Qualitative Behavior of Solutions for the Two-Phase Navier-Stokes Equations with Surface Tension

> Mathias Wilke Joint work with M. Köhne & J. Prijss

Martin-Luther University Halle-Wittenberg Faculty of Natural Sciences III Institute for Mathematics

Waseda University, Tokyo, March 8-16, 2010

 Ω

Notations

 $\Omega \subset \mathbb{R}^n$ open bounded domain with smooth boundary, $\Omega_i(t)$ subdomains occupied by immiscible incompressible fluid $i = 1, 2$, $\Gamma(t)$ interface separating the two phases. No boundary contact, i.e $\Gamma(t) \cap \partial \Omega = \emptyset$, no phase transitions, isothermal conditions and no external forces.

 $u = u(t, x)$ velocity field, $\pi = \pi(t, x)$ pressure field $S(t, x)$ stress tensor $E(t,x) := \frac{1}{2}(\nabla u(t,x) + \nabla u(t,x)^{\mathsf{T}})$ rate of strain tensor $\rho_i > 0$ densities, $\mu_i > 0$ viscosities in the phases $\nu_{\Gamma}(t, x)$ the normal at $x \in \Gamma(t)$ directed into $\Omega_{2}(t)$ $V_{\Gamma}(t, x) = (u(t, x)|v_{\Gamma}(t, x))$ normal velocity of $\Gamma(t)$ $H_{\Gamma}(t, x) = -\text{div}_{\Gamma} \nu_{\Gamma}(t, x)$ curvature of $\Gamma(t)$

$$
\llbracket \phi \rrbracket = \lim_{h \to 0+} [\phi(t, x + h\nu_{\Gamma}(t, x)) - \phi(t, x - h\nu_{\Gamma}(t, x))]
$$

is the jump of the quantity ϕ accross $\Gamma(t)$.

The Two-Phase Navier-Stokes Problem

In the bulk phases:

$$
\partial_t(\rho u) + \nabla \cdot (\rho u \otimes u - S) = 0, \quad x \in \Omega \setminus \Gamma(t), \ t > 0, \nabla \cdot u = 0, \quad x \in \Omega \setminus \Gamma(t), \ t > 0, \n\mu(\nabla u + \nabla u^{\mathsf{T}}) - \pi I = S, \quad x \in \Omega \setminus \Gamma(t), \ t > 0.
$$

At the interface:

$$
\begin{array}{rcl}\n\llbracket u \rrbracket & = & 0, \quad x \in \Gamma(t), \ t > 0, \\
(u|\nu_{\Gamma}) & = & V_{\Gamma}, \quad x \in \Gamma(t), \ t > 0, \\
-\llbracket S \rrbracket \nu_{\Gamma} & = & \sigma H_{\Gamma} \nu_{\Gamma}, \quad x \in \Gamma(t), \ t > 0.\n\end{array}
$$

Initial conditions:

$$
u(0,x)=u_0(x)\quad x\in\Omega,\quad \Gamma(0)=\Gamma_0.
$$

No-slip boundary c[on](#page-3-0)ditions at $\partial\Omega$, i[.](#page-3-0)e. $u = 0$ $u = 0$ on $\partial\Omega$.

 QQ

One-phase problems with surface tension: Beale 1980, 1984, Solonnikov 1987-, Tani & Tannaka 1996, Shimizu & Shibata 2005-.

Two phase problems with surface tension: Denisova 1988-, Tani 1996, Tannaka 1995, Shimizu & SHIBATA 2009, PRÜSS & SIMONETT 2009.

Of particular relevance for convergence of solutions are the papers of BEALE and SOLONNIKOV, both in the one-phase case.

Here we are interested in the qualitative and asymptotic behaviour of solutions of the two-phase problem.

Fix $p > n + 2$, let $\partial \Omega \in C^3$, and suppose

$$
\Gamma_0\in W^{3-2/p}_p,\quad u_0\in W^{2-2/p}_p(\Omega\backslash\Gamma_0)^n.
$$

Assume the compatibility conditions

div $u_0 = 0$ in $\Omega \backslash \Gamma_0$, $u = 0$ on $\partial \Omega$, $[\![\mathcal{P}_{\Gamma_0}\mu E_0\nu_{\Gamma_0}]\!] = 0, [\![u_0]\!] = 0$ on Γ_0 ,

where $E_0=\frac{1}{2}$ $\frac{1}{2}(\nabla u_0 + \nabla u_0^{\mathsf{T}})$, and $\mathcal{P}_{\mathsf{T}_0} = I - \nu_{\mathsf{T}_0} \times \nu_{\mathsf{T}_0}$.

