Internatinal Conference on Mathematical Fluid Dynamics March 10-13, 2010 (Mar 13) 63 bldg. Nishi-Waseda Campus Waseda University, Tokyo, Japan

### Lagrangian approach to wave interactions on vortices and weakly nonlinear stability of an elliptical flow

#### Yasuhide Fukumoto

Faculty of Mathematics, Kyushu University, Fukuoka, Japan

with

#### **Makoto Hirota**

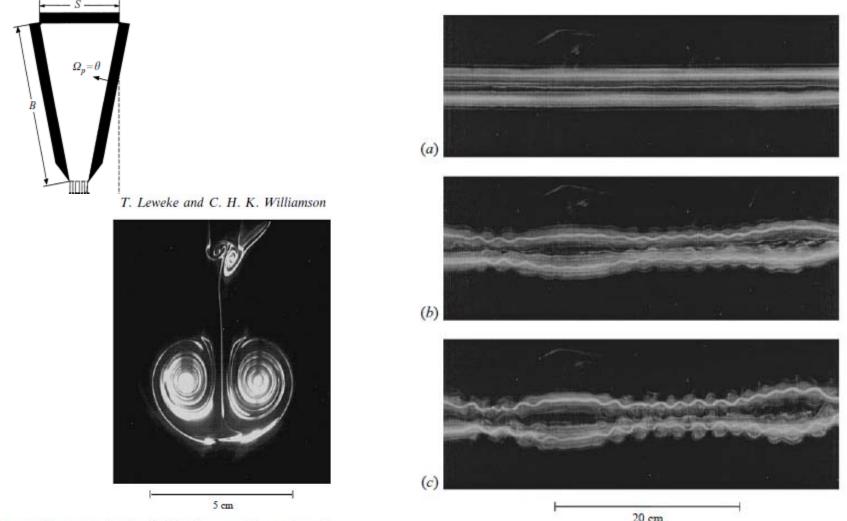
Japan Atomic Energy Agency

Youichi Mie

Graduate School of Mathematics, Kyushu University, Japan

### Instability of an anti-parallel vortex pair

#### Leweke & Williamson: J. Fluid Mech. 360 (1998) 85



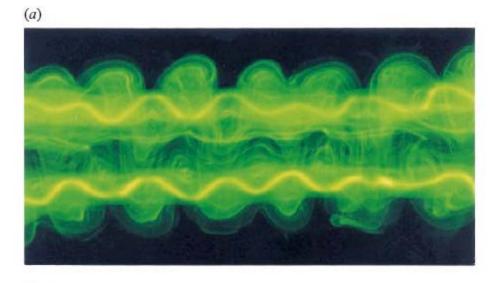


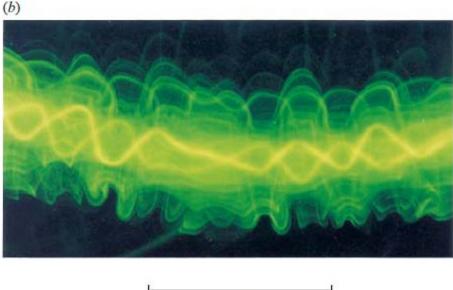
plane perpendicular to the vortex axes shortly after the end of FIGURE 4. Visualization of vortex pair evolution under the combined action of long-wavelength (Crow) and short-wavelength instabilities. Re = 2750. The pair is moving towards the observer. (a)  $t^* = 1.7$ , (b)  $t^* = 5.6$ , (c)  $t^* = 6.8$ .

#### Cooperative elliptic instability of a vortex pair

### Close-up views of the short-wave instability

#### Leweke & Williamson: J. Fluid Mech. **360** (1998) 85





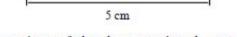


FIGURE 5. Simultaneous close-up views of the short-wavelength vortex pair perturbation in figure 4(c) from two perpendicular directions. Re = 2750,  $t^* = 6.8$ . (a) Front view (pair moving towards observer), (b) side view (pair moving down). The phase relation between the two vortices is clearly visible.

# Weakly nonlinear stability of an elliptically strained vortex tube: Eulerian treatment

Sipp: *Phys. Fluids* **12** (2000) 1715 Waleffe: *PhD Thesis* (1989)

Lamb-Oseen vortex in a straining field

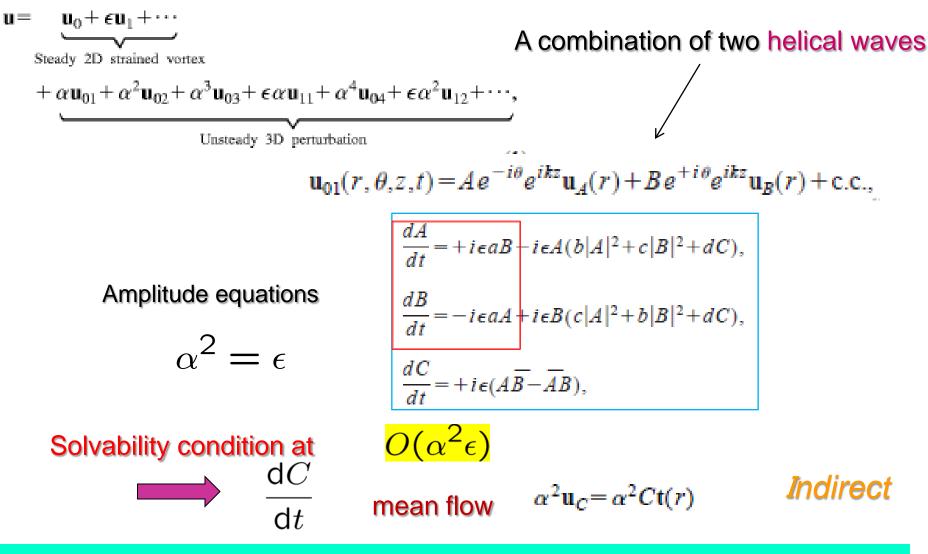
 $\mathbf{u}_{0}(r) = [0, r\Omega(r), 0],$  (2)

$$\mathbf{u}_1(r,\theta) = [f/r\sin 2\theta, 1/2df/dr\cos 2\theta, 0], \tag{3}$$

 $u_0(r)$  represents the velocity field associated with the axisymmetrical vortex,  $\Omega(r)$  designating the angular rotation. For a Lamb–Oseen vortex

