L_{p}-Theory for Two-Phase Flows with Soluble Surfactant

Matthias Köhne

Center of Smart Interfaces - Mathematical Modeling and Analysis International Research Training Group - Mathematical Fluid Dynamics

TU Darmstadt

International Workshop on Mathematical Fluid Dynamics

Tokyo, March 2010
Joint Work with D. Bothe and J. Prüß

Motivation

Surface Active Agent (Surfactant)

a substance which lowers the surface tension of the medium in which it is dissolved, and/or the interfacial tension with other phases, and, accordingly, is positively adsorbed at the liquid/vapour and/or at other interfaces

Motivation

Example for an isothermal two-phase flow without phase change
bubbly flow through a column

"clean system"
(experiments by Takagi, Tokyo University)

Motivation

Example for an isothermal two-phase flow without phase change
bubbly flow through a column

2ppm Triton-X100
(experiments by Takagi, Tokyo University)

Overview

The Model
Local Well-Posedness
Transformation to a Fixed Domain
Linearization and L_{p}-Maximal Regularity

The Model

Modeling-Assumptions

We will use a sharp interface model for isothermal two-phase flows with surface tension and without phase-transition based on continuum mechanics, i.e.

- both fluids are contained in a domain $\Omega \subseteq \mathbb{R}^{n}$ and separated by an evolving interface $\Gamma(t) \subseteq \Omega$, where the evolution of this interface is part of the problem,
- the interface $\Gamma(t)$ moves with a velocity u_{Γ} and separates Ω into the two parts $\Omega_{ \pm}(t)$, where $\partial \Omega \cap \Gamma(t)=\varnothing, \partial \Omega_{+}(t)=\partial \Omega \cup \Gamma(t)$ and $\partial \Omega_{-}(t)=\Gamma(t)$,
- the connected component $\Omega_{+}(t)$ and the interface $\Gamma(t)$ carry a surfactant, which is not soluble in the fluid occupying $\Omega_{-}(t)$.
The derivation of the model for the surfactant-evolution will employ
- continuum mechanical balance equations for the surfactant-mass,
- transport-theorems and divergence-theorems and
- constitutive equations.

The Model

The Two-Phase Navier-Stokes Equations with Surface-Tension
Assuming constant densities $\rho_{ \pm}>0$ and constant viscosities $\eta_{ \pm}>0$, the flow is determined by the two-phase Navier-Stokes equations with surface-tension:
evolutions of mass and momentum

$$
\begin{gathered}
\rho D_{t}^{u} u-\eta \Delta u+\nabla p=\rho f, \quad \nabla \cdot u=0 \quad \text { in } \operatorname{gr}\left(\Omega_{ \pm}\right) \\
\llbracket u \rrbracket_{\Gamma}=0, \quad-\llbracket \eta\left(\nabla u+\nabla u^{\top}\right)-p \rrbracket_{\Gamma} n_{\Gamma}=\nabla_{\Gamma} \cdot\left(\sigma\left(c_{\Gamma}\right) P_{\Gamma}\right) \quad \text { on } \operatorname{gr}(\Gamma) \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } J \times \partial \Omega, \quad u(0)=u_{0} \quad \text { in } \Omega_{ \pm}(0) \\
\text { evolution of the interface }
\end{gathered}
$$

- $\llbracket \phi \rrbracket_{\Gamma}$ denotes the jump of a quantity ϕ across $\Gamma(t)$, i.e.

$$
\llbracket \phi \rrbracket_{\Gamma}(t, x)=\lim _{h \rightarrow 0^{+}}\left(\phi\left(t, x+h n_{\Gamma(t)}(x)\right)-\phi\left(t, x-h n_{\Gamma(t)}(x)\right)\right) .
$$

- P_{Γ} the projection onto $T \Gamma$, hence $\nabla_{\Gamma} \cdot\left(\sigma\left(c_{\Gamma}\right) P_{\Gamma}\right)=\sigma\left(c_{\Gamma}\right) \kappa_{\Gamma} n_{\Gamma}+\sigma^{\prime}\left(c_{\Gamma}\right) \nabla_{\Gamma} c_{\Gamma}$.