 Ω

Then there exists $t_0 = t_0(u_0, \Gamma_0) > 0$ and a unique classical solution (u, π, Γ) of the problem on $(0, t_0)$. The set

> $\vert \ \ \vert$ $t \in (0,t_0)$ ${t} \times Γ(t)$

is a real analytic manifold, and with

 $\mathcal{U} := \{ (t, x) \in (0, t_0) \times \Omega, x \notin \Gamma(t) \},\$

the function $(u, \pi): \mho \to \mathbb{R}^{n+1}$ is real analytic.

Strategy for the proof

Approximate Γ_0 by a smooth hypersurface Σ .

a) Transformation to a Fixed Domain (Hanzawa) Let $d(x)$ denote the signed distance of $x \in \mathbb{R}^n$ to Σ , and $\Pi(x)$ the projection of $x \in \mathbb{R}^n$ to Σ . Then

> $Λ: Σ \times (-a, a) \rightarrow ℝⁿ$ $\Lambda(p,r) := p + r \nu_{\Sigma}(p), \quad \Lambda^{-1}(x) = (\Pi(x), d(x))$

is a diffeomorphism from $\Sigma \times (-a, a)$ onto $\mathcal{R}(\Lambda) = \{x \in \mathbb{R}^n : |d(x)| < a\}$, provided

 $0 < a < \min\{r, 1/\kappa_i(x) : i = 1, \ldots, n-1, x \in \Sigma\},\$

where $\kappa_i(x)$ mean the principal curvatures of Σ at $x \in \Sigma$ and

 $\bar{B}_r(p \pm r\nu_{\Sigma}(p)) \cap \Sigma = \{p\}, \quad p \in \Sigma.$

Use this to parameterize $\Gamma(t)$ over Σ :

 $\Gamma(t)$: $p \mapsto p + h(t, p)\nu_{\Sigma}(p)$, $p \in \Sigma$, $t > 0$.

 $2Q$

Extend this diffeomorphism to all of Ω :

 $\Theta(t, x) = x + \chi(d(x))h(t, \Pi(x))\nu_{\Sigma}(\Pi(x)).$

Here χ denotes a suitable cut-off function. This way $\Omega\backslash\Gamma(t)$ is transformed to the fixed domain $\Omega\backslash\Sigma$. Set

> $\bar{u}(t, x) = u(t, \Theta(t, x)),$ $\bar{\pi}(t, x) = \pi(t, \Theta(t, x)), \quad t > 0, \ x \in \Omega \backslash \Sigma.$

This yields the problem (drop the bars!)

$$
\rho \partial_t u - \mu \mathcal{A}(h) u + \mathcal{G}(h) \pi = \mathcal{R}(u, h) \quad \text{in } \Omega \setminus \Sigma,
$$

\n
$$
(\mathcal{G}(h)|u) = 0 \quad \text{in } \Omega \setminus \Sigma,
$$

\n
$$
u = 0 \quad \text{on } \partial \Omega,
$$

\n
$$
[\![-\mu(\mathcal{G}(h)u + [\mathcal{G}(h)u]^{\top}) + \pi]\!] \nu_{\Gamma}(h) = \sigma H_{\Gamma}(h) \nu_{\Gamma}(h) \text{ on } \Sigma,
$$

\n
$$
[\![u]\!] = 0 \quad \text{on } \Sigma,
$$

\n
$$
\partial_t h - (u|\nu_{\Sigma}) = -(u|\alpha(h)), \quad \text{on } \Sigma,
$$

\n
$$
u(0) = u_0, \quad h(0) = h_0.
$$

\n(1)

 209

Here $\mathcal{A}(h)$ and $\mathcal{G}(h)$ denote the transformed Laplacian, resp. gradient. With the curvature tensor L_{Σ} and the surface gradient ∇ _Σ we have