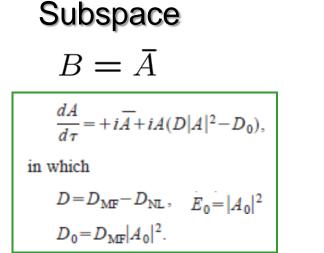
$$\Omega(r) = \frac{1 - \exp(-r^2)}{r^2}.$$
 (4)

### Eulerian treatment Sipp: Phys. Fluids 12 (2000) 1715



Mean field exists without ellitical deformation and at any wavenumber k!

### Eulerian treatment Sipp: Phys. Fluids 12 (2000) 1715



#### Hamiltonian normal form

Knobloch, Mahalov & Marsden *Physica* D **73** (1994) 49

Energy of excited wave at  $O(\alpha^2) |A|^2 + C' = E_0$ .



Mie & Y. F. (2010)

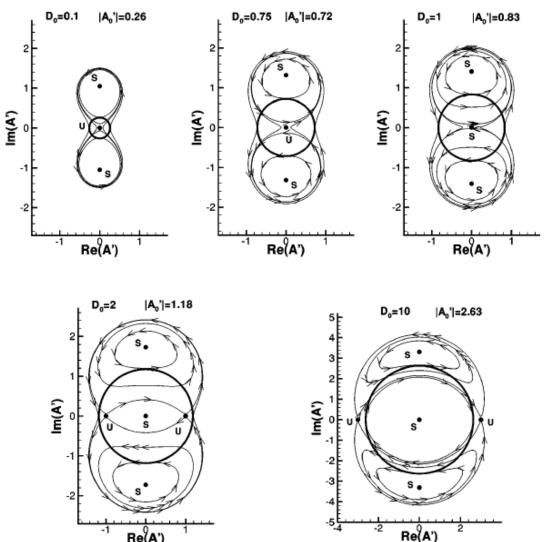


FIG. 6. Trajectories in the phase space projected on a plane C''=cte in the cases  $D_0=0.1$ , 0.75, 1,2, 10. The circle in each figure represents the initial allowable conditions  $A'_0$ . Case k=2.261.

# Contents

### 1. Introduction

#### 2. Influence of a pure shear on spectra of Kelvin waves

Linear stability

Moore & Saffman ('75), Tsai & Widnall ('76)

Eloy & Le Dizés ('01),

Y. F. ('03) Solvable model : an exact representation of spectra

### 3. Energy of Kelvin waves

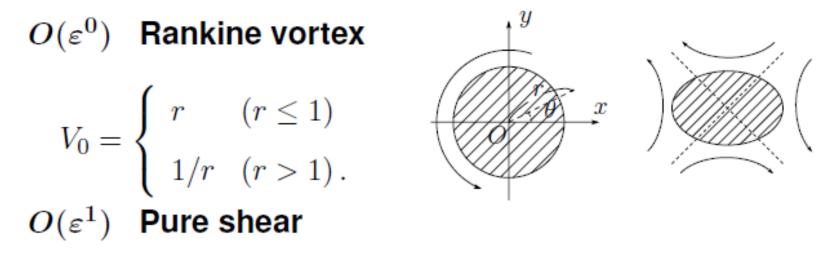
Y. F. ('03) Eulerain approach Hirota & Y. F. ('08a, '08b) Lagrangian approach "Kinematically accessible variations" for both discrete and continuous spectra

#### 4. Drift current of Kelvin waves

Y. F. & Hirota ('08) 5. Weakly nonlinear evolution to Kelvin waves Mie & Y. F. ('10)

# **Elliptically strained vortex**

$$U = \varepsilon U_1(r,\theta) + \cdots, \quad V = V_0(r) + \varepsilon V_1(r,\theta) + \cdots,$$
  
$$\Phi = \Phi_0(\theta) + \varepsilon \Phi_1(r,\theta) + \cdots.$$



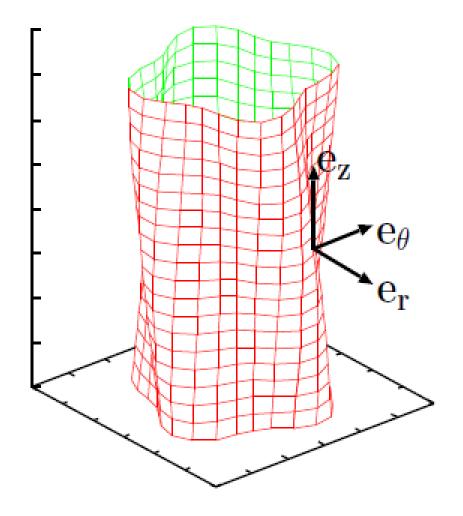
 $U_1 = -r \sin 2\theta$ ,  $V_1 = -r \cos 2\theta$   $(r < R(\theta, \varepsilon))$ .

The boundary shape:  $R(\theta, \varepsilon) \approx 1 + \frac{1}{2}\varepsilon \cos 2\theta$ 

Question: "Influence of pure shear upon Kelvin waves ?"