The Model

The Two-Phase Navier-Stokes Equations with Surface-Tension
TECHNISCHE
UNIVERSITAT

- Contributers:

Denisova, Denisova-Solonnikov, Tanaka, Shibata-Shimizu, Prüß-Simonett, K.-Prüß-Wilke, ...

- Recent Work employing L_{p}-maximal regularity:

Shibata, Shimizu: Resolvent Estimates and Maximal Regularity of the Interface Problem for the Stokes System in a Bounded Domain (2009), K., Prüß, Wilke: Qualitative Behaviour of Solutions for the Two-Phase Navier-Stokes Equations with Surface Tension (preprint).

The Model

Balance Equation for the Surfactant-Mass in the Bulk-Phase
For a material volume $V(t) \subseteq \Omega_{+}(t)$ conservation of surfactant-mass with volume-specific density c implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V(t)} c \mathrm{~d} x=-\int_{\partial V(t)} J^{m o l} \cdot n_{\partial V(t)} \mathrm{d} o .
$$

- J denotes the molecular surfactant-flux in the bulk-phase.
- No artificial sources and sinks are present.

The Model

Balance Equation for the Surfactant-Mass in the Bulk-Phase
For a material volume $V(t) \subseteq \Omega_{+}(t)$ conservation of surfactant-mass with volume-specific density c implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V(t)} c \mathrm{~d} x=-\int_{\partial V(t)} J^{m o l} \cdot n_{\partial V(t)} \mathrm{d} o .
$$

- J denotes the molecular surfactant-flux in the bulk-phase.
- No artificial sources and sinks are present.

The usual divergence-theorem and Reynolds' transport-theorem therefore imply

$$
\int_{V(t)} D_{t}^{u} c+c \operatorname{div} u \mathrm{~d} x=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V(t)} c \mathrm{~d} x=-\int_{V(t)} \operatorname{div} J^{m o l} \mathrm{~d} x .
$$

The Model

Balance Equation for the Surfactant-Mass in the Bulk-Phase
For a material volume $V(t) \subseteq \Omega_{+}(t)$ conservation of surfactant-mass with volume-specific density c implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V(t)} c \mathrm{~d} x=-\int_{\partial V(t)} J^{m o l} \cdot n_{\partial V(t)} \mathrm{d} o .
$$

- J denotes the molecular surfactant-flux in the bulk-phase.
- No artificial sources and sinks are present.

The usual divergence-theorem and Reynolds' transport-theorem therefore imply

$$
\int_{V(t)} D_{t}^{u} c+c \operatorname{div} u \mathrm{~d} x=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V(t)} c \mathrm{~d} x=-\int_{V(t)} \operatorname{div} J^{m o l} \mathrm{~d} x .
$$

Hence, localization leads to

$$
D_{t}^{u} c+c \operatorname{div} u+\operatorname{div} J^{m o l}=0 \quad \text { in } \operatorname{gr}\left(\Omega_{+}\right) .
$$

The Model

Balance Equation for the Surfactant-Mass in the Bulk-Phase

We assume the constitutive equation

$$
J^{\mathrm{mol}}=-d \nabla c
$$

i. e. the flux is modeled by Fick's law with a constant diffusion coefficient $d>0$.