 $\nu_{\Gamma}(h) = \beta(h)(\nu_{\Sigma} - \alpha(h)), \qquad \alpha(h) = M(h)\nabla_{\Sigma}h,$ $M(h) = (I - hL_{\Sigma})^{-1}, \qquad \beta(h) = (1 + |\alpha(h)|^2)^{-1/2},$

and

$$
V = (\partial_t \Theta | \nu_{\Gamma}) = \partial_t h(\nu_{\Gamma} | \nu_{\Sigma}) = \beta(h)\partial_t h.
$$

The curvature $H_{\Gamma}(h)$ becomes

 $H_{\Gamma}(h) = \beta(h)\{\text{tr}[M(h)(L_{\Sigma} + \nabla_{\Sigma}\alpha(h))]$ $-\beta^2(h)(M(h)\alpha(h)|[\nabla_{\Sigma}\alpha(h)]\alpha(h))\},$

a differential expression involving second order derivatives of *only* linearly. Linearization of $H_{\Gamma}(h)$ at $h = 0$: $H_{\Gamma}'(0) = \text{tr } L_{\Sigma}^2 + \Delta_{\Sigma}$, where Δ_{Σ} denotes the Laplace-Beltrami operator on Σ .

Rewrite this problem in quasilinear form.

$$
\rho \partial_t u - \mu \Delta u + \nabla \pi = F(u, \pi, h) \quad \text{in } \Omega \setminus \Sigma,
$$

\n
$$
\text{div} u = F_d(u, h) \quad \text{in } \Omega \setminus \Sigma,
$$

\n
$$
u = 0 \quad \text{on } \partial \Omega,
$$

\n
$$
[\![-\mu(\nabla u + \nabla u^{\mathsf{T}}) + \pi]\!] \nu_{\Sigma} - \sigma(\Delta_{\Sigma} h) \nu_{\Sigma} = G(u, [\![\pi]\!], h) \quad \text{on } \Sigma,
$$

\n
$$
[\![u]\!] = 0 \quad \text{on } \Sigma,
$$

\n
$$
\partial_t h - (u | \nu_{\Sigma}) = G_h(u, h) \quad \text{on } \Sigma,
$$

\n
$$
u(0) = u_0, \quad h(0) = h_0
$$

\n(2)

The right hand sides in this problem consist of lower order terms and of terms of the same order appearing on the left, but carrying a factor $|\nabla_{\Sigma} h|$, which is small by construction.

 Ω

b) The Linear Problem

Establish maximal L_p -regularity for the linear problem defined by the l.h.s. of [\(2\)](#page-9-0). In particular, find the right spaces for the data, such that the *solution-to-data map* for the following inhomogeneous linear problem becomes an isomorphism.

> $\rho \partial_t v - \mu \Delta v + \nabla q = f_v$ in $\Omega \backslash \Sigma$, $div v = f_d$ in $\Omega \backslash \Sigma$ $v = 0$ on $\partial\Omega$. $[-\mu(\nabla v + \nabla v^{\mathsf{T}}) + q]\]v_{\Sigma} - \sigma(\Delta_{\Sigma}h)v_{\Sigma} = g \text{ on } \Sigma,$ (3) $\llbracket v \rrbracket = 0$ on Σ , $\partial_t h - (v|v_{\Sigma}) = g_h$ on Σ , $v(0) = v_0$, $h(0) = h_0$.

This is proved by localization and perturbation, and a corresponding result for a flat interface, i.e. $\Omega = \mathbb{R}^n$, $\Sigma = \mathbb{R}^{n-1} \times \{0\}$; see Prüss & SIMONETT 2009.

 QQ

The solutions of the transformed problem will belong to the following class:

 $v\in H_p^1(J;L_p(\Omega)^n)\cap L_p(J;H_p^2(\Omega\backslash\Sigma)^n),\quad q\in L_p(J;\dot{H}_p^1(\Omega\backslash\Sigma)),$

$$
\llbracket q \rrbracket \in W^{1/2-1/2p}_p(J;L_p(\Sigma)) \cap L_p(J;W^{1-1/p}_p(\Sigma)),
$$

 $h \in W^{2-1/2p}_p(J; L_p(\Sigma)) \cap H^1_p(J; W^{2-1/p}_p(\Sigma)) \cap L_p(J; W^{3-1/p}_p(\Sigma)),$ provided

$$
v_0\in W_p^{2-2/p}(\Omega\backslash\Sigma)^n,\quad h_0\in W_p^{3-2/p}(\Sigma),
$$

and the natural compatibility conditions hold.

