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Introduction

Motivation

Mass transfer from rising bubbles

Oxygen concentration around a rising air bubble

gas bubble:
027 N27 COZa
water vapor

ambient liquid:
water,

027 N27 C02
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Introduction

Sharp interface model

Continuum mechanical model with sharp interface

@ captures the relevant macroscopic phenomena in many cases

Two-phase system

@ continuous physical
quantities inside the
bulk phases

@ jump discontinuities at .
the phase boundaries ®

Multicomponent system
@ mixture of several chemical components

e partial miscibility
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

chemical components Aj, ..., A,, possibly with chemical reactions
individual mass balances:
8tp,- + div (p,—u,-) = M,' I’,-tot in

pi = pi(t, x) individual mass densities
u; = u;(t, x) individual velocity fields

M; molar mass of species |

rfot molar rate of change due to chemical reactions

QCR” open domain with smooth boundary 99
common variant: use molar concentrations ¢; := p;/M;.

O¢c; + div (C,'U,') =r°t inQ

1
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

assumption: isothermal conditions
individual momentum balances*:
Oi(piui) + V- (piv; @ u;) = — ¢;Vu; +V - S; + p;F;
— ctOtRTZ fii xi xj(ui —u;)  in Q

J#i
i chemical potential of species i
S; viscous stress of species i
F; body forces acting on species i
c°t  sum of all molar concentrations
RT universal gas constant times absolute temperature
fij friction factor for collisions between species i, j; fj = f;; > 0
X; molar fraction of species i; x; = ¢;/ct*

* P. Kerkhof, TU/e
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

mixture balances

pi= Z Pis pu = Z piu; (= barycentric velocity u)
i i

continuity equation: (conservation of total mass, i.e. Y, M;rf°* = 0)
Orp+div(pu) =0 in Q
individual mass balances:
Oepi +div (pju+j;) = M; rf°* in Q

with molecular fluxes j; = p;(u; — u) which need to be modeled.
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

balance of total momentum:

for simplicity: no external forces

Or(pu) + V- (pu@u) = Zc,Vu,—kV Z fj, ®ji)

Note: Vrui=Vrpui+viVp

with v; = 2% the partial molar volume, p the total pressure
as the p iy p
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

balance of total momentum:

for simplicity: no external forces

Or(pu) + V- (pu@u) = Zc,Vu,—kV Z fj, ®ji)

Note: Vrui=Vrpui+viVp

with v; = %g the partial molar volume, p the total pressure

Gibbs-Duhem: > aVrui=Vp

‘6t(pu)+v-(pu®u):—Vp+V-S‘

with the mixture stress tensor S=>", (S,- + %j,’ ®j,‘)
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

Class | mixture model (single-phase):

total mass Otp +div (pu) =0
momentum  O:(pu) +V - (pu®u)=-Vp+V-S

species mass p(0;y; +u-Vy;)+divj; =0

with mass fractions y; = p;/p

Dieter Bothe On multicomponent two-phase flows with mass transfer



Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

Class | mixture model (single-phase):

total mass Otp +div (pu) =0
momentum  O:(pu) +V - (pu®u)=-Vp+V-S

species mass p(0;y; +u-Vy;)+divj; =0

with mass fractions y; = p;/p

Constitutive equations for multicomponent diffusive fluxes ?
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

individual momentum balances in dimensionless form:

1
N e i

~MSch, (X,VT,,M, +Pey XX 49* : —ujf))
J#i

with B = B;/Po, By = 1/f; the Mazwell-Stefan diffusivities

and ¢; the volume fractions.

Eu =~ Pz (Buler number),  Re= '”OTL;L (Reynolds number)
Pe = % (Péclet number), MS = Z%%
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

individual momentum balances in dimensionless form:

1
N e i

~MSch, (X,VT,,M, +Pey XX 49* : —ujf))
J#i

with B = B;/Po, By = 1/f; the Mazwell-Stefan diffusivities

and ¢; the volume fractions.

