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Motivation

Mass transfer from rising bubbles

Oxygen concentration around a rising air bubble

gas bubble:
O2, N2, CO2,
water vapor

ambient liquid:
water,
O2, N2, CO2

Dieter Bothe On multicomponent two-phase flows with mass transfer



Introduction
Multicomponent Single-Phase Flows

Multicomponent Two-Phase Flows
Direct Numerical Simulation of mass transfer

Sharp interface model

Continuum mechanical model with sharp interface

captures the relevant macroscopic phenomena in many cases

Two-phase system

continuous physical
quantities inside the
bulk phases

jump discontinuities at
the phase boundaries

Multicomponent system

mixture of several chemical components

partial miscibility
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Multicomponent single-phase fluid mixture

chemical components A1, . . . ,An, possibly with chemical reactions

individual mass balances:

∂t�i + div (�iui ) = Mi r toti in Ω

�i = �i (t, x) individual mass densities
ui = ui (t, x) individual velocity fields
Mi molar mass of species i
r toti molar rate of change due to chemical reactions
Ω ⊂ ℝn open domain with smooth boundary ∂Ω

common variant: use molar concentrations ci := �i/Mi .

∂tci + div (ciui ) = r toti in Ω
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Multicomponent single-phase fluid mixture

assumption: isothermal conditions

individual momentum balances∗:

∂t(�iui ) +∇ ⋅ (�iui ⊗ ui ) =− ci∇�i +∇ ⋅ Si + �iFi

− ctotRT
∑
j ∕=i

fij xi xj(ui − uj) in Ω

�i chemical potential of species i
Si viscous stress of species i
Fi body forces acting on species i
ctot sum of all molar concentrations
RT universal gas constant times absolute temperature
fij friction factor for collisions between species i , j ; fij = fji > 0
xi molar fraction of species i ; xi = ci/ctot

∗ P. Kerkhof, TU/e
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Multicomponent single-phase fluid mixture

mixture balances

� :=
∑
i

�i , �u :=
∑
i

�iui (⇒ barycentric velocity u)

continuity equation: (conservation of total mass, i.e.
∑

i Mi r
tot
i = 0)

∂t�+ div (�u) = 0 in Ω

individual mass balances:

∂t�i + div (�iu + ji ) = Mi r toti in Ω

with molecular fluxes ji = �i (ui − u) which need to be modeled.

Dieter Bothe On multicomponent two-phase flows with mass transfer



Introduction
Multicomponent Single-Phase Flows

Multicomponent Two-Phase Flows
Direct Numerical Simulation of mass transfer

Multicomponent single-phase fluid mixture

balance of total momentum:

for simplicity: no external forces

∂t(�u) +∇ ⋅ (�u⊗ u) = −
∑
i

ci∇�i +∇ ⋅
∑
i

(
Si +

1

�i
ji ⊗ ji

)
Note: ∇T�i = ∇T ,p�i + vi∇p

with vi = ∂�i

∂p the partial molar volume, p the total pressure

Gibbs-Duhem:
∑

i ci∇T�i = ∇p

∂t(�u) +∇ ⋅ (�u⊗ u) = −∇p +∇ ⋅ S

with the mixture stress tensor S =
∑

i

(
Si + 1

�i
ji ⊗ ji

)
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Multicomponent single-phase fluid mixture

Class I mixture model (single-phase):

total mass ∂t�+ div (�u) = 0

momentum ∂t(�u) +∇ ⋅ (�u⊗ u) = −∇p +∇ ⋅ S

species mass �(∂tyi + u ⋅ ∇yi ) + div ji = 0

with mass fractions yi = �i/�

Constitutive equations for multicomponent diffusive fluxes ?
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Multicomponent single-phase fluid mixture

individual momentum balances in dimensionless form:

∂t(�
∗
i u∗i ) +∇ ⋅ (�∗i u∗i ⊗ u∗i ) = −Eu�i∇p∗ +

1

Re
∇ ⋅ S∗i

−MS c∗tot

(
xi∇T ,p�

∗
i + Pe

∑
j ∕=i

xi xj
−D∗ij

(u∗i − u∗j )
)

with −D∗ij = −Dij/−D0, −Dij = 1/fij the Maxwell-Stefan diffusivities

and �i the volume fractions.

