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Notations

Ω ⊂ Rn open bounded domain with smooth boundary, Ωi (t)
subdomains occupied by immiscible incompressible fluid i = 1, 2,
Γ(t) interface separating the two phases. No boundary contact, i.e
Γ(t) ∩ ∂Ω = ∅, no phase transitions, isothermal conditions and no
external forces.

u = u(t, x) velocity field, π = π(t, x) pressure field
S(t, x) stress tensor
E (t, x) := 1

2(∇u(t, x) +∇u(t, x)T) rate of strain tensor
ρi > 0 densities, µi > 0 viscosities in the phases
νΓ(t, x) the normal at x ∈ Γ(t) directed into Ω2(t)
VΓ(t, x) = (u(t, x)|νΓ(t, x)) normal velocity of Γ(t)
HΓ(t, x) = −divΓνΓ(t, x) curvature of Γ(t)

[[φ]] = lim
h→0+

[φ(t, x + hνΓ(t, x))− φ(t, x − hνΓ(t, x))]

is the jump of the quantity φ accross Γ(t).
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The Two-Phase Navier-Stokes Problem

In the bulk phases:

∂t(ρu) +∇ · (ρu ⊗ u − S) = 0, x ∈ Ω\Γ(t), t > 0,

∇ · u = 0, x ∈ Ω\Γ(t), t > 0,

µ(∇u +∇uT)− πI = S , x ∈ Ω\Γ(t), t > 0.

At the interface:

[[u]] = 0, x ∈ Γ(t), t > 0,

(u|νΓ) = VΓ, x ∈ Γ(t), t > 0,

−[[S ]] νΓ = σHΓνΓ, x ∈ Γ(t), t > 0.

Initial conditions:

u(0, x) = u0(x) x ∈ Ω, Γ(0) = Γ0.

No-slip boundary conditions at ∂Ω, i.e. u = 0 on ∂Ω.
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Literature - a selection

One-phase problems with surface tension:
Beale 1980, 1984, Solonnikov 1987-, Tani & Tannaka
1996, Shimizu & Shibata 2005-.

Two phase problems with surface tension:
Denisova 1988-, Tani 1996, Tannaka 1995, Shimizu &
Shibata 2009, Prüss & Simonett 2009.

Of particular relevance for convergence of solutions are the papers
of Beale and Solonnikov, both in the one-phase case.

Here we are interested in the qualitative and asymptotic
behaviour of solutions of the two-phase problem.
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Local Well-Posedness I

Theorem

Fix p > n + 2, let ∂Ω ∈ C 3, and suppose

Γ0 ∈ W
3−2/p
p , u0 ∈ W

2−2/p
p (Ω\Γ0)

n.

Assume the compatibility conditions

div u0 = 0 in Ω\Γ0, u = 0 on ∂Ω,

[[PΓ0µE0νΓ0 ]] = 0, [[u0]] = 0 on Γ0,

where E0 = 1
2(∇u0 +∇uT

0 ), and PΓ0 = I − νΓ0 × νΓ0 .

Mathias Wilke Two-Phase Navier-Stokes with Surface Tension



Local Well-Posedness II

Theorem

Then there exists t0 = t0(u0, Γ0) > 0 and a unique classical
solution (u, π, Γ) of the problem on (0, t0). The set⋃

t∈(0,t0)

{t} × Γ(t)

is a real analytic manifold, and with

0 := {(t, x) ∈ (0, t0)× Ω, x 6∈ Γ(t)},

the function (u, π) : 0 → Rn+1 is real analytic.
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Strategy for the proof

Approximate Γ0 by a smooth hypersurface Σ.

a) Transformation to a Fixed Domain (Hanzawa)
Let d(x) denote the signed distance of x ∈ Rn to Σ, and Π(x) the
projection of x ∈ Rn to Σ. Then

Λ : Σ× (−a, a) → Rn

Λ(p, r) := p + rνΣ(p), Λ−1(x) = (Π(x), d(x))

is a diffeomorphism from Σ× (−a, a) onto
R(Λ) = {x ∈ Rn : |d(x)| < a}, provided

0 < a < min{r , 1/κj(x) : j = 1, . . . , n − 1, x ∈ Σ},
where κj(x) mean the principal curvatures of Σ at x ∈ Σ and

B̄r (p ± rνΣ(p)) ∩ Σ = {p}, p ∈ Σ.

Use this to parameterize Γ(t) over Σ:

Γ(t) : p 7→ p + h(t, p)νΣ(p), p ∈ Σ, t ≥ 0.
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Extend this diffeomorphism to all of Ω:

Θ(t, x) = x + χ(d(x))h(t,Π(x))νΣ(Π(x)).