# **Example of a Kelvin wave** m=4

$$ilde{oldsymbol{u}} \propto {
m e}^{{
m i}(k_0 z + m heta - \omega_0 t)}$$

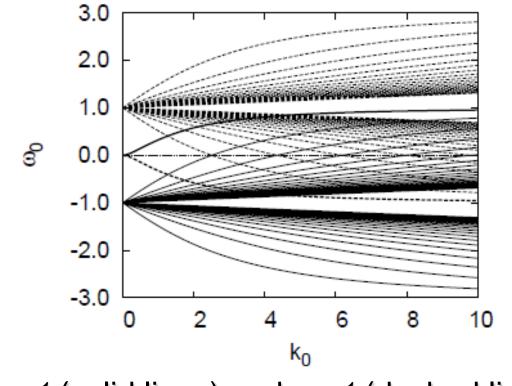


# **Dispersion relation of Kelvin waves**

 $m = \pm 1$ 

$$\eta_m J_{|m|}(\eta_m) K_{|m|-1}(k_0) - k_0 J_{|m|-1}(\eta_m) K_{|m|}(k_0) - \frac{2m(\eta_m/k_0)}{\omega_0 - m - \frac{2m}{|m|}} J_{|m|}(\eta_m) K_{|m|}(k_0) = 0$$

 $(J_{|m|} \text{ and } K_{|m|} \text{ are the (modified) Bessel functions)}$ 



m=-1 (solid lines) and m=1 (dashed lines)

# Equations for disturbance of

$$O(\mathcal{E})$$

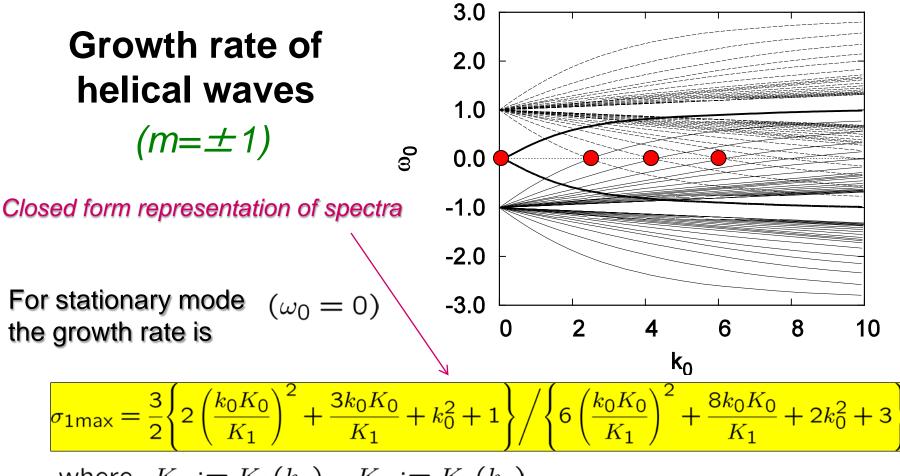
 $u_1 e^{i(kz-\omega t)};$   $u_1 = \{u_1, v_1, w_1, \pi_1, \phi_1\}$ 

 $-\mathrm{i}\omega_0 u_1 + \frac{\partial u_1}{\partial \theta} - 2v_1 + \frac{\partial \pi_1}{\partial r} = \mathrm{i}\omega_1 u_0 + \left(r\frac{\partial u_0}{\partial r} + u_0\right) \sin 2\theta + \frac{\partial u_0}{\partial \theta} \cos 2\theta,$ 

$$\begin{aligned} \frac{\partial u_1}{\partial r} + \frac{u_1}{r} + \frac{1}{r} \frac{\partial v_1}{\partial \theta} + ik_0 w_1 &= -ik_1 w_0 \qquad (r < 1) \,. \\ \frac{\partial^2 \phi_1}{\partial r^2} + \frac{1}{r} \frac{\partial \phi_1}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi_1}{\partial \theta^2} - k_0^2 \phi_1 &= 2k_1 k_0 \phi_0 \qquad (r > 1) \,. \end{aligned}$$

**Disturbance field for the** m, m + 2 waves Pose to  $O(\epsilon^0)$ 

$$u_{0} = u_{0}^{(1)}e^{im\theta} + u_{0}^{(2)}e^{i(m+2)\theta} \cdot \text{parametric resonance}$$
  
Then at  $O(\varepsilon^{1})$   
 $\Rightarrow u_{1} = u_{1}^{(1)}e^{im\theta} + u_{1}^{(2)}e^{i(m+2)\theta} + u_{1}^{(3)}e^{i(m-2)\theta} + u_{1}^{(4)}e^{i(m+4)\theta}$ 



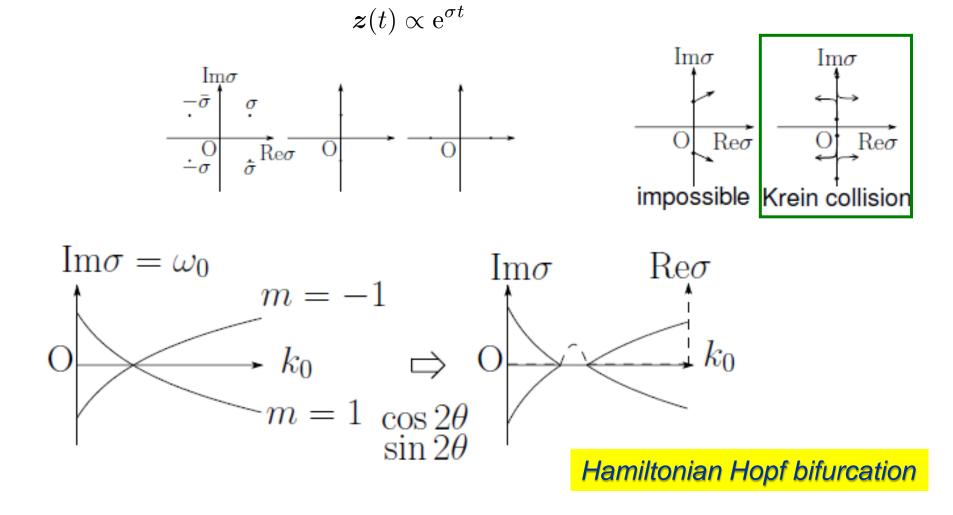
where  $K_0 := K_0(k_0), K_1 := K_1(k_0)$ 

 $k_0$  $\Delta k_1$  $\sigma_{1max}$ 0.5 0  $\infty$ 2.504982369 0.5707533917 2.145502816 4.349076726 0.5694562098 3.518286549 6.174012330 0.5681222780 4.883945142 7.993536550 0.5671646287 6.247280752 0.5664714116 9.810807288 7.609553122

Instability occurs at **every** intersection points of dispersion curves of (*m*, *m*+2) waves !?