 209

Let $1 < p < \infty$, ρ_j , μ_j , σ be positive constants, $j=1,2$; set $J = [0, a]$. Then the two-phase Stokes problem [\(3\)](#page-10-0) admits a unique solution (v, q, h) with regularity

 $v \in H^1(J; L_p(\Omega))^n \cap L_p(J; H_p^2(\Omega \setminus \Sigma))^n, \quad q \in L_p(J; \dot{H}_p^1(\Omega \setminus \Sigma)),$

$$
\llbracket q \rrbracket \in W^{1/2-1/2p}_p(J;L_p(\Sigma)) \cap L_p(J;W^{1-1/p}_p(\Sigma)),
$$

 $h \in W_p^{2-1/2p}(J;L_p(\Sigma)) \cap H_p^1(J;W_p^{2-1/p}(\Sigma) \cap L_p(J;W_p^{3-1/p}(\Sigma)).$ if and only if the data $(v_0, h_0, f, f_d, g, g_h)$ satisfy the following regularity and compatibility conditions.

(a)
$$
f_v \in L_p(J \times \Omega)^n
$$
, $v_0 \in W_p^{2-2/p}(\Omega \backslash \Sigma)^n$, $v_0 = 0$ on $\partial\Omega$;
\n(b) $f_d \in H_p^1(J; H_p^{-1}(\Omega \backslash \Sigma)) \cap L_p(J; H_p^1(\Omega \backslash \Sigma))$, div $v_0 = f_d(0)$;
\n(c) $g \in W_p^{1/2-1/2p}(J; L_p(\Sigma)) \cap L_p(J; W_p^{1-1/p}(\Sigma))$;
\n(d) $[[v_0]] = 0$, $\mathcal{P}_{\Sigma}[[\mu(\nabla v_0 + \nabla v_0^T)]] = g_v(0)$;
\n(e) $h_0 \in W_p^{3-2/p}(\Sigma)$;
\n(f) $g_h \in W_p^{1-1/2p}(J; L_p(\Sigma)) \cap L_p(J; W_p^{2-1/p}(\Sigma))$.

The solution map $(v_0, h_0, f, f_d, g, g_h) \mapsto (v, q, h)$ is continuous between the corresponding spaces.

c) The Nonlinear Problem

Based on maximal regularity, use the implicit function theorem to obtain local well-posedness of the nonlinear problem.

Use a variant of ANGENENT's parameter trick to obtain real analyticity via maximal regularity and the implicit function $theorem:$ cf. Escher, Prüss & Simonett [2](#page-12-0)[00](#page-14-0)[3.](#page-12-0)

(a)
$$
f_v \in L_p(J \times \Omega)^n
$$
, $v_0 \in W_p^{2-2/p}(\Omega \setminus \Sigma)^n$, $v_0 = 0$ on $\partial\Omega$;
\n(b) $f_d \in H_p^1(J; H_p^{-1}(\Omega \setminus \Sigma)) \cap L_p(J; H_p^1(\Omega \setminus \Sigma))$, div $v_0 = f_d(0)$;
\n(c) $g \in W_p^{1/2-1/2p}(J; L_p(\Sigma)) \cap L_p(J; W_p^{1-1/p}(\Sigma))$;
\n(d) $[[v_0]] = 0$, $\mathcal{P}_{\Sigma}[[\mu(\nabla v_0 + \nabla v_0^T)]] = g_v(0)$;
\n(e) $h_0 \in W_p^{3-2/p}(\Sigma)$;
\n(f) $g_h \in W_p^{1-1/2p}(J; L_p(\Sigma)) \cap L_p(J; W_p^{2-1/p}(\Sigma))$.

The solution map $(v_0, h_0, f, f_d, g, g_h) \mapsto (v, q, h)$ is continuous between the corresponding spaces.

c) The Nonlinear Problem

Based on maximal regularity, use the implicit function theorem to obtain local well-posedness of the nonlinear problem.