Eu =~ Pz (Buler number),  Re= '”OTL;L (Reynolds number)
Pe = % (Péclet number), MS = Z%%

typical in applications: MS ~ 10°
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

requires, in the limit as MS — oo:
X

X
(xVrpmi +Ped " L (uf —uf)) =0,
j#i U
or, translated back to dimensional quantities:
X,

Xi . i Xj ) —
RTVT,p:ul + ; DU (ul uj) 0
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

requires, in the limit as MS — oo:
X

X
(xVrpmi +Pe Y T (uf —up)) =0,
#i
or, translated back to dimensional quantities:

X Xi Xj -
T VTpHi + Z P (ui —uj) =0
J#i
But pressure diffusion may not be negligible: 1\E/Tl§ 7% 0!
(Eu ~ 100 for atmospheric pressure)
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

requires, in the limit as MS — oo:

X X
(xVrpmi +Pe Y T (uf —up)) =0,
j#i U
or, translated back to dimensional quantities:
Xi Xi Xj
T VTl + > o (ui—u)=0

j# Y
But pressure diffusion may not be negligible: 1\E/Tl§ 7% 0!
(Eu ~ 100 for atmospheric pressure)
Note: —Vp accelerates the full mixture!

—YP force per mass, hence —y;Vp is the part of the total pressure
leading to the acceleration of species i as part of the full mixture.
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

individual momentum balances in dimensionless form:

1
Oc(piui) + V- (pju; @ uj) = —EuyVp" + 2=V - §;

y * * Eu ¢i — Vi * Xi Xj oy *
—MS ct0t<x,-VT,pu,- + NS o Vp +Pe; iy (uf — uj))

tot
Define the molecular fluxes such that (...) =0, i.e.

X; Vp xjdi —xidj
ﬁvT7pul +(¢I *%)W + - W - 0

. JF#i
with J; = ¢i(u; — u) = ji/M;
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

individual momentum balances in dimensionless form:

1
Oc(piui) + V- (pju; @ uj) = —EuyVp" + 2=V - §;

y * * Eu ¢i — Vi * Xi Xj oy *
—MS ct0t<x,-VT,pu,- + NS o Vp +Pe; iy (uf — uj))

tot
Define the molecular fluxes such that (...) =0, i.e.

X Vp Xj J,' — Xj Jj .
RTVT,pNI + (¢l y,) ctot RT + P Ctot_D’.j =0
with J; = ¢i(u; — u) = ji/M;

Generalized driving forces: d; = % (Vru; — M,-%). Note: ). d; =0.

J#i

XJ'J,'—X,'JJ'
di+ZT{_)U:0, ZM,J,:O
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Multicomponent Single-Phase Flows

Multicomponent single-phase fluid mixture

single-phase fluid mixture with Maxwell-Stefan diffusion:

total mass O¢p +div(pu) =0
momentum Oe(pu) + V- (pu®@u)=-Vp+V-S

species mass p(Oryi +u-Vy;)+divj; =0

diffusive fluxes &=~ yf" y”f Y=o
J#EI ]
mass based notations: &,- = f%/IT (VT/,AL,- — ﬂ) with fi; = p;i/M;,
P = M;M;Dj
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Multicomponent Two-Phase Flows

Multicomponent two-phase fluid mixtures

chemical components Aj, ..., A,, partially miscible, no adsorption
individual mass balances:

Orpi +div(piu)) =R, in Q\T, [pi(ui—ur)jnr=0 onTl

pi=22pis pui=32pivi, j=pu—ur)-nr 3R =0
Continuity equation:
Op+div(pu) =0 inQ\Tl', [[]=0 onTl
Species equations:
p(Oryi +u-Vy)+div); =0 in Q\T,
[yilj+ [ilnr =0 on
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Multicomponent Two-Phase Flows

Multicomponent two-phase fluid mixtures

isothermal two-phase balances:

bulk

interface
0cp + div (pu) = 0 [u] = [21jnr

Ot(pu) +V - (pu@u)=—-Vp+V-S [u]j—[T] nr=ockrnr

Vi=u-nr+j/p

p(Oryi +u-Vy;)+divji =0 [vilj + liilnr =0

One more constitutive relation at the interface is missing!
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Multicomponent Two-Phase Flows

Energy dissipation (isothermal case)

total free energy:
E=[qp(3ul®+)dx + [rodo
with py(0, p1,. .., pn) the free (available) energy density.

Euler relation:

pY+p=>;fipi with chemical potentials fij = 0,,(pv)

Dieter Bothe On multicomponent two-phase flows with mass transfer



Multicomponent Two-Phase Flows

Energy dissipation (isothermal case)

total free energy:
E=[qp(3ul®+)dx + [rodo
with py(0, p1,. .., pn) the free (available) energy density.

