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Q C R" open bounded domain with smooth boundary, Q;(t)
subdomains occupied by immiscible incompressible fluid i = 1,2,
I(t) interface separating the two phases. No boundary contact, i.e
I(t) N9 = 0, no phase transitions, isothermal conditions and no
external forces.

u = u(t, x) velocity field, 7 = 7(t, x) pressure field

S(t, x) stress tensor

E(t,x) := 3(Vu(t,x) + Vu(t,x)T) rate of strain tensor
pi > 0 densities, p; > 0 viscosities in the phases
vr(t,x) the normal at x € I'(t) directed into Qx(t)
Vr(t,x) = (u(t,x)|vr(t, x)) normal velocity of I'(t)
Hr(t,x) = —divryr(t, x) curvature of ['(t)

Ikbll = hir&r[qb(tax + hl/r(t,X)) - ¢(tax - hl/r(t,X))]

is the jump of the quantity ¢ accross I'(t).
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The Two-Phase Navier-Stokes Problem

In the bulk phases:

Oe(pu)+V - (pu@u—S) = 0, x € Q\Il'(t), t >0,
V-u = 0, x € Q\l'(t), t >0,
w(Vu+Vu')—nl = S, x € Q\l'(t), t > 0.

At the interface:

[u] = 0, xefl(t),t>0,
(U|I/r) Vi, x¢€ F(t), t >0,
*I[S]] vr = oHryr, x€ F(t), t>0.

Initial conditions:
U(O,X) = UO(X) X € Qv F(O) = rO'

No-slip boundary conditions at 0€2, i.e. u = 0 on 0.
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Literature - a selection

One-phase problems with surface tension:
BEALE 1980, 1984, SOLONNIKOV 1987-, TANI & TANNAKA
1996, SHIMIZU & SHIBATA 2005-.

Two phase problems with surface tension:
DENISOVA 1988-, TANI 1996, TANNAKA 1995, SHIMIZU &
SHIBATA 2009, PRUSS & SIMONETT 2009.

Of particular relevance for convergence of solutions are the papers
of BEALE and SOLONNIKOV, both in the one-phase case.

Here we are interested in the qualitative and asymptotic
behaviour of solutions of the two-phase problem.
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Local Well-Posedness |

Theorem

Fix p > n+2, let 9Q € C3, and suppose
Foe W22/P ug e W2 2P(Q\[o)".
Assume the compatibility conditions

divug =0 in Q\l'p, u=0 on I,
I[Pro,qul/rO]] = 0, IIUO]] =0on ro,

where Eg = %(Vuo + V), and Pr, = | — vr, X vp,.
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Local Well-Posedness 11

Then there exists ty = to(uo, (o) > 0 and a unique classical
solution (u,m, ") of the problem on (0, ty). The set

U {1} x1(r)

te(0,to)

is a real analytic manifold, and with

U:={(t,x) € (0,t0) x Q, x & [(t)},

the function (u, ) : U — R s real analytic.
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Strategy for the proof

Approximate g by a smooth hypersurface ¥.

a) Transformation to a Fixed Domain (Hanzawa)
Let d(x) denote the signed distance of x € R” to X, and (x) the
projection of x € R" to X. Then

A:X x(—aa)—R"
Ap.r) = p+rvg(p), A7H(x) = (M(x),d(x))
is a diffeomorphism from ¥ x (—a, a) onto
R(N) = {x € R": |d(x)| < a}, provided
0<a<min{r,1/kj(x):j=1,....,n—1, x € X},

where xj(x) mean the principal curvatures of X at x € X and

B(pEtrvs(p)NX={p}, pek.
Use this to parameterize I'(t) over X:

r(t): p— p+ h(t,p)vs(p), peX, t>0.
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Extend this diffeomorphism to all of €Q:
O(t, x) = x + x(d(x))h(t, N(x))vg(M(x))-
Here  denotes a suitable cut-off function. This way Q\I(¢) is
transformed to the fixed domain Q\X. Set
u(t,x) = u(t,O(t, x)),
7(t,x) =7n(t,0(t,x)), t>0, x e Q\X.
This yields the problem (drop the bars!)
pOru — pA(h)u+ G(h)m = R(u, h) in Q\X,
(G(h)u) =0 in Q\T.
u=0 on 09,
[-1(G(h)u + [G(h)u]") + wvr(h) = o Hr (h)ur(h) on T,
[ul] =0 onX, (1)
Oth — (ulvs) = —(ula(h)), on X,
u(0) = wp, h(0) = ho.
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Here A(h) and G(h) denote the transformed Laplacian, resp.
gradient. With the curvature tensor Ly and the surface gradient
Vs we have

vr(h) = B(h)(vs — a(h)), a(h) = M(h)Vsh,
M(h) = (I —hLs)™",  B(h) = (1 + |a(h)]?)"1/2,
and
V = (0:©|vr) = 0:h(vrlvs) = B(h)O:h.