Hence, we derived the

Surfactant-Balance in the Bulk-Phase

$$
D_{t}^{u} c-d \Delta c=0 \quad \text { in } \operatorname{gr}\left(\Omega_{+}\right)
$$

The Model

Balance Equation for the Surfactant-Mass on the Interface
For a material volume $V(t) \subseteq \Omega$ with $\Sigma(t)=\Gamma(t) \cap V(t)$ conservation of surfactant-mass with surface-specific density c_{Γ} implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Sigma(t)} c_{\Gamma} \mathrm{d} o=-\int_{\partial \Sigma(t)} J_{\Gamma}^{m o l} \cdot n_{\partial \Sigma(t)} \mathrm{d} s+\int_{\Sigma(t)} f^{\text {sorp }} \mathrm{d} o .
$$

- $J_{\Gamma}^{m o l}$ denotes the interfacial molecular surfactant-flux, tangential to $\Gamma(t)$.
- $f^{\text {sorp }}$ denotes the interfacial density of sources and sinks due to sorption.

The Model

Balance Equation for the Surfactant-Mass on the Interface
For a material volume $V(t) \subseteq \Omega$ with $\Sigma(t)=\Gamma(t) \cap V(t)$ conservation of surfactant-mass with surface-specific density c_{Γ} implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Sigma(t)} c_{\Gamma} \mathrm{d} o=-\int_{\partial \Sigma(t)} J_{\Gamma}^{m o l} \cdot n_{\partial \Sigma(t)} \mathrm{d} s+\int_{\Sigma(t)} f^{s o r p} \mathrm{~d} o .
$$

- $J_{\Gamma}^{m o l}$ denotes the interfacial molecular surfactant-flux, tangential to $\Gamma(t)$.
- $f^{\text {sorp }}$ denotes the interfacial density of sources and sinks due to sorption.

The surface-divergence-theorem and the surface-transport-theorem imply

$$
\int_{\Sigma(t)} D_{t}^{u} c_{\Gamma}+c_{\Gamma} \operatorname{div}_{\Gamma} u \mathrm{~d} o=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Sigma(t)} c_{\Gamma} \mathrm{d} o=-\int_{\Sigma(t)} \mathrm{div}_{\Gamma} J_{\Gamma}^{m o l} \mathrm{~d} o+\int_{\Sigma(t)} f^{s o r p} \mathrm{~d} o
$$

The Model

Balance Equation for the Surfactant-Mass on the Interface
For a material volume $V(t) \subseteq \Omega$ with $\Sigma(t)=\Gamma(t) \cap V(t)$ conservation of surfactant-mass with surface-specific density c_{Γ} implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Sigma(t)} c_{\Gamma} \mathrm{d} o=-\int_{\partial \Sigma(t)} J_{\Gamma}^{m o l} \cdot n_{\partial \Sigma(t)} \mathrm{d} s+\int_{\Sigma(t)} f^{s o r p} \mathrm{~d} o .
$$

- $J_{\Gamma}^{m o l}$ denotes the interfacial molecular surfactant-flux, tangential to $\Gamma(t)$.
- $f^{\text {sorp }}$ denotes the interfacial density of sources and sinks due to sorption.

The surface-divergence-theorem and the surface-transport-theorem imply

$$
\int_{\Sigma(t)} D_{t}^{u} c_{\Gamma}+c_{\Gamma} \operatorname{div}_{\Gamma} u \mathrm{~d} o=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Sigma(t)} c_{\Gamma} \mathrm{d} o=-\int_{\Sigma(t)} \mathrm{div}_{\Gamma} J_{\Gamma}^{m o l} \mathrm{~d} o+\int_{\Sigma(t)} f^{s o r p} \mathrm{~d} o
$$

Hence, localization leads to

$$
D_{t}^{u} c_{\Gamma}+c_{\Gamma} \operatorname{div}_{\Gamma} u+\operatorname{div} J_{\Gamma}^{m o l}=f^{\text {sorp }} \quad \text { on } \operatorname{gr}(\Gamma) \text {. }
$$

The Model

Balance Equation for the Surfactant-Mass on the Interface

We assume the constitutive equations

$$
J_{\Gamma}^{\text {mol }}=-d_{\Gamma} \nabla_{\Gamma} c_{\Gamma}, \quad f^{\text {sorp }}=r\left(c_{\Gamma}, c_{\Gamma}\right)
$$

i. e. the flux is modeled is by Fick's law with a constant interfacial diffusion coefficient $d_{\Gamma}>0$ and the sorption-rate depends on $\left.c\right|_{\Gamma}$ and c_{Γ}.