Euler relation:
pY+p=>;fipi with chemical potentials fij = 0,,(pv)

energy dissipation:

6tE:/ (-S: Vu—l—pdivu—i—ZVﬂ;-j,-)dx
Q i

T /r j([[;z]]ﬁ ~Inr - Snr/p])do + /r S lidide

with ji := pi(uj —ur) - nr = jy; + j;i - nr; note that [ ;] = 0.
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Multicomponent Two-Phase Flows

Chemical interface conditions

assumption: no interfacial energy dissipation

(I3 = Inr - Snr/p] + [Aal) j + X[ — palji = 0
chemical interface conditions:

[2:] = [nr - Snr/p] — [5,21° for all i
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Multicomponent Two-Phase Flows

Chemical interface conditions

assumption: no interfacial energy dissipation

(I5207% = Inr - Snr /] + [7n]) J + X[ — i = 0
chemical interface conditions:
[2:] = [nr - Snr/p] — [5,21° for all i
note:
@ the standard assumption in literature is [7i;] = 0 for all i

@ consistency with the second law also requires S : Vu > 0 and
Z,‘ vﬂi J: S 0
related models: D. Bedeaux, Advance in Chemical Physics LXIV (1986),
W. Dreyer, WIAS preprint No. 869 (2003).
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Multicomponent Two-Phase Flows

Multicomponent two-phase Navier-Stokes system

the full model:

bulk interface
Op + div (pu) =0 [u] = [;1Jnr
Ot(pu)+V-(pu@u)=V-T [ulj = [T]-nr = oknr

Vi=u-nr+j/p

p(Oryi +u-Vy;) +divj; =0 vilj + liiJnr =0

di=— i yjjpi;;i;ijjy >_idi=0 [a] = [nr-Snr/p] - ":ﬁ]]lz

Note: an incompressible version with p+ = const, is also consistent.
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Multicomponent Two-Phase Flows

The Fluxes

Inversion of the MS-equations on E = {u € R": )", u; = 0}:

1] = X} (Asie) X Hd] = =X} (Asie) X [V

RT
Here As := X~ AX? with X = diag(xi, ..., x,) and
1 dij Xk X
A= - os= . dyj=
djj S i Dk Y

is symmetric with o(Asg) C (—o0, —d] for 6 = min{1/D; : i # j}.
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Multicomponent Two-Phase Flows

The Fluxes

Inversion of the MS-equations on E = {u € R": )", u; = 0}:

1] = X} (Asie) X Hd] = =X} (Asie) X [V

RT
Here As := X~ AX? with X = diag(xi, ..., x,) and
1 dij Xk X
A= o , Si= s dij =
djj S ] i Dk Y

is symmetric with o(Asg) C (—o0, —d] for 6 = min{1/D; : i # j}.

o 190 = A ((Asie) X 9] ) (X [Vl ) <0,

e div([J;]) =: div(—D(c)Vc) has elliptic principal part
if ptp is strongly convex
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Multicomponent Two-Phase Flows

Isothermal isobaric single-phase case

Theorem

Let Q c RN be open bounded with smooth 9. Let p > % and

2

2— _
co € W, ?(Q) such that c® >0 in Q and c{° is constant in Q.
Let the diffusion matrix D(c) be given by

D(c) = XZ(Asg) X3 G"(x) withx = ¢/c*", X = diag(x),

where G := pi) is smooth and strongly convex on {c'°" = c§°'}.
Then there exists - locally in time - a unique strong solution (in
the LP-sense) of

otc + div (—D(c)Vc) = 0, oo =0, €—9=C¢o

This solution is in fact classical.
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Multicomponent Two-Phase Flows

Isothermal isobaric single-phase case

Idea of proof: Let u be given by ciotx; = uj +c2,/n.
@ evolution for u livesin E ={ueR": ), u; =0}
o div(—D(v)Vu) = D(u) (—Au) + lower order terms
@ \eC and v € E with D(u) v = Av means
Xi(Asig) IX3G"(x) v = Av.
= ((Asie) 1X2G"(x) v, X2 G"(x) v) = A(v, G"(x) v).

@ left-hand side > 0 and (v, G(x) v) > 0 by assumption on G,
hence A > 0 = o(D(u)) C (0,00) in L(E; E).



Multicomponent Two-Phase Flows

Isothermal isobaric single-phase case

Idea of proof: Let u be given by ciotx; = uj +c2,/n.
@ evolution for u livesin E ={ueR": ), u; =0}
o div(—D(v)Vu) = D(u) (—Au) + lower order terms
@ \eC and v € E with D(u) v = Av means
Xi(Asig) IX3G"(x) v = Av.
= ((Asie) 1X2G"(x) v, X2 G"(x) v) = A(v, G"(x) v).
@ left-hand side > 0 and (v, G(x) v) > 0 by assumption on G,
hence A > 0 = o(D(u)) C (0,00) in L(E; E).