Use a variant of ANGENENT's parameter trick to obtain real analyticity via maximal regularity and the implicit function $theorem$; cf. ESCHER, PRÜSS & SIMONETT [2](#page-13-0)[00](#page-15-0)[3.](#page-12-0)

The Induced Semiflow

Recall that the closed C^2 -hypersurfaces contained in Ω form a C^2 -manifold, which we denote by \mathcal{MH}^2 . Charts are obtained via parametrization over a fixed hypersurface. As an ambient space for the phase-manifold PM of the two-phase Navier-Stokes problem with surface tension we consider the product space $\mathcal{C}(\bar{\Omega})^n\times \mathcal{MH}^2.$ We define PM as follows.

 $P M :=$

 $\{(u,\Gamma)\in C(\bar{\Omega})^n \times \mathcal{MH}^2: u \in W^{2-2/p}_p(\Omega\backslash\Gamma)^n, \Gamma \in W^{3-2/p}_p,$ div $u = 0$ in $\Omega \backslash \Gamma$, $u = 0$ on $\partial \Omega$, $\mathcal{P}_{\Gamma}[\![\mu E]\!] \nu_{\Gamma} = 0$ on Γ . (4)

The charts for this manifold are obtained by the charts induced by \mathcal{MH}^2 , followed by a $\rm{HANZAWA}$ transformation.

Recall that the closed C^2 -hypersurfaces contained in Ω form a C^2 -manifold, which we denote by \mathcal{MH}^2 . Charts are obtained via parametrization over a fixed hypersurface. As an ambient space for the phase-manifold PM of the two-phase Navier-Stokes problem with surface tension we consider the product space $\mathcal{C}(\bar{\Omega})^n\times \mathcal{MH}^2.$ We define $P\overline{M}$ as follows.

 $P M :=$ $\{(u,\Gamma)\in C(\bar{\Omega})^n \times \mathcal{MH}^2: u \in W^{2-2/p}_p(\Omega\backslash\Gamma)^n, \Gamma \in W^{3-2/p}_p,$ div $u = 0$ in $\Omega \backslash \Gamma$, $u = 0$ on $\partial \Omega$, $\mathcal{P}_{\Gamma}[\![\mu E]\!] \nu_{\Gamma} = 0$ on Γ . (4)

The charts for this manifold are obtained by the charts induced by \mathcal{MH}^2 , followed by a $\rm{HANZAWA}$ transformation.

Observe that the compatibility conditions

div $u = 0$ in $\Omega \backslash \Gamma$, $u = 0$ on $\partial \Omega$, $\mathcal{P}_{\Gamma}\mu \llbracket (\nabla u + \nabla u^{\mathsf{T}}) \rrbracket \nu_{\Gamma} = 0, \; \llbracket u \rrbracket = 0 \quad \text{ on } \Gamma,$

as well as regularity are preserved by the solutions. This yields the following result

Theorem

Let $p > n + 2$. Then the two-phase Navier-Stokes problem with surface tension generates a local semiflow on the phase-manifold PM. Each solution (u, Γ) exists on a maximal time interval $[0, t_*)$.

The energy functional and equilibria

Define the energy functional by means of

$$
\Phi(u,\Gamma):=\frac{1}{2}\|\rho^{1/2}u\|_{L_2(\Omega)}^2+\sigma\operatorname{mes}\Gamma(t).
$$

Then

$$
\partial_t \Phi(u,\Gamma) + 2\|\mu^{1/2} E\|_{L_2(\Omega)}^2 = 0,
$$

hence the energy functional is a Ljapunov functional, even a strict one.

Proposition

Let $\rho_i, \mu_i, \sigma > 0$ be constants. Then

(a) The energy equality is valid for smooth solutions.

 (b) The **equilibria** are zero velocities, constant pressures in the

phase-components, the dispersed phase is a union of nonintersecting balls.

 (c) The energy functional is a strict Liapunov-functional. (d) The critical points of the energy functional for constant phase volumes are precisely the equilibria.