Eu = p0

�0U2 (Euler number), Re = �0U L
�0

(Reynolds number)

Pe = U L
−D0

(Péclet number), MS = c0RT
�0U2

typical in applications: MS ≈ 105
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Multicomponent single-phase fluid mixture

requires, in the limit as MS→∞:(
xi∇T ,p�

∗
i + Pe

∑
j ∕=i

xi xj
−D∗ij

(u∗i − u∗j )
)

= 0,

or, translated back to dimensional quantities:

xi
RT
∇T ,p�i +

∑
j ∕=i

xi xj
−Dij

(ui − uj) = 0

But pressure diffusion may not be negligible: Eu
MS ∕≈ 0!

(Eu ≈ 100 for atmospheric pressure)

Note: −∇p accelerates the full mixture!

−∇p
� force per mass, hence −yi∇p is the part of the total pressure

leading to the acceleration of species i as part of the full mixture.
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Multicomponent single-phase fluid mixture

individual momentum balances in dimensionless form:

∂t(�
∗
i u∗i ) +∇ ⋅ (�∗i u∗i ⊗ u∗i ) = −Eu yi∇p∗ +

1

Re
∇ ⋅ S∗i

−MS c∗tot

(
xi∇T ,p�

∗
i +

Eu

MS

�i − yi
c∗tot

∇p∗ + Pe
∑
j ∕=i

xi xj
−D∗ij

(u∗i − u∗j )
)

Define the molecular fluxes such that (. . .) = 0, i.e.

xi
RT
∇T ,p�i + (�i − yi )

∇p

ctotRT
+
∑
j ∕=i

xj Ji − xi Jj

ctot−Dij
= 0

with Ji = ci (ui − u) = ji/Mi

Generalized driving forces: di = xi
RT

(
∇T�i −Mi

∇p
�

)
. Note:

∑
i di = 0.

di +
∑
j ∕=i

xj Ji − xi Jj

ctot−Dij
= 0,

∑
i

MiJi = 0.
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Multicomponent single-phase fluid mixture

single-phase fluid mixture with Maxwell-Stefan diffusion:

total mass ∂t�+ div (�u) = 0

momentum ∂t(�u) +∇ ⋅ (�u⊗ u) = −∇p +∇ ⋅ S

species mass �(∂tyi + u ⋅ ∇yi ) + div ji = 0

diffusive fluxes d̂i = −
∑
j ∕=i

yj ji − yi jj

�−̂Dij

,
∑
i

ji = 0

mass based notations: d̂i = yi
RT

(
∇T �̂i − ∇p�

)
with �̂i = �i/Mi ,

−̂Dij = MiMj−Dij
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Multicomponent two-phase fluid mixtures

chemical components A1, . . . ,An, partially miscible, no adsorption

individual mass balances:

∂t�i + div (�iui ) = Ri in Ω ∖ Γ, [[�i (ui − uΓ)]]nΓ = 0 on Γ

� :=
∑

i �i , �u :=
∑

i �iui , j = �(u− uΓ) ⋅ nΓ;
∑

i Ri = 0

Continuity equation:

∂t�+ div (�u) = 0 in Ω ∖ Γ, [[j ]] = 0 on Γ

Species equations:

�(∂tyi + u ⋅ ∇yi ) + div Ji = 0 in Ω ∖ Γ,

[[yi ]] j + [[Ji ]]nΓ = 0 on Γ
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Multicomponent two-phase fluid mixtures

isothermal two-phase balances:

bulk interface

∂t�+ div (�u) = 0 [[u]] = [[ 1
� ]] jnΓ

∂t(�u) +∇ ⋅ (�u⊗ u) = −∇p +∇ ⋅ S [[u]] j − [[T]] ⋅ nΓ = ��nΓ

VΓ = u ⋅ nΓ + j/�

�(∂tyi + u ⋅ ∇yi ) + div ji = 0 [[yi ]] j + [[ji ]]nΓ = 0

One more constitutive relation at the interface is missing!
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Energy dissipation (isothermal case)

total free energy:

E =
∫

Ω �
(

1
2 ∣u∣

2 +  
)
dx +

∫
Γ �do

with � (�, �1, . . . , �n) the free (available) energy density.

Euler relation:

� + p =
∑

i �̂i�i with chemical potentials �̂i = ∂�i (� )

energy dissipation:

∂tE =

∫
Ω

(
− S : ∇u + p div u +

∑
i

∇�̂i ⋅ ji
)
dx

+

∫
Γ

j
(
[[

1

2�2
]] j2 − [[nΓ ⋅ SnΓ/�]]

)
do +

∫
Γ

∑
i

[[�̂i ]] jido

with ji := �i (ui − uΓ) ⋅ nΓ = j yi + ji ⋅ nΓ; note that [[ ji ]] = 0.
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Chemical interface conditions

assumption: no interfacial energy dissipation(
[[ 1

2�2 ]] j2 − [[nΓ ⋅ SnΓ/�]] + [[�̂1]]
)

j +
∑

i ∕=1[[�̂i − �̂1]] ji = 0

chemical interface conditions:

[[�̂i ]] = [[nΓ ⋅ SnΓ/�]]− [[ 1
2�2 ]] j2 for all i

note:

the standard assumption in literature is [[�̂i ]] = 0 for all i

consistency with the second law also requires S : ∇u ≥ 0 and∑
i ∇�̂i ⋅ ji ≤ 0

related models: D. Bedeaux, Advance in Chemical Physics LXIV (1986),

W. Dreyer, WIAS preprint No. 869 (2003).
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Multicomponent two-phase Navier-Stokes system

the full model:

bulk interface

∂t�+ div (�u) = 0 [[u]] = [[ 1
� ]] jnΓ

∂t(�u)+∇⋅(�u⊗u)=∇⋅T [[u]] j − [[T]]⋅nΓ = ��nΓ

VΓ = u ⋅ nΓ + j/�

�(∂tyi + u ⋅ ∇yi ) + div ji = 0 [[yi ]] j + [[ji ]]nΓ = 0

d̂i = −
∑

j ∕=i
yj ji−yi jj
�−̂Dij

,
∑

i ji = 0 [[�̂i ]] = [[nΓ ⋅ SnΓ/�]]− [[ 1
2�2 ]] j2

Note: an incompressible version with �± ≡ const± is also consistent.
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The Fluxes

Inversion of the MS-equations on E = {u ∈ IRn :
∑

i ui = 0}:

[Ji ] = X
1
2 (AS∣E )−1X−

1
2 [di ] =

1

RT
X

1
2 (AS∣E )−1X

1
2 [∇�i ] .

Here AS := X−
1
2 A X

1
2 with X = diag(x1, . . . , xn) and

A =

[
−s1 dij⋅ ⋅ ⋅dij −sn

]
, si =

∑
k ∕=i

xk
−Dik

, dij =
xi
−Dij

is symmetric with �(AS∣E ) ⊂ (−∞,−�] for � = min{1/−Dij : i ∕= j}.

∙ [Ji ] : [∇�i ] = 1
RT

(
(AS∣E )−1X

1
2 [∇�i ]

)
:
(

X
1
2 [∇�i ]

)
≤ 0.