Here χ denotes a suitable cut-off function. This way Ω\Γ(t) is
transformed to the fixed domain Ω\Σ. Set

ū(t, x) = u(t,Θ(t, x)),

π̄(t, x) = π(t,Θ(t, x)), t > 0, x ∈ Ω\Σ.

This yields the problem (drop the bars!)

ρ∂tu − µA(h)u + G(h)π = R(u, h) in Ω\Σ,

(G(h)|u) = 0 in Ω\Σ,

u = 0 on ∂Ω,

[[−µ(G(h)u + [G(h)u]T) + π]]νΓ(h) = σHΓ(h)νΓ(h) on Σ,

[[u]] = 0 on Σ, (1)

∂th − (u|νΣ) = −(u|α(h)), on Σ,

u(0) = u0, h(0) = h0.
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Here A(h) and G(h) denote the transformed Laplacian, resp.
gradient. With the curvature tensor LΣ and the surface gradient
∇Σ we have

νΓ(h) = β(h)(νΣ − α(h)), α(h) = M(h)∇Σh,

M(h) = (I − hLΣ)−1, β(h) = (1 + |α(h)|2)−1/2,

and
V = (∂tΘ|νΓ) = ∂th(νΓ|νΣ) = β(h)∂th.

The curvature HΓ(h) becomes

HΓ(h) = β(h){tr[M(h)(LΣ +∇Σα(h))]

− β2(h)(M(h)α(h)|[∇Σα(h)]α(h))},

a differential expression involving second order derivatives of h only
linearly. Linearization of HΓ(h) at h = 0: H ′

Γ(0) = tr L2
Σ + ∆Σ,

where ∆Σ denotes the Laplace-Beltrami operator on Σ.
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Rewrite this problem in quasilinear form.

ρ∂tu − µ∆u +∇π = F (u, π, h) in Ω\Σ,

divu = Fd(u, h) in Ω\Σ,

u = 0 on ∂Ω,

[[−µ(∇u +∇uT) + π]]νΣ − σ(∆Σh)νΣ = G (u, [[π]], h) on Σ,

[[u]] = 0 on Σ, (2)

∂th − (u|νΣ) = Gh(u, h) on Σ,

u(0) = u0, h(0) = h0

The right hand sides in this problem consist of lower order terms
and of terms of the same order appearing on the left, but carrying
a factor |∇Σh|, which is small by construction.
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b) The Linear Problem
Establish maximal Lp-regularity for the linear problem defined by
the l.h.s. of (2). In particular, find the right spaces for the data,
such that the solution-to-data map for the following
inhomogeneous linear problem becomes an isomorphism.

ρ∂tv − µ∆v +∇q = fv in Ω\Σ,

divv = fd in Ω\Σ
v = 0 on ∂Ω,

[[−µ(∇v +∇vT) + q]]νΣ − σ(∆Σh)νΣ = g on Σ, (3)

[[v ]] = 0 on Σ,

∂th − (v |νΣ) = gh on Σ,

v(0) = v0, h(0) = h0.

This is proved by localization and perturbation, and a
corresponding result for a flat interface, i.e. Ω = Rn,
Σ = Rn−1 × {0}; see Prüss & Simonett 2009.
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The solutions of the transformed problem will belong to the
following class:

v ∈ H1
p(J; Lp(Ω)n) ∩ Lp(J;H2

p(Ω\Σ)n), q ∈ Lp(J; Ḣ1
p(Ω\Σ)),

[[q]] ∈ W
1/2−1/2p
p (J; Lp(Σ)) ∩ Lp(J;W

1−1/p
p (Σ)),

h ∈ W
2−1/2p
p (J; Lp(Σ)) ∩ H1

p(J;W
2−1/p
p (Σ)) ∩ Lp(J;W

3−1/p
p (Σ)),

provided

v0 ∈ W
2−2/p
p (Ω\Σ)n, h0 ∈ W

3−2/p
p (Σ),

and the natural compatibility conditions hold.
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The Linear Problem - Main Result

Theorem

Let 1 < p < ∞, ρj , µj , σ be positive constants, j = 1, 2; set
J = [0, a]. Then the two-phase Stokes problem (3) admits a
unique solution (v , q, h) with regularity

v ∈ H1(J; Lp(Ω))n ∩ Lp(J;H2
p(Ω\Σ))n, q ∈ Lp(J; Ḣ1

p(Ω\Σ)),

[[q]] ∈ W
1/2−1/2p
p (J; Lp(Σ)) ∩ Lp(J;W

1−1/p
p (Σ)),

h ∈ W
2−1/2p
p (J; Lp(Σ)) ∩ H1

p(J;W
2−1/p
p (Σ) ∩ Lp(J;W

3−1/p
p (Σ)).