 $\mathcal{A} = \mathcal{A} + \mathcal$

 QQ

The Stability Result

Assuming, for simplicity, that the phases are connected, we denote by

 $\mathcal{E} := \{(0, S_R(x_0)) : x_0 \in \Omega, R > 0, S_R(x_0) \subset \Omega\}$

the set of equilibria without boundary contact. Note that $\mathcal E$ forms a real analytic manifold of dimension $n + 1$.

Fix any such equilibrium $(0, \Sigma) \in \mathcal{E}$. We consider the behaviour of the solutions near this steady state.

Here we have to use the *full linearization* of the problem at an equilibrium $(0, \Sigma)$ i.e. at $(u, h) = (0, 0)$, and for this reason we have to replace Δ_{Σ} in the linear problem [\(3\)](#page-10-0) by

$$
A_{\Sigma}=H_{\Gamma}'(0)=\frac{n-1}{R^2}+\Delta_{\Sigma}.
$$

It is well-known that A_{Σ} is selfadjoint, negative semidefinite and has compact resolvent in $L_2(\Sigma)$; $\lambda_0 = 0$ is an eigenvalue of メ 伊 ト メ ヨ ト メ ヨ

The Stability Result

Assuming, for simplicity, that the phases are connected, we denote by

 $\mathcal{E} := \{(0, S_R(x_0)) : x_0 \in \Omega, R > 0, S_R(x_0) \subset \Omega\}$

the set of equilibria without boundary contact. Note that $\mathcal E$ forms a real analytic manifold of dimension $n + 1$.

Fix any such equilibrium $(0, \Sigma) \in \mathcal{E}$. We consider the behaviour of the solutions near this steady state.

Here we have to use the *full linearization* of the problem at an equilibrium $(0, \Sigma)$ i.e. at $(u, h) = (0, 0)$, and for this reason we have to replace Δ_{Σ} in the linear problem [\(3\)](#page-10-0) by

$$
A_{\Sigma}=H_{\Gamma}'(0)=\frac{n-1}{R^2}+\Delta_{\Sigma}.
$$

It is well-known that \mathcal{A}_{Σ} is selfadjoint, negative semidefinite and has compact resolvent in $L_2(\Sigma)$; $\lambda_0 = 0$ is an eigenvalue of dimension n.

 QQ

The equilibrium $(0, \Sigma)$ is stable in the sense that for each $\varepsilon \in (0, \varepsilon_0]$ there exists $\delta(\varepsilon) > 0$ such that for all initial values (u_0, Γ_0) subject to

$$
\mathrm{dist}_{W^{3-2/p}_p}(\Gamma_0, \Sigma) \le \delta(\varepsilon) \quad \text{ and } \quad \|u_0\|_{W^{2-2/p}_p(\Omega \setminus \Gamma_0)} \le \delta(\varepsilon)
$$

there exists a unique global solution $(u(t), \Gamma(t))$ of the problem, and it satisfies

 ${\rm dist}_{W^{3-2/\rho}_\rho}(\Gamma(t),\Sigma)\leq \varepsilon \quad \textit{ and } \quad \|u(t)\|_{W^{2-2/\rho}_\rho(\Omega\setminus \Gamma(t))}\leq \varepsilon, \,\, t\geq 0.$

Moreover, as $t \to \infty$ each of these solutions $(u(t), \Gamma(t))$ converges to a probably different equilibrium $(0, \Sigma_{\infty})$ in the same topology, i.e.

$$
\lim_{t\to\infty}\left(\mathrm{dist}_{W^{3-2/\rho}_\rho}(\Gamma(t),\Sigma_\infty)+\|u(t)\|_{W^{2-2/\rho}_\rho(\Omega\setminus\Gamma(t))}\right)=0.
$$

The convergence is at exponential rate.