The curvature Hr(h) becomes

Hr(h) = B(h){tr[M(h)(Ls + Vsa(h))]
— B2 (h)(M(h)a(h)|[Vsa(h)a(h)},
a differential expression involving second order derivatives of h only

linearly. Linearization of Hr(h) at h = 0: H/(0) = tr L% + Ay,
where Ay denotes the Laplace-Beltrami operator on ..
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Rewrite this problem in quasilinear form.

pOru — pAu+ V= F(u,m, h) in Q\X,
divu = Fy(u, h) in Q\X,

u=0 on 0%,
[-1(Vu+Vu") + 7]vs — o(Ash)vs = G(u,[x],h) on X,
[l =0 on X, (2)

Oth — (ulvs) = Gp(u, h)  on I,
u(0) = uo, h(0) = ho

The right hand sides in this problem consist of lower order terms
and of terms of the same order appearing on the left, but carrying
a factor |Vyh|, which is small by construction.
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b) The Linear Problem

Establish maximal L,-regularity for the linear problem defined by
the I.h.s. of (2). In particular, find the right spaces for the data,
such that the solution-to-data map for the following
inhomogeneous linear problem becomes an isomorphism.

porv — uAv +Vag=1, in Q\X,
divv =f;  in Q\X
v=0 on 0%,
[-u(Vv+ Vv +glvs — o(Ash)vys =g on X, (3)
[vI=0 onZX,
Och—(vlvs) =gn on X,
v(0) = vo, h(0) = ho.
This is proved by localization and perturbation, and a

corresponding result for a flat interface, i.e. 2 = R”,
¥ = R ! x {0}; see PRUSS & SIMONETT 2009.
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The solutions of the transformed problem will belong to the
following class:

v e HA(J; Lp(Q)") N Lp(J; HA(Q\X)"), g € Lp(J; Hy(Q\X)),

[a] € Wa/? Y22 (U Lp(2)) N Lp(J; Wa~P(5)),

he Wy 2P (J; Lp(3) N HA(J: W YP(5)) N Ly(J; WP (x)),
provided

we W PQ\E)",  hy e W YP(E),

and the natural compatibility conditions hold.
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The Linear Problem - Main Result

Theorem

Let 1 < p < o0, pj, pj, o be positive constants, j = 1,2; set
J =0, a]. Then the two-phase Stokes problem (3) admits a
unique solution (v, q, h) with regularity

v e HY(J; Lp(Q)" N Lp(J; HH(Q\X))", g € Lp(J; Hy(Q\X)),

[a] € Wa/? Y22 (J; Lp(D)) N Lp(J; Wa~VP(T)),

2—1/2 2—1 3—1
he Wy Y2P(J; Lp(2)) N HA (I W YP(E) 0 Lp(J; Wi~ P(E)).

if and only if the data (vo, ho, f, T4, g, gn) satisfy the following
regularity and compatibility conditions.
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Theorem

(a) f, € Lpy(J x Q)", vo € W2 /P(Q\E)", vo = 0 on 09;

(b) fy € HX(J; HyH(Q\X)) N Lp(J; HA(Q\X)),  divvo = f4(0);
(c) g € Wp> /2P Lp(D)) N Lp(J; Wy /P (X))
(d) [v] =0, Ps[u(Vvo+ Vg )] = &.(0);

(e) ho € W, /P(%);

(f) g € WEYP(J: Lo(5)) 1 Lop(J; W2YP(T)).

The solution map (V07 ho, f7 fda g7gh) = (V7 q, h) Is continuous
between the corresponding spaces.
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Theorem

(a) f, € Lpy(J x Q)", vo € W2 /P(Q\E)", vo = 0 on 09;

(b) fy € HX(J; HyH(Q\X)) N Lp(J; HA(Q\X)),  divvo = f4(0);
(c) g € W/*1%(J; (D)) N Lo( S Wp YP());

(d) [w] =0, Ps[u(Vvo+ V)] = g (0);

(e) ho € W2 2/P(x);

(F) gn € W "/2(J; Lp(5)) N Ly(J; Wp~/P()).

