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Geophysical flows

Wakes of Canaries Island (Nasa)

 Planetary rotation

 Stable stratification

Brunt-Väisälä frequency:
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Counter-rotating vortex pair

Leweke & Williamson (1998)

 Zigzag instability 
(antisymmetric bending)

 Crow instability 
(symmetric bending) 
 Elliptic instability 
(antisymmetric core 
 deformation) 

homogeneous fluid            stably stratified fluid

z

(Billant & Chomaz, 2000)



Zigzag instability of a counter-rotating
vortex pair in a strongly stratified fluid

z

density 



Co-rotating vortex pair

 Zigzag instability 
(symmetric bending of 
the whole vortex)

 Elliptic instability
(antisymmetric core
deformation)

homogeneous fluid     stratified fluid



Co-rotating vortex pair

Meunier & Leweke (2001)

 Zigzag instability 
(symmetric bending of the whole 
vortex)

 Elliptic instability 
(antisymmetric core 
 deformation) 

homogeneous fluid stratified fluid



Quasi-Geostrophic fluids:
(Strong stratification and rapid rotation)

Dritschel &
de la Torre Juàrez
(1996)

b



Random configuration of vertical vortices in a
stratified fluid (DNS, Fh=0.8, Re=1060, Ro=Ro=∞)∞)

Deloncle (2007)



Question:

Why different 3D instabilities are observed in
stratified-rotating fluids compared to homogeneous
fluids ?



Theoretical approach

Hypotheses:

- Inviscid fluid

- well-separated vortices : b >> R

- bending deformations

- long-wavelength : λ >> R
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Theoretical approach

Hypotheses:

- Inviscid fluid

- well-separated vortices : b >> R

- bending deformations

- long-wavelength : λ >> R

- stratified and rotating fluid

λ

b

 radius R

=> Vortex 
filaments 
method 

=> The Helmholtz theorem  (vortex lines=material lines) is not valid

=> The Kelvin theorem  (conservation of the circulation) is not valid



Asymptotic stability analysis

 Base flow:
(near each vortex core)

 Perturbation:

 single
axisymmetric vortex

Straining flow due to the
companion vortex

Expansion with the small parameters:



λ

b

Results

Similar to the equations for vortex
filaments in homogeneous fluid
(Crow 1970; Jimenez 1975;
Robinson & Saffman 1982)



Results

Self-induction
! Effect of the vortex on itself



Results

Self-induction

Advection of  the perturbation of vortex 1 
by the basic flow of vortex 2

Strain



Results

Self-inductionStrain
Mutual Induction

Advection of vortex 1 by the
perturbation of vortex 2



Results

Self-inductionStrain
Mutual Induction

The nature of the fluid enters the
problem only through



Self-induction in homogeneous fluid

ω<0 ⇒ Self-induced rotation opposite
to the direction of rotation of the vortex

Widnall et al (1971), Moore & Saffman (1972),
Leibovich  et al (1986)



Self-induction in stratified and rotating fluid



Self-induction in stratified and rotating fluid

            =>  Self-induced rotation in the same 
direction of rotation as the vortex



Self-induction in stratified and rotating fluid

            =>  Self-induced rotation in the same 
direction of rotation as the vortex

⇒ damping due to a singularity
where



Vertical vorticity of the perturbation

Critical layer

viscous critical layer analysis  =>



Self-induction in stratified and rotating fluid

            =>  Self-induced rotation in the same 
direction of rotation as the vortex

⇒ damping due to a singularity
where



vortex filament

Biot-Savart law

Simple explanation for the sign of the self-
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vortex filament

Biot-Savart law

Simple explanation for the sign of the self-
induction

Homogeneous fluid Quasigeostrophic fluid

Biot-Savart law

Miyazaki et al (2000)

Potential vorticity :

Vortex line

of potential vorticity



vortex filament

Biot-Savart law

Simple explanation for the sign of the self-
induction

Homogeneous fluid Quasigeostrophic fluid

Biot-Savart law

Miyazaki et al (2000)

Potential vorticity :

Vortex line

of potential vorticity



Mutual-induction functions

Homogeneous
Fluid (Crow 1970)

Stratified and rotating
fluid

1st function

2nd function

Conditions of validity:

- whatever Ro

-



Stability  of a counter-rotating vortex pair

Symmetric mode Antisymmetric mode 



Antisymmetric mode:

Stability  of a counter-rotating vortex pair
in homogeneous fluid

Symmetric mode

(Crow 1970)

stable



Antisymmetric mode:

Stability  of a counter-rotating vortex pair in
a strongly stratified fluid

Symmetric mode

stable



Antisymmetric mode:

Origin of the exchange of stability ?

Symmetric mode

For very long wave: 

Unstable if Unstable if 



counter-rotating vortex pair: Effect of the
Rossby number

Theory

numerical
stability
analysis 
(512x640)

Property of the zigzag instability:



Co-rotating vortex pair: Comparison
theory/numeric

Numerical stability
analysis
(Otheguy etal, 2006)

TheoryCritical
layer



Equation for the vortex m

Stability of the Von Stability of the Von Karman Karman Street in a stratifiedStreet in a stratified
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Equation for the vortex m

Stability of the Von Stability of the Von Karman Karman Street in a stratifiedStreet in a stratified
and rotating fluidand rotating fluid

b

b/2

h

+¡
-¡

Strain (1st row)   + Mutual Induction 
       (1st row)

Strain (2nd row)

Mutual Induction
      (2nd row)

Self-induction



Is the theory valid ? : Is the theory valid ? : Comparison theory/numeric

Theory

numerical
stability
analysis 
(512x640)



ConclusionsConclusions

 General approach to look at the instabilities due to vortex 
    interactions in stratified and rotating fluids (equivalent to vortex 
    filaments approach)

  The reversal of the sign of the self-induction function explains 
why different bending instabilities are observed in stratified-rotating 
fluids/ homogenous fluids 







Theoretical approach

Hypotheses:

- Inviscid fluid

- well-separated vortices : b >> R
b

 radius R