Sketch of the Proof

As a base space we use

$$
X_0=L_{p,\sigma}(\Omega)^n\times W_p^{2-1/p}(\Sigma),
$$

and we set

$$
\bar{X}_1 = W^2_p(\Omega \setminus \Sigma)^n \times W^{3-1/p}_p(\Sigma)
$$

Define a closed linear operator in X_0 by means of

$$
A(v, h) = (-(\mu/\rho)\Delta v + \rho^{-1}\nabla q, -(v|\nu_{\Sigma})),
$$

with domain $\mathcal{X}_1 := D(\mathcal{A}) \subset \bar{\mathcal{X}}_1$

$$
D(A) = \{ (v, h) \in \bar{X}_1 \cap X_0 : v = 0 \text{ on } \partial \Omega, ||v|| = 0 \text{ and } ||\mathcal{P}_{\Sigma} \mu (\nabla v + \nabla v^{\top}) v_{\Sigma}|| = 0 \text{ on } \Sigma \}.
$$

Here $q\in \dot{W}^1_\rho(\Omega\setminus \Sigma)$ is determined as the solution of the *weak* transmission problem

$$
(\rho^{-1} \nabla q | \nabla \phi)_{L_2} = ((\mu/\rho) \Delta v | \nabla \phi)_{L_2}, \quad \phi \in W^1_{\rho'}(\Omega),
$$

$$
[\![q]\!] = [\![\mu((\nabla v + \nabla v^{\mathsf{T}}) \nu_{\Sigma}) \nu_{\Sigma}) \!] + \sigma \mathcal{A}_{\Sigma} h \quad \text{on } \Sigma.
$$

A & Y E & Y E

つへへ

Sketch of the Proof

As a base space we use

$$
X_0=L_{p,\sigma}(\Omega)^n\times W_p^{2-1/p}(\Sigma),
$$

and we set

$$
\bar{X}_1 = W^2_p(\Omega \setminus \Sigma)^n \times W^{3-1/p}_p(\Sigma)
$$

Define a closed linear operator in X_0 by means of

$$
A(v, h) = (-(\mu/\rho)\Delta v + \rho^{-1}\nabla q, -(v|\nu_{\Sigma})),
$$

with domain $\mathcal{X}_1 := D(\mathcal{A}) \subset \bar{\mathcal{X}}_1$

$$
D(A) = \{ (v, h) \in \bar{X}_1 \cap X_0 : v = 0 \text{ on } \partial \Omega, ||v|| = 0 \text{ and } ||\mathcal{P}_{\Sigma} \mu (\nabla v + \nabla v^{\top}) v_{\Sigma}|| = 0 \text{ on } \Sigma \}.
$$

Here $q\in \dot{W}^1_\rho(\Omega\setminus \Sigma)$ is determined as the solution of the *weak* transmission problem

$$
(\rho^{-1} \nabla q | \nabla \phi)_{L_2} = ((\mu/\rho) \Delta v | \nabla \phi)_{L_2}, \quad \phi \in W_{\rho'}^1(\Omega),
$$

$$
[\![q]\!] = [\![\mu((\nabla v + \nabla v^{\mathsf{T}}) \nu_{\Sigma}) \nu_{\Sigma}) \!] + \sigma \mathcal{A}_{\Sigma} h \quad \text{on } \Sigma.
$$

Then with $z = (v, h)$ and $f = (f_v, g_h)$ as well as $z_0 = (v_0, h_0)$, system [\(3\)](#page-10-0) can be rewritten as the abstract evolution equation

$$
\dot{z} + Az = f, \quad t > 0, \quad z(0) = z_0,
$$
 (5)

provided $f_d = 0$ and $g = 0$. Since [\(3\)](#page-10-0) has maximal L_p -regularity, the abstract problem [\(5\)](#page-24-0) has maximal L_p -regularity, as well. In particular, $-A$ generates an analytic C_0 -semigroup in X_0 .

We can show the following properties:

(i) The set of equilibria $\mathcal E$ is an $(n+1)$ -dimensional smooth manifold. (ii) The kernel $N(A)$ is isomorphic to the tangent space $T_{(0,\Sigma)}\mathcal{E}$. (iii) $N(A) \oplus R(A) = X_0$, i.e. the eigenvalue $\lambda_0 = 0$ of A is semi-simple. $(iv) \sigma(A) \setminus \{0\} \subset \mathbb{C}_+$, i.e. the semigroup e^{-At} _{$R(A)$} is exponentially stable.

This allows for the use of the generalized principle of linearized stability, see PRÜSS, SIMONETT & ZACHER 2009, to prove the theorem.