# Krein's theory of Hamiltonian spectra

#### Spectra of a *finte*-dimensional Hamilton system



### Wave energy: Difficulty in Eulerian treatment

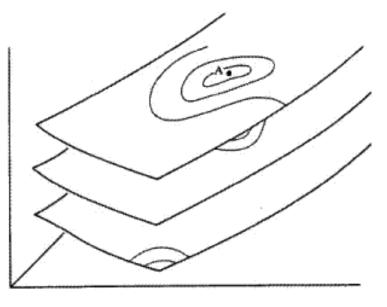
base flow disturbance  

$$u = U + \tilde{u}; \quad \tilde{u} = \alpha \tilde{u}_{01} + \frac{1}{2}\alpha^2 \tilde{u}_{02}$$
  
**Excess energy:**  $\frac{1}{2}\int u^2 dV - \frac{1}{2}\int U^2 dV$   
 $= \alpha \delta H + \frac{1}{2}\alpha^2 \delta^2 H;$   
 $\delta H = \int U \cdot \tilde{u}_{01} dV, \quad \delta^2 H = \int (\tilde{u}_{01}^2 + U \cdot \tilde{u}_{02}) dV$ 

\*  $\delta H \neq \text{const.}$   $\delta^2 H \neq \text{const.}$ \* Complicated calculation would be required for  $\tilde{u}_{02}$ 

# **Steady Euler flows**

G. K. Vallis, G. F. Carnevale and W. R. Young



isovortical sheets

Kinematically accessible variation (= preservation of circulation)

$$\omega := \frac{1}{2} \epsilon_{ijk} \omega_k(\boldsymbol{x}, t) \mathrm{d} x_i \wedge \mathrm{d} x_j$$

$$egin{aligned} &x o ilde{x} \ \Rightarrow \ \omega &= ilde{\omega}; \ &rac{1}{2} \epsilon_{ijk} \omega_k(x,t) \mathrm{d} x_i \wedge \mathrm{d} x_j \ &= rac{1}{2} \epsilon_{pqr} ilde{\omega}_r( ilde{x},t) \mathrm{d} ilde{x}_p \wedge \mathrm{d} ilde{x}_q \ &( ilde{\omega}_r &= \omega_r + \delta \omega_r) \end{aligned}$$

Theorem (Kelvin, Arnold '65) A steady Euler flow is a coditional extremum of energy H on an isovortical sheet (= w.r.t. kinematically accessible variations).

# Geometric formulation: economical derivation

 $G = \text{SDiff}(\mathcal{D})$ : volume preserving diffeomorphism of  $\mathcal{G}$  $\mathcal{G}$ : Lie algebral of G,  $\mathcal{G}^*$ : dual space of  $\mathcal{G}$ .

Lie-Poisson bracket

$$\{F_1, F_2\} := \left\langle \left[\frac{\delta F_1}{\delta v}, \frac{\delta F_2}{\delta v}\right], v \right\rangle; \quad v \in \mathcal{G}^* \quad F_1, F_2 : \mathcal{G}^* \to \mathbb{R}$$

Hamiltonian functional  $H : \mathcal{G}^* \to \mathbb{R}$ Hamiltonian equation  $\frac{\partial F}{\partial t} = \{F, H\}$  for  $F : \mathcal{G}^* \to \mathbb{R}$   $\left\langle \frac{\delta F}{\delta v}, \frac{\partial v}{\partial t} \right\rangle = \left\langle \left[ \frac{\delta F}{\delta v}, \frac{\delta H}{\delta v} \right], v \right\rangle = -\left\langle \operatorname{ad} \left( \frac{\delta H}{\delta v} \right) \frac{\delta F}{\delta v}, v \right\rangle$   $\frac{\partial v}{\partial t} = -\operatorname{ad}^* \left( \frac{\delta H}{\delta v} \right) v$   $\langle u, \operatorname{ad}(\xi)^* v \rangle := \langle \operatorname{ad}(\xi) u, v \rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$   $H = \left\langle \frac{\delta H}{\delta v} = u \right\rangle$  $H = \left\langle$ 

Adjoint representation  $\operatorname{ad}(\xi)u = [\xi, u] := (\boldsymbol{u} \cdot \nabla)\boldsymbol{\xi} - (\boldsymbol{\xi} \cdot \nabla)\boldsymbol{u} \text{ for } \xi, u \in \mathcal{G}(\mathcal{D})$ 

# **Euler flows**

$$v \sim v + \mathrm{d}f \in \mathcal{G}^*(\mathcal{D}), \quad u = \mathbf{u} \cdot \frac{\partial}{\partial \mathbf{x}} \in \mathcal{G}(\mathcal{D})$$
  
 $\langle u, v \rangle = \int_{\mathcal{D}} v(u) \mathrm{d}V = \int_{\mathcal{D}} v_j u^j \mathrm{d}V$ 