The solution map (vo, ho, f, 4,8, gn) — (v, q, h) is continuous
between the corresponding spaces.

c) The Nonlinear Problem
Based on maximal regularity, use the implicit function theorem to
obtain local well-posedness of the nonlinear problem.

Use a variant of ANGENENT’S parameter trick to obtain real
analyticity via maximal regularity and the implicit function
theorem; cf. ESCHER, PRUSS & SIMONETT 2003.
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The Induced Semiflow

Recall that the closed C?-hypersurfaces contained in  form a
C2-manifold, which we denote by M7?. Charts are obtained via
parametrization over a fixed hypersurface. As an ambient space for
the phase-manifold PM of the two-phase Navier-Stokes problem
with surface tension we consider the product space C(Q)" x MH?.
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The Induced Semiflow

Recall that the closed C?-hypersurfaces contained in  form a
C2-manifold, which we denote by M7?. Charts are obtained via
parametrization over a fixed hypersurface. As an ambient space for
the phase-manifold PM of the two-phase Navier-Stokes problem
with surface tension we consider the product space C(Q)" x MH?.
We define PM as follows.

PM =
(0. € CQPx M2 0 € W@ T WP
divu=0in Q\l', u=0o0n 0Q, Pr[pEJvr =0o0n }. (4)

The charts for this manifold are obtained by the charts induced by
MH?, followed by a HANZAWA transformation.
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Observe that the compatibility conditions

divu=0 in Q\l', u=0on 092,
Pru[(Vu+ Vu)]or =0, [ul =0 onT,

as well as regularity are preserved by the solutions.
This yields the following result

Let p > n—+ 2. Then the two-phase Navier-Stokes problem with
surface tension generates a local semiflow on the phase-manifold
PM. Each solution (u,T") exists on a maximal time interval [0, t.).
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The energy functional and equilibria

Define the energy functional by means of
1
d(u,T) = §|\p1/2u\|f2(9) + omesT(t).

Then
0rd(u,T) + 2| " E |70y = 0,

hence the energy functional is a Ljapunov functional, even a strict one.

Proposition

Let pj, pi, o > 0 be constants. Then

(a) The energy equality is valid for smooth solutions.

(b) The equilibria are zero velocities, constant pressures in the
phase-components, the dispersed phase is a union of nonintersecting
balls.

(c) The energy functional is a strict Ljapunov-functional.

(d) The critical points of the energy functional for constant

phase volumes are precisely the equilibria.

v
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The Stability Result

Assuming, for simplicity, that the phases are connected, we denote
by
& :=1{(0,5r(x0)) : x0 € 2, R >0, Sr(x0) C Q}

the set of equilibria without boundary contact. Note that £ forms
a real analytic manifold of dimension n+ 1.

Fix any such equilibrium (0,%) € £. We consider the behaviour of
the solutions near this steady state.
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The Stability Result

Assuming, for simplicity, that the phases are connected, we denote
by
& :=1{(0,5r(x0)) : x0 € 2, R >0, Sr(x0) C Q}

the set of equilibria without boundary contact. Note that £ forms
a real analytic manifold of dimension n+ 1.
Fix any such equilibrium (0,%) € £. We consider the behaviour of
the solutions near this steady state.
Here we have to use the full linearization of the problem at an
equilibrium (0,X) i.e. at (u, h) = (0,0), and for this reason we
have to replace Ay in the linear problem (3) by
, n—1

Ay = H{(0) = R + Ay
It is well-known that Ay is selfadjoint, negative semidefinite and
has compact resolvent in L(X); Ao = 0 is an eigenvalue of
dimension n.
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Theorem

The equilibrium (0, X) is stable in the sense that for each € € (0, o]
there exists §(g) > 0 such that for all initial values (ug,To) subject to

disthfz/p(I'm Z) < 5(5) and ||U0||szfz/p(Q\ro) < (5(5)

there exists a unique global solution (u(t), [ (t)) of the problem, and it
satisfies

distws_z/p(r(t),Z) <e and H“(t)HWF?‘Z/"(Q\r(t)) <e t>0.