Hence, we derived the

Surfactant-Balance on the Interface

$$
D_{t}^{u} c_{\Gamma}+c_{\Gamma} \operatorname{div}_{\Gamma} u-d_{\Gamma} \Delta_{\Gamma} c_{\Gamma}=r\left(\left.c\right|_{\Gamma}, c_{\Gamma}\right) \quad \text { on } \operatorname{gr}(\Gamma)
$$

The Model

Balance Equation for the Surfactant-Mass in the Coupling-Region

For a material volume $V(t) \subseteq \Omega$ with $\Sigma(t)=\Gamma(t) \cap V(t)$ conservation of surfactant-mass with volume-specific density c and surface-specific density c_{Γ} implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\int_{V(t)} c \mathrm{~d} x+\int_{\Sigma(t)} c_{\Gamma} \mathrm{do}\right]=-\int_{\partial V(t)} J^{m o l} \cdot n_{\partial V(t)} \mathrm{do}-\int_{\partial \Sigma(t)} J_{\Gamma}^{m o l} \cdot n_{\partial \Sigma(t)} \mathrm{d} s
$$

The two-phase-divergence-theorem, the surface-divergence-theorem, Reynolds' transport-theorem and the surface-transport-theorem imply

$$
\begin{aligned}
& \int_{V(t)} D_{t}^{u} c+c \operatorname{div} u \mathrm{~d} x+\int_{\Sigma(t)} D_{t}^{u} c_{\Gamma}+c_{\Gamma} \operatorname{div}_{\Gamma} u \mathrm{~d} o=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V(t)} c \mathrm{~d} x+\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Sigma(t)} c_{\Gamma} \mathrm{do} \\
= & -\int_{V(t)} \operatorname{div} J^{m o l} \mathrm{~d} x-\int_{\Sigma(t)} \operatorname{div}_{\Gamma} J_{\Gamma}^{m o l} \mathrm{~d} o-\int_{\Sigma(t)} \llbracket J^{m o l} \rrbracket_{\Gamma} \cdot n_{\Gamma} \mathrm{do} .
\end{aligned}
$$

The Model

Balance Equation for the Surfactant-Mass in the Coupling-Region

For a material volume $V(t) \subseteq \Omega$ with $\Sigma(t)=\Gamma(t) \cap V(t)$ conservation of surfactant-mass with volume-specific density c and surface-specific density c_{Γ} implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\int_{V(t)} c \mathrm{~d} x+\int_{\Sigma(t)} c_{\Gamma} \mathrm{do}\right]=-\int_{\partial V(t)} J^{m o l} \cdot n_{\partial V(t)} \mathrm{d} o-\int_{\partial \Sigma(t)} J_{\Gamma}^{m o l} \cdot n_{\partial \Sigma(t)} \mathrm{d} s
$$

The two-phase-divergence-theorem, the surface-divergence-theorem, Reynolds' transport-theorem and the surface-transport-theorem imply after subtraction of the bulk- and interface-balances and localization

$$
\llbracket J^{m o l} \rrbracket_{\Gamma} \cdot n_{\Gamma}+f^{\text {sorp }}=0 \quad \text { on } \operatorname{gr}(\Gamma)
$$

The Model

Balance Equation for the Surfactant-Mass in the Coupling-Region
For the surfactant-mass this implies

$$
r\left(\left.c\right|_{\Gamma}, c_{\Gamma}\right)=-\llbracket J^{m o l} \rrbracket_{\Gamma} \cdot n_{\Gamma}=\left.d \nabla c\right|_{\Gamma} \cdot n_{\Gamma} \quad \text { on } \operatorname{gr}(\Gamma)
$$

and hence, we derived the

Surfactant-Balance on the Interface

$$
D_{t}^{u} c_{\Gamma}+c_{\Gamma} \operatorname{div}_{\Gamma} u-d_{\Gamma} \Delta_{\Gamma} c_{\Gamma}=d \nabla c_{\Gamma} \cdot n_{\Gamma} \quad \text { on } \operatorname{gr}(\Gamma)
$$