Adjoint representation

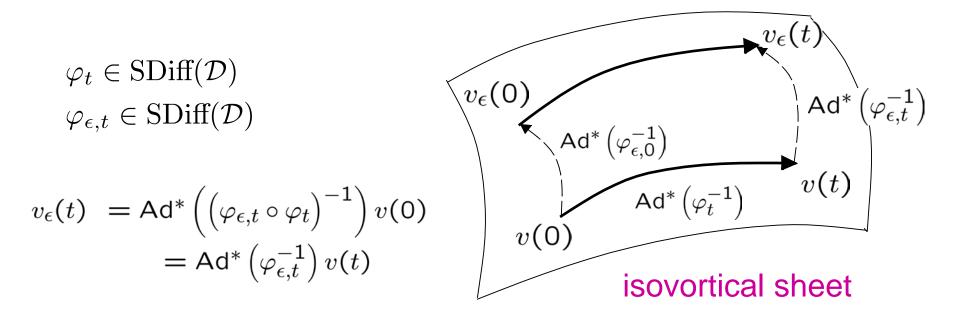
Lie derivative

 $\begin{aligned} \operatorname{ad}(\xi)u &= [\xi, u] := (\boldsymbol{u} \cdot \nabla)\boldsymbol{\xi} - (\boldsymbol{\xi} \cdot \nabla)\boldsymbol{u} = \nabla \times (\boldsymbol{\xi} \times \boldsymbol{u}) = -\mathcal{L}_{\boldsymbol{\xi}} & \text{for } \boldsymbol{\xi}, u \in \mathcal{G}(\mathcal{D}) \\ & \langle u, \operatorname{ad}(\boldsymbol{\xi})^* v \rangle := \langle \operatorname{ad}(\boldsymbol{\xi})u, v \rangle \\ & \operatorname{ad}^*(\boldsymbol{\xi})v &= \boldsymbol{\xi}^j \left(\frac{\partial v_i}{\partial x^j} - \frac{\partial v_j}{\partial x^i}\right) \operatorname{d} x^i + \frac{\partial f}{\partial x^i} \operatorname{d} x^i \\ &= [-\boldsymbol{\xi} \times (\nabla \times \boldsymbol{v}) + \nabla f]_i \operatorname{d} x^i \end{aligned}$ 

$$\frac{\partial v}{\partial t} = -\mathrm{ad}^* \left( \frac{\delta H}{\delta v} \right) v \quad \Longrightarrow \quad \frac{\partial v}{\partial t} = \boldsymbol{\xi} \times (\nabla \times \boldsymbol{v}) - \nabla f; \quad \boldsymbol{\xi} = \frac{\delta H}{\delta v}$$

Euler Poincaré equation

### Velocity field in Lagrangian displacement



$$\begin{aligned} \exists \xi_{\epsilon}(t) \in \mathcal{G} \ s.t. \ \varphi_{\epsilon,t} &= \exp \xi_{\epsilon}(t) \\ u_{\epsilon}(t_{0}) &= \frac{\partial}{\partial t} \Big|_{t_{0}} \left( \varphi_{\epsilon,t} \circ \varphi_{t} \circ \varphi_{t_{0}}^{-1} \circ \varphi_{\epsilon,t_{0}}^{-1} \right) = u + \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \left[ \operatorname{ad}(\xi_{\epsilon}) \right]^{n} \left( \frac{\partial \xi}{\partial t} - \operatorname{ad}(v) \xi \right) \\ \xi_{\epsilon} &= \epsilon \xi_{1} + \frac{\epsilon^{2}}{2} \xi_{2} + \cdots, \\ u_{\epsilon} &= u + \epsilon u_{1} + \frac{\epsilon^{2}}{2} u_{2} + \cdots \end{aligned} \qquad \begin{aligned} u_{1} &= \frac{\partial \xi_{1}}{\partial t} - \operatorname{ad}(u) \xi_{1} \\ u_{2} &= \frac{\partial \xi_{2}}{\partial t} - \operatorname{ad}(u) \xi_{2} + \operatorname{ad}(\xi_{1}) \left( \frac{\partial \xi_{1}}{\partial t} - \operatorname{ad}(u) \xi_{1} \right) \end{aligned}$$

# **Equation of Lagrangian displacement**

$$v_{\epsilon}(t) = \operatorname{Ad}^{*}\left(\varphi_{\epsilon,t}^{-1}\right)v(t) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[-\operatorname{ad}^{*}(\xi_{\epsilon})\right]^{n} v$$

$$v_{\epsilon} = v + \epsilon v_1 + \frac{\epsilon^2}{2}v_2 + \cdots$$

$$egin{aligned} &v_1 = -\operatorname{ad}^*(\xi_1)v, \ &v_2 = -\operatorname{ad}^*(\xi_2)v + \operatorname{ad}^*(\xi_1)\operatorname{ad}^*(\xi_1)v \end{aligned} egin{aligned} &v_1 = \mathcal{P}\left[oldsymbol{\xi}_1 imes oldsymbol{\omega}
ight], \ &v_2 = \mathcal{P}\left[oldsymbol{\xi}_1 imes oldsymbol{\omega}
ight], \end{aligned}$$

$$u_{\epsilon}(t) = \frac{\delta H}{\delta v} \Big|_{\epsilon} (t)$$

$$u_1 = \frac{\delta^2 H}{\delta v^2} v_1,$$
  
$$u_2 = \frac{\delta^2 H}{\delta v^2} v_2 + \frac{\delta^3 H}{\delta v^3} (v_1, v_1)$$

$$egin{aligned} &rac{\partial m{\xi}_1}{\partial t} + (u \cdot 
abla) m{\xi}_1 - (m{\xi}_1 \cdot 
abla) u = v_1 \ &rac{\partial m{\xi}_2}{\partial t} + (u \cdot 
abla) m{\xi}_2 - (m{\xi}_2 \cdot 
abla) u + (u_1 \cdot 
abla) m{\xi}_1 - (m{\xi}_1 \cdot 
abla) u_1 = v_2 \end{aligned}$$