if and only if the data (v0, h0, f , fd , g , gh) satisfy the following
regularity and compatibility conditions.
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Theorem

(a) fv ∈ Lp(J × Ω)n, v0 ∈ W
2−2/p
p (Ω\Σ)n, v0 = 0 on ∂Ω;

(b) fd ∈ H1
p(J;H−1

p (Ω\Σ)) ∩ Lp(J;H1
p(Ω\Σ)), div v0 = fd(0);

(c) g ∈ W
1/2−1/2p
p (J; Lp(Σ)) ∩ Lp(J;W

1−1/p
p (Σ));

(d) [[v0]] = 0, PΣ[[µ(∇v0 +∇vT
0 )]] = gv (0);

(e) h0 ∈ W
3−2/p
p (Σ);

(f) gh ∈ W
1−1/2p
p (J; Lp(Σ)) ∩ Lp(J;W

2−1/p
p (Σ)).

The solution map (v0, h0, f , fd , g , gh) 7→ (v , q, h) is continuous
between the corresponding spaces.

c) The Nonlinear Problem
Based on maximal regularity, use the implicit function theorem to
obtain local well-posedness of the nonlinear problem.

Use a variant of Angenent’s parameter trick to obtain real
analyticity via maximal regularity and the implicit function
theorem; cf. Escher, Prüss & Simonett 2003.
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The Induced Semiflow

Recall that the closed C 2-hypersurfaces contained in Ω form a
C 2-manifold, which we denote by MH2. Charts are obtained via
parametrization over a fixed hypersurface. As an ambient space for
the phase-manifold PM of the two-phase Navier-Stokes problem
with surface tension we consider the product space C (Ω̄)n ×MH2.
We define PM as follows.

PM :=

{(u, Γ) ∈ C (Ω̄)n ×MH2 : u ∈ W
2−2/p
p (Ω\Γ)n, Γ ∈ W

3−2/p
p ,

div u = 0 in Ω\Γ, u = 0 on ∂Ω, PΓ[[µE ]]νΓ = 0 on Γ}. (4)

The charts for this manifold are obtained by the charts induced by
MH2, followed by a Hanzawa transformation.
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Observe that the compatibility conditions

div u = 0 in Ω\Γ, u = 0 on ∂Ω,

PΓµ[[(∇u +∇uT)]]νΓ = 0, [[u]] = 0 on Γ,

as well as regularity are preserved by the solutions.
This yields the following result

Theorem

Let p > n + 2. Then the two-phase Navier-Stokes problem with
surface tension generates a local semiflow on the phase-manifold
PM. Each solution (u, Γ) exists on a maximal time interval [0, t∗).
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The energy functional and equilibria

Define the energy functional by means of

Φ(u, Γ) :=
1

2
‖ρ1/2u‖2

L2(Ω) + σ mes Γ(t).

Then
∂tΦ(u, Γ) + 2‖µ1/2E‖2

L2(Ω) = 0,

hence the energy functional is a Ljapunov functional, even a strict one.

Proposition

Let ρi , µi , σ > 0 be constants. Then
(a) The energy equality is valid for smooth solutions.
(b) The equilibria are zero velocities, constant pressures in the
phase-components, the dispersed phase is a union of nonintersecting
balls.
(c) The energy functional is a strict Ljapunov-functional.
(d) The critical points of the energy functional for constant
phase volumes are precisely the equilibria.
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The Stability Result

Assuming, for simplicity, that the phases are connected, we denote
by

E := {(0,SR(x0)) : x0 ∈ Ω, R > 0, SR(x0) ⊂ Ω}

the set of equilibria without boundary contact. Note that E forms
a real analytic manifold of dimension n + 1.
Fix any such equilibrium (0,Σ) ∈ E . We consider the behaviour of
the solutions near this steady state.
Here we have to use the full linearization of the problem at an
equilibrium (0,Σ) i.e. at (u, h) = (0, 0), and for this reason we
have to replace ∆Σ in the linear problem (3) by

AΣ = H ′
Γ(0) =

n − 1

R2
+ ∆Σ.

