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Instability of an anti-parallel vortex pair
Leweke & Williamson: J. Fluid Mech. 360 (1998) 85



Close-up views 
of the short-wave 

instability

Leweke & Williamson: J. 
Fluid Mech. 360 (1998) 85



Weakly nonlinear stability of an elliptically 
strained vortex tube: Eulerian treatment

Sipp:  Phys. Fluids 12 (2000) 1715
Waleffe:  PhD Thesis (1989)

Lamb-Oseen vortex in a straining field



Eulerian treatment  Sipp:  Phys. Fluids 12 (2000) 1715

Amplitude equations

A combination of two helical waves

Solvability condition at 

mean flow Ｉndirect

Mean field exists without ellitical deformation and at any wavenumber k!



Eulerian treatment  Sipp:  Phys. Fluids 12 (2000) 1715

Subspace 

Energy of excited wave
at 

Mie & Y. F. (2010)

Hamiltonian normal form
Knobloch, Mahalov & Marsden
Physica D 73 (1994) 49
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Elliptically strained vortex



Example of a Kelvin wave m=4



Dispersion relation of Kelvin waves 1±=m

m=-1 (solid lines) and m=1 (dashed lines)



Equations for disturbance of )(εO

parametric resonance



Growth rate of 
helical waves 

(m=±1)

Instability occurs at 
every intersection points 
of dispersion curves of 
(m, m+2) waves !?

For stationary mode
the growth rate is

Closed form representation of spectra



Krein’s theory of Hamiltonian spectra
Spectra of a finte-dimensional Hamilton system

Hamiltonian Hopf bifurcation



Wave energy: Difficulty in Eulerian treatment

∗ ∗

∗

Excess energy:

base flow disturbance

Complicated calculation would be required for
∗
∗



Steady Euler flows

isovortical sheets

Kinematically accessible variation
(= preservation of circulation)

Theorem (Kelvin, Arnold ’65) A steady Euler flow is a 
coditional extremum of  energy H on an isovortical sheet
(= w.r.t. kinematically accessible variations).



Geometric formulation: economical derivation

Lie-Poisson bracket

Adjoint representation

Euler-Poincaré eq



Euler flows

Adjoint representation Lie derivative

Euler Poincaré equation



Velocity field in Lagrangian displacement

isovortical sheet



Equation of Lagrangian displacement

Postulate



Wave energy

For steady flow



Energy of Kelvin waves
Lagrangian dispalcement

The wave energy per unit length in z is

wave action, dispersion relation



Energy signature of helical waves (m=±1)

m=-1 (solid lines) and m=1 (dashed lines)



Drift current

Ｉｆ the basic flow has a symmetry

Hamiltonian Noether’s theorem



Drift current in a cylindrical vortex

Substitute the Kelvin wave 

genuinly 3D effect !!

pseudomomentum

F. & Hirota ‘08



Axial flow-flux of a helical wave (m=1)

For the principal mode （＝stationary)

• 2.505
• 4.349



Confined geometry: a cylinder with elliptic cross-section
Experimental Study of the Multipolar Vortex Instabilｔｙ

Eloy, Le Gal & Le Dizès: 
Phys. Rev. Lett. 85 (2000) 3400

Instabilty of flows with elliptic 
streamlines



Weakly nonlinear amplitude equations

1.579 3.286 5.061 6.856 8.659 10.47
a(>0) 0.5312 0.5542 0.5589 0.5605 0.5613 0.5617
b(>0) 0.3976 8.286 40.45 118.4 266.1 509.5
c(<0) -5.222 -53.39 -212.8 -562.1 -1185 -2170

wavenumber

coefficients

Mie & Fukumoto (2010)

0k

0 5 10 15 20

1.0

0.5

0.0

0.5

1.0

0

1

-1
10 200



Restricted dynamics
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1.579 3.286 5.061 6.856 8.659 10.47
a  (>0) 0.5312 0.5542 0.5589 0.5601 0.5613 0.5617

b+c(<0) -4.824 -45.10 -172.3 -443.7 -919.3 -1661
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Summary
Linear stability of an elliptic vortex, a straight vortex tube subject to a 
pure shear, to three-dimensional disturbances is calculated.
This is a parametric resonance instability between two Kelvin waves 
caused by a perturbation breaking S1-symmetry of the circular core.

1. Lagrangian approach: Energy of the Kelvin waves is calculated by 
restricting disturbances to kinematically accessible field

linear perturbation is sufficient to calculate energy, quadratic in amplitude!

2. Axial current:  For the Rankine vortex, 2nd-order drift current          
includes not only azimuthal but also axial component

Modification of mean field at 2nd order：

3. Weakly nonlinear amplitude equation: Hamiltonian normal form
Its coefficients are all determined explicitly.

4. Short-wave asymptotics:  The equlibrium amplitude is obtained.

Secondary instability (three-wave resonance)

energy wave action  pseudomomentum


	Lagrangian approach to wave interactions on vortices and weakly nonlinear stability of �an elliptical flow
	Instability of an anti-parallel vortex pair　　　　
	Close-up views �of the short-wave instability
	Weakly nonlinear stability of an elliptically strained vortex tube: Eulerian treatment
	Eulerian treatment  Sipp:  Phys. Fluids 12 (2000) 1715
	Eulerian treatment  Sipp:  Phys. Fluids 12 (2000) 1715
	Contents
	Elliptically strained vortex
	Example of a Kelvin wave  m=4
	Dispersion relation of Kelvin waves
	Equations for disturbance of 
	Growth rate of helical waves � (m=±1)
	Krein’s theory of Hamiltonian spectra
	Wave energy: Difficulty in Eulerian treatment
	Steady Euler flows
	Geometric formulation: economical derivation
	Euler flows
	Velocity field in Lagrangian displacement
	Equation of Lagrangian displacement
	Wave energy
	Energy of Kelvin waves
	Energy signature of helical waves (m=±1)
	Drift current
	Drift current in a cylindrical vortex
	Axial flow-flux of a helical wave  (m=1)
	Confined geometry: a cylinder with elliptic cross-section�Experimental Study of the Multipolar Vortex Instabilｔｙ
	Weakly nonlinear amplitude equations
	スライド番号 28
	Summary