# Wave energy

$$H(v_{\epsilon}) = H(v) + \epsilon H_1 + \frac{\epsilon^2}{2} H_2 + \cdots$$
  

$$v_1 = -\mathrm{ad}^*(\xi_1) v,$$
  

$$v_2 = -\mathrm{ad}^*(\xi_2) v + \mathrm{ad}^*(\xi_1) \mathrm{ad}^*(\xi_1) v$$

$$H_{1} = \left\langle \frac{\delta H}{\delta v}, v_{1} \right\rangle = \left\langle \frac{\delta H}{\delta v}, -\operatorname{ad}^{*}(\xi_{1})v \right\rangle = -\left\langle \operatorname{ad}(\xi_{1})\frac{\delta H}{\delta v}, v \right\rangle$$
$$= \left\langle \xi_{1}, \operatorname{ad}^{*}\left(\frac{\delta H}{\delta v}\right)v \right\rangle = -\left\langle \xi_{1}, \frac{\partial v}{\partial t} \right\rangle = 0 \quad \text{if } v \text{ is steady.}$$
$$H_{2} = \left\langle \frac{\delta H}{\delta v}, v_{2} \right\rangle + \left\langle \frac{\delta^{2} H}{\delta v^{2}}v_{1}, v_{1} \right\rangle = -\left\langle \xi_{2}, \frac{\partial v}{\partial t} \right\rangle - \left\langle \xi_{1}, \frac{\partial v_{1}}{\partial t} \right\rangle$$

#### For steady flow

$$H_{2} = -\left\langle \xi_{1}, \frac{\partial v_{1}}{\partial t} \right\rangle = \left\langle \xi_{1}, \operatorname{ad}^{*}\left(\frac{\partial \xi_{1}}{\partial t}\right) v \right\rangle = \left\langle \operatorname{ad}\left(\frac{\partial \xi_{1}}{\partial t}\right) \xi_{1}, v \right\rangle$$
$$= \int \omega \cdot \left(\frac{\partial \xi_{1}}{\partial t} \times \xi_{1}\right) dV$$

# **Energy of Kelvin waves**

Lagrangian dispalcement  $\boldsymbol{\xi}_1 = \operatorname{Re}\left[C_0\hat{\boldsymbol{\xi}}(r;\omega_0,m,k_0)e^{\mathrm{i}(m\theta+k_0-\omega_0t)}\right];$ 

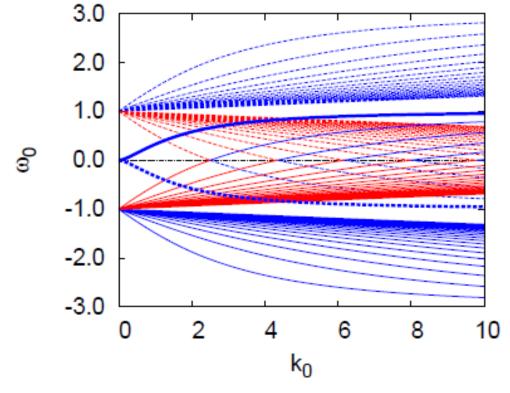
$$\hat{\xi}_{r}^{(m)} = \frac{\omega_{0} - m}{\sqrt{4 - (\omega_{0} - m)^{2}}} \bigg\{ \frac{m}{r} (\omega_{0} - m - 2) J_{m}(\eta_{m}r) - (\omega_{0} - m) \eta_{m} J_{m+1}(\eta_{m}r) \bigg\}, \\ \hat{\xi}_{\theta}^{(m)} = \mathrm{i} \frac{\omega_{0} - m}{\sqrt{4 - (\omega_{0} - m)^{2}}} \bigg\{ -\frac{m}{r} (\omega_{0} - m - 2) J_{m}(\eta_{m}r) - 2\eta_{m} J_{m+1}(\eta_{m}r) \bigg\}, \\ \hat{\xi}_{z}^{(m)} = -\mathrm{i} k_{0} \sqrt{4 - (\omega_{0} - m)^{2}} J_{m}(\eta_{m}r), \qquad \text{where} \quad \eta_{m} := k_{0} \sqrt{4/(\omega_{0} - m)^{2} - 1}.$$

The wave energy per unit length in z is  $E_0 = \omega_0 \mu_0;$   $\mu_0 = 2\pi |C_0|^2 \frac{\omega_0 - m}{2} \int_0^1 |\hat{\boldsymbol{\xi}}|^2 dr$   $= \pi |C_0|^2 \frac{\partial D}{\partial \omega_0}(\omega_0; m, k);$  $D(\omega_0, m, k) := (\omega_0 - m)^3 J_m(\eta_m) [(\omega_0 - m)\eta_m J_{m-1}(\eta_m) - m(\omega_0 - m + 2) J_m(\eta_m)]$ 

 $\mu_0 = E_0/\omega_0$ : wave action, D = 0: dispersion relation

# Energy signature of helical waves (m=±1)

- Blue: positive wave-energy
- Red: negative wave-energy



m=-1 (solid lines) and m=1 (dashed lines)

# **Drift current**

For 
$$\eta \in \mathcal{G}$$
,  
 $J_{\epsilon} = \langle \eta, v \rangle + \epsilon \langle \eta, v_1 \rangle + \frac{\epsilon^2}{2} \langle \eta, v_2 \rangle + \cdots$   
 $J_1 = \langle \eta, v_1 \rangle = \langle \eta, -\operatorname{ad}^*(\xi_1)v \rangle = \langle \xi_1, \operatorname{ad}^*(\eta)v \rangle$   
 $J_2 = \langle \eta, v_2 \rangle = \langle \xi_2, \operatorname{ad}^*(\eta)v \rangle + \langle \xi_1, \operatorname{ad}^*(\eta)v_1 \rangle$ 