∙ div ([Ji ]) =: div (−D(c)∇c) has elliptic principal part
if � is strongly convex
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Isothermal isobaric single-phase case

Theorem

Let Ω ⊂ IRN be open bounded with smooth ∂Ω. Let p > N+2
2 and

c0 ∈W
2− 2

p
p (Ω) such that c0

i > 0 in Ω̄ and ctot
0 is constant in Ω.

Let the diffusion matrix D(c) be given by

D(c) = X
1
2 (AS ∣E )−1X

1
2 G ′′(x) with x = c/ctot,X = diag(x),

where G := � is smooth and strongly convex on {ctot = ctot
0 }.

Then there exists - locally in time - a unique strong solution (in
the Lp-sense) of

∂tc + div (−D(c)∇c) = 0, ∂�c∣∂Ω = 0, c∣t=0 = c0

This solution is in fact classical.
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Isothermal isobaric single-phase case

Idea of proof: Let u be given by ctotxi = ui + c0
tot/n.

evolution for u lives in E = {u ∈ IRn :
∑

i ui = 0}

div (−D(u)∇u) = D(u) (−Δu) + lower order terms

� ∈ IC and v ∈ E with D(u) v = �v means

X
1
2 (AS∣E )−1X

1
2 G ′′(x) v = �v .

⇒ ⟨(AS∣E )−1X
1
2 G ′′(x) v ,X

1
2 G ′′(x) v⟩ = �⟨v ,G ′′(x) v⟩.

left-hand side > 0 and ⟨v ,G ′′(x) v⟩ > 0 by assumption on G ,
hence � > 0 ⇒ �(D(u)) ⊂ (0,∞) in ℒ(E ; E ).

Solutions stay non-negative because of the structure of diffusive fluxes:

Ji (c) = −Di (c) grad ci + ci Fi (c,∇c).
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X
1
2 (AS∣E )−1X

1
2 G ′′(x) v = �v .

⇒ ⟨(AS∣E )−1X
1
2 G ′′(x) v ,X

1
2 G ′′(x) v⟩ = �⟨v ,G ′′(x) v⟩.

left-hand side > 0 and ⟨v ,G ′′(x) v⟩ > 0 by assumption on G ,
hence � > 0 ⇒ �(D(u)) ⊂ (0,∞) in ℒ(E ; E ).

Solutions stay non-negative because of the structure of diffusive fluxes:

Ji (c) = −Di (c) grad ci + ci Fi (c,∇c).
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Multicomponent two-phase Navier-Stokes system

the full model:

bulk interface

∂t�+ div (�u) = 0 [[u]] = [[ 1
� ]] jnΓ

∂t(�u)+∇⋅(�u⊗u)=∇⋅T [[u]] j − [[T]]⋅nΓ = ��nΓ

VΓ = u ⋅ nΓ + j/�

�(∂tyi + u ⋅ ∇yi ) + div ji = 0 [[yi ]] j + [[ji ]]nΓ = 0

d̂i = −
∑

j ∕=i
yj ji−yi jj
�−̂Dij

,
∑

i ji = 0 [[�̂i ]] = [[nΓ ⋅ SnΓ/�]]− [[ 1
2�2 ]] j2

We focus on the incompressible version with constant total densities
�± ≡ const±.
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Two-Phase Navier-Stokes-Maxwell-Stefan system

work in progress

in the case Γ is a graph over IRN−1, the Lopatinski-Shapiro
conditions are satisfied in the isobaric case.

Hence, in the isobaric case the associated linear system with planar
interface has maximal Lp-regularity.

next step: check whether the Maxwell-Stefan multicomponent
diffusion system is normally elliptic in the non-isobaric case.
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Volume of Fluid (VOF)-Method
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VOF-based Mass-Transfer Computation
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Two-Variable Mass-Transfer Approach
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Enhancing the Interfacial Resolution
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Subgrid-Scale Modeling
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Effect of Subgrid-Scale Model
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Artificial Boundary Condition
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Mass Transfer with Chemical Reaction
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