The Model

Balance Equation for the Surfactant-Mass in the Coupling-Region
For the surfactant-mass this implies

$$
r\left(\left.c\right|_{\Gamma}, c_{\Gamma}\right)=-\llbracket J^{m o l} \rrbracket_{\Gamma} \cdot n_{\Gamma}=\left.d \nabla c\right|_{\Gamma} \cdot n_{\Gamma} \quad \text { on } \operatorname{gr}(\Gamma)
$$

and hence, we derived the

Surfactant-Balance on the Interface

$$
D_{t}^{u} c_{\Gamma}+c_{\Gamma} \operatorname{div}_{\Gamma} u-d_{\Gamma} \Delta_{\Gamma} c_{\Gamma}=\left.d \nabla c\right|_{\Gamma} \cdot n_{\Gamma} \quad \text { on } \operatorname{gr}(\Gamma)
$$

Assuming that sorption is faster than diffusion we have the

Surfactant-Distribution at the Interface

$$
c_{\Gamma}=\gamma\left(\left.c\right|_{\Gamma}\right) \quad \text { on } \operatorname{gr}(\Gamma)
$$

with the adsorption isotherm γ, e.g. the Langmuir adsorption isotherm.

The Model

The Two-Phase Navier-Stokes Equations with Soluble Surfactant

evolutions of mass and momentum

$$
\begin{gathered}
\rho D_{t}^{u} u-\eta \Delta u+\nabla p=\rho f, \quad \nabla \cdot u=0 \quad \text { in } \operatorname{gr}\left(\Omega_{ \pm}\right) \\
\llbracket u \rrbracket_{\Gamma}=0, \quad-\llbracket \eta\left(\nabla u+\nabla u^{\top}\right)-p \rrbracket_{\Gamma} n_{\Gamma}=\nabla_{\Gamma} \cdot\left(\sigma\left(c_{\Gamma}\right) P_{\Gamma}\right) \quad \text { on } \operatorname{gr}(\Gamma) \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } J \times \partial \Omega, \quad u(0)=u_{0} \quad \text { in } \Omega_{ \pm}(0) \\
\text { evolution of the interface }
\end{gathered}
$$

Local Well-Posedness

Theorem

Let $p>n+2$ and let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded domain with boundary of class C^{3}. Let $\rho_{ \pm}, \eta_{ \pm}, d, d_{\Gamma}>0$ and let $\sigma, \gamma \in C^{3-}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$with $\gamma^{\prime}>0$. Suppose

$$
u_{0} \in W_{p}^{2-2 / p}\left(\Omega \backslash \Gamma_{0}\right), \quad \Gamma_{0} \in W_{p}^{3-2 / p}, \quad c_{0} \in W_{p}^{2-2 / p}\left(\Omega_{+}(0), \mathbb{R}_{+}\right)
$$

are subject to the following regularity and compatibility conditions

$$
\begin{gathered}
\llbracket u_{0} \rrbracket_{\Gamma_{0}}=0,\left.\quad u_{0}\right|_{\partial \Omega}=0,\left.\quad c_{0}\right|_{\Gamma_{0}} \in W_{p}^{2-2 / p}\left(\Gamma_{0}\right),\left.\quad \nabla c_{0}\right|_{\partial \Omega} \cdot n_{\partial \Omega}=0, \\
\quad \operatorname{div} u_{0}=0 \quad \text { in } \Omega \backslash \Gamma_{0}, \\
-P_{\Gamma_{0}} \llbracket \eta\left(\nabla u_{0}+\nabla u_{0}^{\top}\right) \rrbracket_{\Gamma_{0}} n_{\Gamma_{0}}=\sigma^{\prime}\left(\gamma\left(\left.c_{0}\right|_{\Gamma}\right)\right) \nabla_{\Gamma} \gamma\left(\left.c_{0}\right|_{\Gamma}\right) \quad \text { on } \Gamma_{0}
\end{gathered}
$$