If the basic flow has a symmetry  $ad^*(\eta)v = 0$  $J_1 = 0, \qquad J_2 = \langle \xi_1, ad^*(\eta)v_1 \rangle$ 

$$J_2 = \langle \xi_1, \mathrm{ad}^*(\eta) v_1 \rangle = \langle \mathrm{ad}(\eta) \xi_1, -\mathrm{ad}^*(\xi_1) v \rangle = \langle -\mathcal{L}_{\eta} \xi_1, \xi_1 \times \omega \rangle$$
  
=  $\int \omega \cdot (\xi_1 \times \mathcal{L}_{\eta} \xi_1) \, \mathrm{d} V$ 

 $\begin{array}{ll} \mbox{Hamiltonian Noether's theorem} \\ \mbox{Suppose that } \exists \eta \in \mathcal{G} & s.t. \left\{ <\eta, v>, H \right\} = 0 \\ \mbox{then} & <\eta, v> = \mbox{const.} \end{array}$ 

# Drift current in a cylindrical vortex

F. & Hirota '08

$$J_2 = \int \boldsymbol{\omega} \cdot (\boldsymbol{\xi}_1 imes \mathcal{L}_{\boldsymbol{\eta}} \boldsymbol{\xi}_1) \, \mathrm{d}V$$

$$\eta = r e_{\theta}; \quad J_{2\theta} = \int \boldsymbol{\omega} \cdot \left(\boldsymbol{\xi}_{1} \times \frac{\partial \boldsymbol{\xi}_{1}}{\partial \theta}\right) \mathrm{d}V$$
$$\eta = e_{z}; \quad J_{2z} = \int \boldsymbol{\omega} \cdot \left(\boldsymbol{\xi}_{1} \times \frac{\partial \boldsymbol{\xi}_{1}}{\partial z}\right) \mathrm{d}V$$

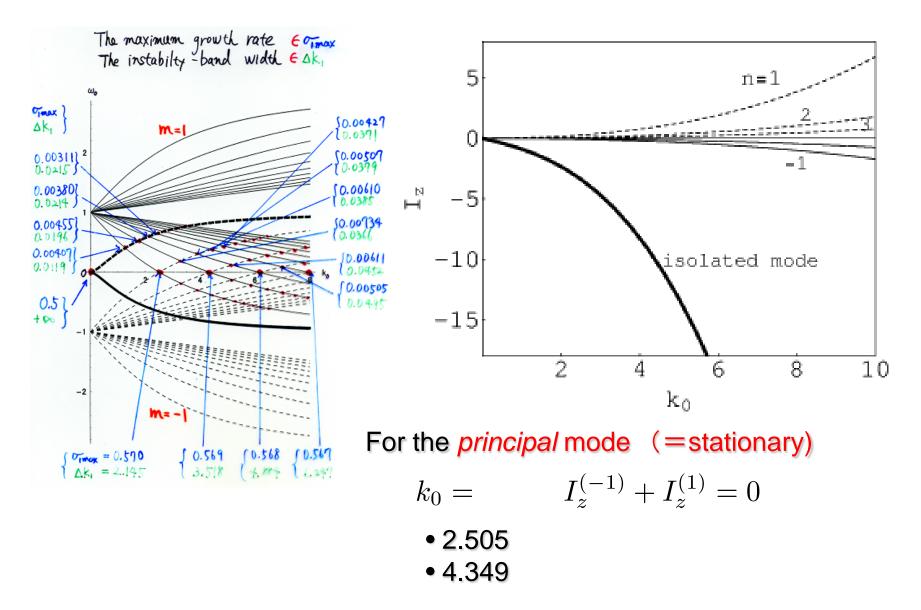
Substitute the *Kelvin wave*  $\boldsymbol{\xi}_1 = \operatorname{Re} \left[ C_0 \hat{\boldsymbol{\xi}} e^{i(m\theta + k_0 z - \omega_0 t)} \right]$ 

$$J_{2z} := \int \overline{v_{2z}} \mathrm{d}A = k_0 |C_0^2| \frac{1}{2} \int \boldsymbol{\omega} \cdot \left( \widehat{\boldsymbol{\xi}}^* \times \widehat{\boldsymbol{\xi}} \right) \mathrm{d}A = k_0 \mu_0$$

 $k_0 = 0 \Rightarrow J_{2z} = 0$  genuinly 3D effect !!

 $H_2=\omega_0\mu_0, \hspace{0.2cm} J_{2 heta}=m\mu_0, \hspace{0.2cm} J_{2z}=k_0\mu_0, \hspace{0.2cm}$  pseudomomentum

### Axial flow-flux of a helical wave (m=1)



### Confined geometry: a cylinder with elliptic cross-section Experimental Study of the Multipolar Vortex Instabilty

Eloy, Le Gal & Le Dizès: Phys. Rev. Lett. **85** (2000) 3400

Instabilty of flows with *elliptic* streamlines

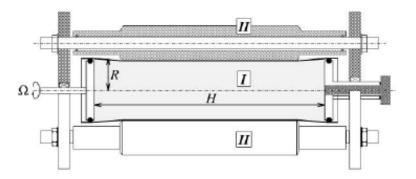


FIG. 1. Experimental setup: (I) plastic elastic cylinder filled with water; (II) rollers.

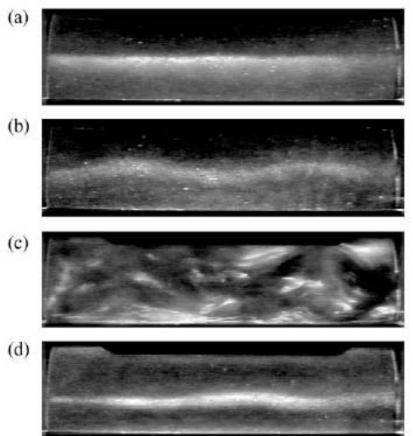


FIG. 4. Four successive images of the flow for n = 2, Re = 5000, H/R = 7.96, and (a)  $\Omega t = 294$ , solid body rotation; (b)  $\Omega t = 715$ , appearance of mode (-1, 1, 1); (c)  $\Omega t = 943$ , vortex breakup; (d)  $\Omega t = 1113$ , relaminarization.