Solutions stay non-negative because of the structure of diffusive fluxes:

\ Ji(c) = —D;(c) grad ¢; + ¢; Fi(c, Vc). \




Multicomponent Two-Phase Flows

Multicomponent two-phase Navier-Stokes system

the full model:

bulk interface
Dep + div (pu) = 0 [u] = [2Ljnr
Ot(pu)+V-(pu@u)=V-T [ulj = [T]-nr = oknr

Vi =u-nr+j/p
p(Oryi +u-Vy;) +divj; =0 Ivilj + [iiJnr =0
di=—3 4 W#y, >3 =0 [ = [nr - Snr/p] — [51/2

We focus on the incompressible version with constant total densities
p+ = consty.




Multicomponent Two-Phase Flows

Two-Phase Navier-Stokes-Maxwell-Stefan system

work in progress

@ in the case I is a graph over RN-1, the Lopatinski-Shapiro
conditions are satisfied in the isobaric case.

Hence, in the isobaric case the associated linear system with planar
interface has maximal L,-regularity.

@ next step: check whether the Maxwell-Stefan multicomponent
diffusion system is normally elliptic in the non-isobaric case.



Direct Numerical Simulation of mass transfer

Volume of Fluid (VOF)-Method

» Direct Numerical Simulation
of Navier-Stokes equations
for two-phase flows

* implicit representation of interface :
volume tracking,
fractional volume 1 of dispersed phase

+ additional advection equation for f
0,f+u-Vf =0

* piecewise linear interface reconstruction

0 0 0 0 0

» surface tension: conservative model Eh | | @
* massively parallelized

y P Rieber, Frohn, ITLR Stutigart T s | 0]

+ well validated for collision of drops 11 fossy o | 0




Direct Numerical Simulation of mass transfer

VOF-based Mass-Transfer Computation

mass balance in terms of molar concentration c; :

o,c+Vcu+V-J. =7  [cu-ug)+J,]] n. =0

- molecular fluxes according to Fick'slaw J’=-D’Vc¢/, j=L.G

« no phase change: [[c,(u—u/)]]n. =0, J n.=J%n.

£ s G L
* local chemical equilibrium: M =M,
— 4,0 a. activit
G M, = 1 + RTna, 1 SO
H % fawe & a; =Y
enry’s law: C_L:Hi



Direct Numerical Simulation of mass transfer

Two-Variable Mass-Transfer Approach

Problem: discontinuous species concentrations

- two scalar quantities per species
) ) . dispersed phase
« convective transport interlinked

with VOF-transport using geo-
metrically computed fluxes

"
Ci —

interface
/

6,>0

phase + phase -
\ /

¢d >0 cl,l—

interface

continuous phase

N
Cir

>

-

uht

—p no artificial mass transfer




Direct Numerical Simulation of mass transfer

Enhancing the Interfacial Resolution

Subgrid-scale modeling

artificial
boundary
conditions
(ABCs)

vP[

moving
window i
technique Outlet b.c.

Adaptive mesh refinement




Direct Numerical Simulation of mass transfer

Subgrid-Scale Modeling

0;,c+v-Ve=DAc

1>0,x>0,y>0
C\y:() =C.
o
G0 = Cr
Qr=w0 = 0

. Ch X Q+
| ‘ i/+ v — (O,V)
AR, o

GO v
\\\\\\, A /\\\

‘ & \ i

L .

c(x,y)=cy {1 - erf[ﬁy)

)




Direct Numerical Simulation of mass transfer

Effect of Subgrid-Scale Model

0.05 8.1

ts]

8.15

0.2

Evolution of species mass inside a rising 3 mm Blase, 2D, Sc = 10

equilibrium
—— linear gradient
subgrid scale model

resolution:

A 256 x 128 cells
B 512 x 256 cells
C 1024 x 512 cells

A
ABB CC

C
B

subgrid-scale
model saves one
refinement level

A




Direct Numerical Simulation of mass transfer

Artificial Boundary Condition

@ .

Dirichlet-BC Neumann-BC Robin-type BC
Hadamard-Rybczynski
a, a, )
1, =|=—=+=——u,|cos b
1a, 1a, \
ug= (:—Bf——+u sin &
Zr Z
Oy, 1 u O
—'+—u,.zficosb’ ﬂ_;_i,,
o r r or r

u
)
~-L sine

slip boundary condition
artificial boundary condition



Direct Numerical Simulation of mass transfer

Mass Transfer with Chemical Reaction

mmmmmmmmmmmmmmmmmmmmmmmm
wwwwwwwwwwwwwwwwwwwwwwww
......

..................

3D VOF-simulation
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