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0. Motivation

e Object:
Dynamics of viscous, incompressible fluids subject to a random external
forcing.

e T he most studied model so far:
A stochastic PDE called the stochastic Navier-Stokes eq.(SNS):

e The stochastic power law fluids (SPLF),, p > 0 are generalization
of (SNS) such that:

(SNS) for p = 2,

(SPLF)p = { stochastic non-Newtonian fluid for p # 2.

(“shear thinning” for p < 2, “shear thickening” for p > 2).



Newtonian vs. non-Newtonian fluids
o u= (uj);i:l: the velocity field of the fluid.

e [ he force exerted to the fluid per volume is given by:
—VN + div r € RY,

where

M M(u) e R (pressure)
T 7(u) € R4 @ R (extra stress)

d
divr = (zgzlaﬂj) , €R? (friction)

1=

e 7(u) is a function of the (symmetrized) velocity gradient:

s 4 O
e(u) = < Zu]g ‘7u7’> e RY @ R?.




e Newtonian fluids (e.g., air, water,...) are characterized by:
Stokes’ law: 7(u) = 2ve(u) (v = viscosity > 0).
This, together with divu = 0 implies that:
div 7(u) = vAu (= Navier-Stokes eq.).
e More generally, the viscosity can be variable in |e(u)]:
r(w) =2 F(le(@)]) e(w).

viscosﬁy >0

Many non-Newtonian fluids (I #const.) are applied in science and
engineering. Typical ones are:

e Shear thinnig fluid: (F is \, in |e(u)])
automobile engine oil, pipelines for crude oil,...

e Shear thickening fluid: (F is 7 in |e(u)|)
bullet proof vests, automobile 4WD systems,...



e PDE results for non-Newtonian fluids:
[ Malek, NeCas, Rokyta, RuZzicka, 1996 ]
4 sol. and 41 sol. in some cases.



Plan for the rest of the talk:

1. The stochastic power law fluid (SPLF)
2. The existence thm for a weak solution
3. The proof of the existence thm

4. Future works



1. The stochastic power law fluid (SPLF)

e Container of the fluid:

» T¢ = (R/Z)? £ [0, 1]4

Given the velocity field u = (uj);lzl, the extra stress is given by:
—2
b r(u) =2 (14 le(w)|D) 2 e(u) : T - R @ R,
viscgsity
with p € (1, 00).

Note

< 2 ‘“shear thinning”
pe =2 “Newtonian”
> 2 ‘'shear thickening”



e SPDE for Stochastic Power Law Fluids:

» u = (u;(t,x))%_;: velocity of the fluid,
» 1 =T1(¢t,xz): pressure,
» W = (W;(t,z))¢_;: BM in L?(T¢ — R?), trace class cov., div W = 0.

» (SPLF)y:
2) divu =0 (imcompressible);

2y Gu+ (u-V)u = —VN+ divr(u) +oW.
“3cceleration” “friction”

(SNS) for p = 2,

(SPLF)p = { stochastic non-Newtonian fluid for p # 2.



2. The existence thm for the weak solution.

e Test Functions:

> )V “div-free smooth vector fields"”

= {v: T¢ — R?: trigono. polynom.,div v = 0}.

e Spaces of the solutions:

» Vpha = "Sobolev space. of div-free vector. fields”

| - ||p,a-completion of V,

where p € [1,00), o € R and:

[olha = [ 101 =2)20p.



e [ he weak solution:

» uo € P(Vog) = prob.’s on Vo .

» (u, W) = ((ug, Wi))e>0 - @ process s.t.

u € LpiocRy = Vp1) [ Loojoc(Ry — V20) (VC(R4 — Vo _5), 38 >0,
W BMin V;q, trace class cov. T.

» (u,W) is a weak sol. to (SPLF), with init. law pq, if:

3) P(up€-) =po .

3) (pur—uo) = [ (us, (us - 9)p) — {e(g), 7(us) V) ds + (9, W), Vo € V.

@)

Remark: 2),2') II=3:> 3'), when 1 disappears, since

(p,VI) = —(divep, ) =0.

T



Theorem 1 Suppose:

o pc 3, (eqg. In=(3/2,00), Is=(9/5,00), In = (2,00),...)
o o € P(Va1), [ lvl3 1p0(dv) < oo

o Al =TA, {I A} C trace class.

Then, 3 weak sol. (u, W) to (SPLF), with init. law pg. Moreover,

E

T
sup ||u|3 +/ | 1dt] <(1+T)C < 0.
t<T 0 ’



Remarks:

e d=2,3, p=2 = result for SNS cf. [Flandoli 2008] and ref.'s therein.

o W =0 = PDE result [ Malek et al. '96 ].

e Pathwise uniqueness: OK for p > CH‘TQ.

(looks VERY hard for p < 442, e.g. 3D NS.)



Technical difference: (S)PLF — (S)NS

e (S)PLF is L, (Banach sp.)-theory as opposed to Lo, (Hilbert sp.)-
theory for (S)NS.

e Extra non-linearity in the friction term div 7(u): the proofs of some a
priori bounds are much harder to get.



3. The proof of the existence thm.

Step 1 (Galerkin approximation)

e Set up finite dim. subspaces p(n) V.

e Solve an approximating eq. “(SPLF),," in V(.
= 31 sol. u(™ ¢ p(n)

Step 2 (A priori bds)

e Establish some a priori bds for (™) unif in n, €.9.,

T
sup E |sup [|ul™2 +/ Ju{™ | dt| < (1+T)C < oo.
n>1 t<T 0 ’
Technique:

Itd calculus, Martingale ineq.’s (e.qg.,B-D-G),
Sobolev imbedding.



Step 3 (Tightness)

e Prove the tightness (i.e, relative compactness of the laws) of u(m)
n > 1 in Sobolev sp.’'s of the form:

X = Lp1,a1([oaT] — Vp2>042)
so that
w{™) "=%° 3, in law along a subseq.

To this end, we choose a subspace X1 C X s.t.

a) X1 — X compactly (cpt imbedding thm’s for Sobolev sp’s).

b) 36 > O, sup E[||u(n)||§(1] < C7 (A priori bds used here).
n



a) X1 — X compactly (cpt imbedding thm's for Sobolev sp’s).

b) 35 > 0, sup E[||u(")||§(1] < C7 (A priori bds used here).
n

Then, the desired tightness in X can be seen as follows:

a)
{u € Xq; ||u||X1 < R} CC X,
Chebyshev  supy, E[|[u{™||% ]

(n) <
Sl?*'%p P(H’LL HXl > R) =~ RO
b)
2 CT R—>o>o 0.




Step 4 (Verification of SPDE)

e By Step 3,

(™ "= 3, in law along a subseq.

Then, 3 BM W s.t. (u,W) is a w-sol. to (SPLF),.



4. Future works

e Invariant measure
(an example of “non-equilibrium steady state”)

e Ergodicity
(a starting point to discuss the turbulence)

e (In the distant future 77)
Approach to Kolmogorov's K41 theory,
Onsager conjecture