# Weakly nonlinear amplitude equations

Mie & Fukumoto (2010)

$$u_{01} = A_{-}(t)u_{-}(r)e^{-i\theta}e^{ik_{0}z} + A_{+}(t)u_{+}(r)e^{i\theta}e^{ik_{0}z} + c.c.$$

$$\frac{dA_{\pm}}{dt} = \pm i \left[\epsilon aA_{\mp} + \alpha^{2}A_{\pm}(b|A_{\pm}|^{2} + c|A_{\mp}|^{2})\right]^{4}$$

$$a = \frac{3(3k_{0}^{2} + 1)}{8(2k_{0}^{2} + 1)}, \quad \eta = \sqrt{3}k_{0},$$

$$b = \frac{2k_{0}^{4}}{3(2k_{0}^{2} + 1)} \left[\frac{4}{J_{0}(\eta)^{2}}\int_{0}^{1} rJ_{0}(\eta r)^{2}J_{1}(\eta r)^{2}dr - (11k_{0}^{4} + 13k_{0}^{2} + 5)J_{0}(\eta)^{2}}\right], \quad \mathbf{10} \quad k_{0} \quad \mathbf{20}$$

$$c = \frac{-k_{0}^{2}}{12(2k_{0}^{2} + 1)} \left[\frac{64k_{0}^{2}}{J_{0}(\eta)^{2}}\int_{0}^{1} rJ_{0}(\eta r)^{2}J_{1}(\eta r)^{2}dr + (20k_{0}^{6} + 97k_{0}^{4} + 14k_{0}^{2} - 27)J_{0}(\eta)^{2}}\right],$$

| wavenumber | $k_0$ | 1.579  | 3.286  | 5.061  | 6.856  | 8.659  | 10.47  |
|------------|-------|--------|--------|--------|--------|--------|--------|
|            | a(>0) | 0.5312 | 0.5542 | 0.5589 | 0.5605 | 0.5613 | 0.5617 |
|            | b(>0) | 0.3976 | 8.286  | 40.45  | 118.4  | 266.1  | 509.5  |
|            | c(<0) | -5.222 | -53.39 | -212.8 | -562.1 | -1185  | -2170  |

# **Restricted dynamics** $A = A_{+} = A_{-}$



*b*-

$$\overbrace{\tau = \epsilon t}^{\epsilon = \alpha^2}$$

$$\frac{\mathrm{d}A}{\mathrm{d}\tau} = \mathrm{i}\left[\overline{A} + (b+c)|A|^2A\right]$$

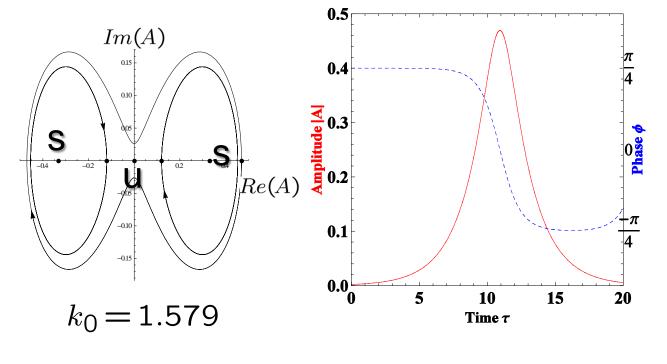
| ko      | 1.579  | 3.286  | 5.061  | 6.856  | 8.659  | 10.47  |  |
|---------|--------|--------|--------|--------|--------|--------|--|
| a (>0)  | 0.5312 | 0.5542 | 0.5589 | 0.5601 | 0.5613 | 0.5617 |  |
| b+c(<0) | -4.824 | -45.10 | -172.3 | -443.7 | -919.3 | -1661  |  |

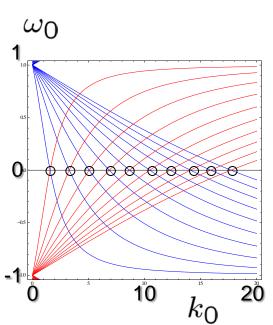
Equilibrium Amplitude  

$$A| = \sqrt{a/|b+c|}$$

$$\approx \frac{3}{4} \left(\frac{\sqrt{3}\pi}{k_0^3 \log k_0}\right)^{1/2}$$

 $-k_0^3 \log k_0/\sqrt{3}\pi$ 





# Summary

Linear stability of an *elliptic vortex*, a straight vortex tube subject to a pure shear, to three-dimensional disturbances is calculated. This is a parametric resonance instability between two Kelvin waves caused by a perturbation breaking  $S^{1}$ -symmetry of the circular core.

1. Lagrangian approach: *Energy* of the Kelvin waves is calculated by restricting disturbances to kinematically accessible field *linear* perturbation is sufficient to calculate energy, quadratic in amplitude!

Modification of mean field at 2nd order:  $\overline{v_{2\theta}}$ 

2. Axial current: For the Rankine vortex, 2nd-order drift current  $\overline{v_2}$ includes not only azimuthal but also axial component  $\overline{v_{2z}}$ .



energy  $\swarrow^{\times \omega_0}$  wave action  $\overset{\times k_0}{\longrightarrow}$  pseudomomentum

3. Weakly nonlinear amplitude equation: Hamiltonian normal form Its coefficients are all determined *explicitly*.

4. Short-wave asymptotics: The equilibrium amplitude is obtained.

Secondary instability (*three-wave resonance*)