
stochastic non-Newtonian fluid for p 6= 2.



2. The existence thm for the weak solution.

• Test Functions:

I V = “div-free smooth vector fields”

= {v : Td → Rd ; trigono. polynom.,div v = 0}.

• Spaces of the solutions:

I Vp,α = “Sobolev space. of div-free vector. fields”

= ‖ · ‖p,α-completion of V,

where p ∈ [1,∞), α ∈ R and:

‖v‖p
p,α =

∫
Td

|(1 − ∆)α/2v|p.



• The weak solution:

I µ0 ∈ P(V2,0) = prob.’s on V2,0.

I (u, W ) = ((ut, Wt))t≥0 : a process s.t.

u ∈ Lp,loc(R+ → Vp,1)
⋂

L∞,loc(R+ → V2,0)
⋂

C(R+ → Vp′∧2,−β), ∃β > 0,

W : BM in V2,0, trace class cov. Γ.

I (u, W ) is a weak sol. to (SPLF)p with init. law µ0, if:

3) P (u0 ∈ ·) = µ0 ,

3’) 〈 ϕ, ut − u0 〉 =
∫ t

0
(〈 us, (us · ∇)ϕ 〉 − 〈 e(ϕ), τ(us) 〉) ds + 〈 ϕ, Wt 〉, ∀ϕ ∈ V.

Remark: 2),2’)
IBP
=⇒ 3’), when Π disappears, since

〈 ϕ,∇Π 〉 = −〈 div ϕ,Π 〉 = 0.



Theorem 1 Suppose:

• p ∈ ∃Id (e.g., I2 = (3/2,∞), I3 = (9/5,∞), I4 = (2,∞),...)

• µ0 ∈ P(V2,1),
∫
‖v‖22,1µ0(dv) < ∞.

• ∆Γ = Γ∆, {Γ,Γ∆} ⊂ trace class.

Then, ∃ weak sol. (u, W ) to (SPLF)p with init. law µ0. Moreover,

E

[
sup
t≤T

‖ut‖22 +
∫ T

0
‖ut‖p

p,1dt

]
≤ (1 + T )C < ∞.



Remarks:

• d = 2,3, p = 2 ⇒ result for SNS cf. [Flandoli 2008] and ref.’s therein.

• W ≡ 0 ⇒ PDE result [ Málek et al. ’96 ].

• Pathwise uniqueness: OK for p ≥ d+2
2 .

(looks VERY hard for p < d+2
2

, e.g. 3D NS.)



Technical difference: (S)PLF ↔ (S)NS

• (S)PLF is Lp (Banach sp.)-theory as opposed to L2 (Hilbert sp.)-

theory for (S)NS.

• Extra non-linearity in the friction term div τ(u): the proofs of some a

priori bounds are much harder to get.



3. The proof of the existence thm.

Step 1 (Galerkin approximation)

• Set up finite dim. subspaces V(n) ↗ V.

• Solve an approximating eq. “(SPLF)p,n” in V(n).
⇒ ∃1 sol. u(n) ∈ V(n).

Step 2 (A priori bds)

• Establish some a priori bds for u(n) unif in n, e.g.,

sup
n≥1

E

[
sup
t≤T

‖u(n)
t ‖22 +

∫ T

0
‖u(n)

t ‖p
p,1dt

]
≤ (1 + T )C < ∞.

Technique:
Itô calculus, Martingale ineq.’s (e.g.,B-D-G),
Sobolev imbedding.



Step 3 (Tightness)

• Prove the tightness (i.e, relative compactness of the laws) of u(n),

n ≥ 1 in Sobolev sp.’s of the form:

X = Lp1,α1([0, T ] → Vp2,α2)

so that

u(n) n→∞−→ ∃u in law along a subseq.

To this end, we choose a subspace X1 ⊂ X s.t.

a) X1 ↪→ X compactly (cpt imbedding thm’s for Sobolev sp’s).

b) ∃δ > 0, sup
n

E[‖u(n)‖δ
X1

] ≤ CT (A priori bds used here).



a) X1 ↪→ X compactly (cpt imbedding thm’s for Sobolev sp’s).

b) ∃δ > 0, sup
n

E[‖u(n)‖δ
X1

] ≤ CT (A priori bds used here).

Then, the desired tightness in X can be seen as follows:

{u ∈ X1 ; ‖u‖X1
≤ R}

a)
⊂⊂ X,

sup
n

P (‖u(n)‖X1
> R)

Chebyshev
≤

supn E[‖u(n)‖δ
X1

]

Rδ

b)
≤

CT

Rδ
R→∞−→ 0.



Step 4 (Verification of SPDE)

• By Step 3,

u(n) n→∞−→ ∃u in law along a subseq.

Then, ∃ BM W s.t. (u, W ) is a w-sol. to (SPLF)p.



4. Future works

• Invariant measure

(an example of “non-equilibrium steady state”)

• Ergodicity

(a starting point to discuss the turbulence)

• (In the distant future ??)

Approach to Kolmogorov’s K41 theory,

Onsager conjecture