Moreover, as t — oo each of these solutions (u(t),[(t)) converges to a
probably different equilibrium (0,% ) in the same topology, i.e.

lim (distws,m(r(t), Too) + ||u(t)||W5,2/p(Q\r(t))) —0.

t—o0

The convergence is at exponential rate.
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Sketch of the Proof

As a base space we use
Xo = Lpo(Q)" x Wy VP(E),
and we set
Xi = W2(Q\ )" x W 1/P(x)
Define a closed linear operator in Xy by means of
A(v, h) = (—(p/p)Av + p~ 'V, ~(vv5)),

with domain X; := D(A) C X;

D(A) = {(v,h) € XyN Xy :v=00ndQ, [v] =0 and

[Psiu(Vv+ Vv us] =0 on X}.
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Sketch of the Proof

As a base space we use
Xo = Lpo(Q)" x Wy VP(E),
and we set
Xi = W2(Q\ )" x W 1/P(x)
Define a closed linear operator in Xy by means of
A(v, h) = (—(p/p)Av + p~ 'V, ~(vv5)),

with domain X; := D(A) C X;

D(A) = {(v,h) € XyN Xy :v=00ndQ, [v] =0 and

[Psiu(Vv+ Vv us] =0 on X}.

Here g € Wpl(Q \ X) is determined as the solution of the weak
transmission problem

(0 ValVo), = (1/p)AVIVE),, & € W,y(9Q),
[al = [u((Vv + VVT)I/):|V2)]] +ocAsh on X.
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Then with z = (v, h) and f = (f,, gx) as well as zy = (vo, ho), system (3)
can be rewritten as the abstract evolution equation

z+Az=f, t>0, z(0)= =z, (5)

provided f; =0 and g = 0.

Since (3) has maximal L,-regularity, the abstract problem (5) has
maximal L,-regularity, as well. In particular, —A generates an analytic
Co-semigroup in Xp.
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Then with z = (v, h) and f = (f,, gx) as well as zy = (vo, ho), system (3)
can be rewritten as the abstract evolution equation

z+Az=f, t>0, z(0)= =z, (5)

provided f; =0 and g = 0.

Since (3) has maximal L,-regularity, the abstract problem (5) has
maximal L,-regularity, as well. In particular, —A generates an analytic
Co-semigroup in Xp.

We can show the following properties:

(i) The set of equilibria £ is an (n + 1)-dimensional smooth manifold.

(i) The kernel N(A) is isomorphic to the tangent space T x)E.

(i) N(A) @ R(A) = Xo, i.e. the eigenvalue \g = 0 of A is semi-simple.
(iv) o(A)\ {0} C C, i.e. the semigroup e At‘R(A) is exponentially stable.
This allows for the use of the generalized principle of linearized stability,
see PRUSS, SIMONETT & ZACHER 2009, to prove the theorem.
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Global Existence and Convergence

There are basically two obstructions against global existence:

- regularity: the norms of either u(t) or ['(t) become unbounded,;
- geometry: the topology of the interface changes or the interface
touches the boundary of Q.

Note that the phase volumes are conserved by the semiflow!

We say that a solution (u, ) satisfies a uniform ball condition, if
there is a radius r > 0 such that for each t € [0, t.) and at every
point p € I'(t) we have

Br(p =+ rvrny(p)) NT(t) = {p}
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Combining the above results, we obtain the following theorem on the
asymptotic behavior of solutions.

Theorem

Let p > n+ 2. Suppose that (u,T) is a solution of the two-phase
Navier-Stokes problem with surface tension on the maximal time interval
[0, t.). Assume the following on [0, t.):

() u(®)llyz-2ro + T ys-2rn < M < o0;

(ii) (u,T) satisfies a uniform ball condition.

Then t, = o, i.e. the solution exists globally, and it converges in PM at
exponential rate to an equilibrium (0,7 .,) € £. The converse is also true.

v
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Combining the above results, we obtain the following theorem on the
asymptotic behavior of solutions.

Theorem

Let p > n+ 2. Suppose that (u,T) is a solution of the two-phase
Navier-Stokes problem with surface tension on the maximal time interval
[0, t.). Assume the following on [0, t.):

() u(®)llyz-2ro + T ys-2rn < M < o0;

(i) (u,T) satisfies a uniform ball condition.

Then t, = o, i.e. the solution exists globally, and it converges in PM at
exponential rate to an equilibrium (0,7 .,) € £. The converse is also true.

v

The idea of the proof is as follows. Assuming (i) and (ii) we show that
the solution is global. The energy is a strict Ljapunov functional, hence
the limit set w(u, ) of a solution is contained in the set £ of equilibria.
A compactness argument shows w(u, ') # (), hence the solution comes
close to £. Then we may apply the local convergence result.
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