It is well-known that AΣ is selfadjoint, negative semidefinite and
has compact resolvent in L2(Σ); λ0 = 0 is an eigenvalue of
dimension n.
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Theorem

The equilibrium (0,Σ) is stable in the sense that for each ε ∈ (0, ε0]
there exists δ(ε) > 0 such that for all initial values (u0, Γ0) subject to

dist
W

3−2/p
p

(Γ0,Σ) ≤ δ(ε) and ‖u0‖W
2−2/p
p (Ω\Γ0)

≤ δ(ε)

there exists a unique global solution (u(t), Γ(t)) of the problem, and it
satisfies

dist
W

3−2/p
p

(Γ(t),Σ) ≤ ε and ‖u(t)‖
W

2−2/p
p (Ω\Γ(t))

≤ ε, t ≥ 0.

Moreover, as t →∞ each of these solutions (u(t), Γ(t)) converges to a
probably different equilibrium (0,Σ∞) in the same topology, i.e.

lim
t→∞

(
dist

W
3−2/p
p

(Γ(t),Σ∞) + ‖u(t)‖
W

2−2/p
p (Ω\Γ(t))

)
= 0.

The convergence is at exponential rate.
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Sketch of the Proof

As a base space we use

X0 = Lp,σ(Ω)n ×W 2−1/p
p (Σ),

and we set
X̄1 = W 2

p (Ω \ Σ)n ×W 3−1/p
p (Σ)

Define a closed linear operator in X0 by means of

A(v , h) = (−(µ/ρ)∆v + ρ−1∇q,−(v |νΣ)),

with domain X1 := D(A) ⊂ X̄1

D(A) = {(v , h) ∈ X̄1 ∩ X0 : v = 0 on ∂Ω, [[v ]] = 0 and

[[PΣµ(∇v +∇vT)νΣ]] = 0 on Σ}.

Here q ∈ Ẇ 1
p (Ω \ Σ) is determined as the solution of the weak

transmission problem

(ρ−1∇q|∇φ)L2 = ((µ/ρ)∆v |∇φ)L2 , φ ∈ W 1
p′(Ω),

[[q]] = [[µ((∇v +∇vT)νΣ|νΣ)]] + σAΣh on Σ.
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Then with z = (v , h) and f = (fv , gh) as well as z0 = (v0, h0), system (3)
can be rewritten as the abstract evolution equation

ż + Az = f , t > 0, z(0) = z0, (5)

provided fd = 0 and g = 0.
Since (3) has maximal Lp-regularity, the abstract problem (5) has
maximal Lp-regularity, as well. In particular, −A generates an analytic
C0-semigroup in X0.
We can show the following properties:

(i) The set of equilibria E is an (n + 1)-dimensional smooth manifold.
(ii) The kernel N(A) is isomorphic to the tangent space T(0,Σ)E .
(iii) N(A)⊕ R(A) = X0, i.e. the eigenvalue λ0 = 0 of A is semi-simple.
(iv) σ(A) \ {0} ⊂ C+, i.e. the semigroup e−At

|R(A)
is exponentially stable.

This allows for the use of the generalized principle of linearized stability,

see Prüss, Simonett & Zacher 2009, to prove the theorem.
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Global Existence and Convergence

There are basically two obstructions against global existence:

- regularity: the norms of either u(t) or Γ(t) become unbounded;
- geometry: the topology of the interface changes or the interface
touches the boundary of Ω.

Note that the phase volumes are conserved by the semiflow!

We say that a solution (u, Γ) satisfies a uniform ball condition, if
there is a radius r > 0 such that for each t ∈ [0, t∗) and at every
point p ∈ Γ(t) we have

B̄r (p ± rνΓ(t)(p)) ∩ Γ(t) = {p}.
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Combining the above results, we obtain the following theorem on the
asymptotic behavior of solutions.

Theorem

Let p > n + 2. Suppose that (u, Γ) is a solution of the two-phase
Navier-Stokes problem with surface tension on the maximal time interval
[0, t∗). Assume the following on [0, t∗):
(i) ‖u(t)‖

W
2−2/p
p

+ ‖Γ(t)‖
W

3−2/p
p

≤ M < ∞;

(ii) (u, Γ) satisfies a uniform ball condition.
Then t∗ = ∞, i.e. the solution exists globally, and it converges in PM at
exponential rate to an equilibrium (0, Γ∞) ∈ E . The converse is also true.

The idea of the proof is as follows. Assuming (i) and (ii) we show that

the solution is global. The energy is a strict Ljapunov functional, hence

the limit set ω(u, Γ) of a solution is contained in the set E of equilibria.

A compactness argument shows ω(u, Γ) 6= ∅, hence the solution comes

close to E . Then we may apply the local convergence result.
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