 $\mathcal{A}(\overline{\mathcal{P}}) \rightarrow \mathcal{A}(\overline{\mathcal{P}}) \rightarrow \mathcal{A}(\overline{\mathcal{P}})$

Then with $z = (v, h)$ and $f = (f_v, g_h)$ as well as $z_0 = (v_0, h_0)$, system [\(3\)](#page-10-0) can be rewritten as the abstract evolution equation

$$
\dot{z} + Az = f, \quad t > 0, \quad z(0) = z_0,
$$
 (5)

provided $f_d = 0$ and $g = 0$. Since [\(3\)](#page-10-0) has maximal L_p -regularity, the abstract problem [\(5\)](#page-24-0) has maximal L_p -regularity, as well. In particular, $-A$ generates an analytic C_0 -semigroup in X_0 . We can show the following properties:

(i) The set of equilibria $\mathcal E$ is an $(n+1)$ -dimensional smooth manifold. (ii) The kernel $N(A)$ is isomorphic to the tangent space $T_{(0,\Sigma)}\mathcal{E}$. (iii) $N(A) \oplus R(A) = X_0$, i.e. the eigenvalue $\lambda_0 = 0$ of A is semi-simple. (iv) $\sigma(A) \setminus \{0\} \subset \mathbb{C}_+$, i.e. the semigroup e^{-At} _{$R(A)$} is exponentially stable.

This allows for the use of the generalized principle of linearized stability, see PRÜSS, SIMONETT & ZACHER 2009, to prove the theorem.

There are basically two obstructions against global existence:

- regularity: the norms of either $u(t)$ or $\Gamma(t)$ become unbounded;
- **geometry**: the topology of the interface changes or the interface touches the boundary of $Ω$.

Note that the *phase volumes* are conserved by the semiflow!

We say that a solution (u, Γ) satisfies a uniform ball condition, if there is a radius $r > 0$ such that for each $t \in [0, t_*)$ and at every point $p \in \Gamma(t)$ we have

 $\bar{B}_r(p \pm r v_{\Gamma(t)}(p)) \cap \Gamma(t) = \{p\}.$

Combining the above results, we obtain the following theorem on the asymptotic behavior of solutions.

Theorem

Let $p > n + 2$. Suppose that (u, Γ) is a solution of the two-phase Navier-Stokes problem with surface tension on the maximal time interval $[0, t_*)$. Assume the following on $[0, t_*)$: $(i) \ \ \|u(t)\|_{W^{2-2/\rho}_\rho} + \|\mathsf{\Gamma}(t)\|_{W^{3-2/\rho}_\rho} \leq M < \infty;$ (ii) (u, Γ) satisfies a uniform ball condition. Then $t_* = \infty$, i.e. the solution exists globally, and it converges in PM at exponential rate to an equilibrium $(0, \Gamma_{\infty}) \in \mathcal{E}$. The converse is also true.

The idea of the proof is as follows. Assuming (i) and (ii) we show that the solution is global. The energy is a strict Ljapunov functional, hence the limit set $\omega(u, \Gamma)$ of a solution is contained in the set $\mathcal E$ of equilibria. A compactness argument shows $\omega(u, \Gamma) \neq \emptyset$, hence the solution comes close to \mathcal{E} . Then we may apply the local convergence result.

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

Combining the above results, we obtain the following theorem on the asymptotic behavior of solutions.

Theorem

Let $p > n + 2$. Suppose that (u, Γ) is a solution of the two-phase Navier-Stokes problem with surface tension on the maximal time interval $[0, t_*)$. Assume the following on $[0, t_*)$: $(i) \ \ \|u(t)\|_{W^{2-2/\rho}_\rho} + \|\mathsf{\Gamma}(t)\|_{W^{3-2/\rho}_\rho} \leq M < \infty;$ (ii) (u, Γ) satisfies a uniform ball condition. Then $t_* = \infty$, i.e. the solution exists globally, and it converges in PM at exponential rate to an equilibrium $(0, \Gamma_{\infty}) \in \mathcal{E}$. The converse is also true.

The idea of the proof is as follows. Assuming (i) and (ii) we show that the solution is global. The energy is a strict Ljapunov functional, hence the limit set $\omega(u, \Gamma)$ of a solution is contained in the set $\mathcal E$ of equilibria. A compactness argument shows $\omega(u, \Gamma) \neq \emptyset$, hence the solution comes close to \mathcal{E} . Then we may apply the local convergence result.