and $f \in L_{p}\left(\mathbb{R}_{+} \times \Omega\right)$.
Then there exists $t_{0}=t_{0}\left(u_{0}, \Gamma_{0}, c_{0}\right)$, such that the problem admits a unique strong solution ($u, p, \Gamma, c, c_{\Gamma}$) with $c, c_{\Gamma}>0$ on $\left(0, t_{0}\right)$.

Local Well-Posedness

The proof employs

- the transformation to a fixed domain via the direct-mapping technique using a Hanzawa-transformation,
- the establishment of L_{p}-maximal regularity of a suitable linearization and
- a fixed-point-argument.

For a (bent) half-space result cf.
Bothe, Prüß, Simonett: Well-Posedness of a Two-Phase Flow with Soluble Surfactant, Prog. in Nonlinear Differential Equ. and Their Applications (64), 37-61

The Transformed System

evolutions of mass and momentum

$$
\begin{gathered}
\rho\left(\mathcal{D}_{t}^{h}+u \cdot \mathcal{G}^{h}\right) u-\eta \mathcal{L}^{h} u+\mathcal{G}^{h} p=\rho f, \quad \mathcal{D}^{h} u=0 \quad \text { in } J \times \Omega \backslash \Sigma \\
\llbracket u \rrbracket_{\Sigma}=0, \quad-\llbracket \eta\left(\mathcal{G}^{h} u+\mathcal{G}^{h} u^{\top}\right)-p \rrbracket_{\Sigma} n_{\Gamma}(h)=\mathcal{D}_{\Sigma}^{h}\left(\sigma\left(c_{\Sigma}\right) P_{\Gamma}(h)\right) \quad \text { on } J \times \Sigma \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } J \times \partial \Omega, \quad u(0)=u_{0} \quad \text { in } \Omega \backslash \Sigma \\
\text { evolution of the interface }
\end{gathered}
$$

$$
\left(n_{\Sigma} \mid n_{\Gamma}(h)\right) \partial_{t} h=\left(u \mid n_{\Gamma}(h)\right) \quad \text { on } J \times \Sigma, \quad h(0)=h_{0} \quad \text { on } \Sigma
$$

evolution of the surfactant

$$
\left(\mathcal{D}_{t}^{h}+u \cdot \mathcal{G}^{h}\right) c-d \mathcal{L}^{h} c=0 \quad \text { in } J \times \Omega_{+}
$$

$$
\gamma\left(\left.c\right|_{\Sigma}\right)=c_{\Sigma}, \quad\left(\partial_{t}+u \cdot \mathcal{G}_{\Sigma}^{h}\right) c_{\Sigma}+c_{\Sigma} \mathcal{D}_{\Sigma}^{h} u-d_{\Gamma} \mathcal{L}_{\Sigma}^{h} c_{\Sigma}=\left.d \mathcal{G}^{h} C\right|_{\Sigma} \cdot n_{\Gamma}(h) \quad \text { on } J \times \Sigma
$$

$$
\left.\nabla c\right|_{\partial \Omega} \cdot n_{\partial \Omega}=0 \quad \text { on } J \times \partial \Omega, \quad c(0)=c_{0} \quad \text { in } \Omega_{+}
$$

The Linearized System

Linearization w.r.t. a Reference Solution $z^{*}=\left(u^{*}, p^{*}, h^{*}, c^{*}, c_{\Sigma}^{*}\right)$

evolutions of mass and momentum

$$
\begin{gathered}
\rho \partial_{t} u-\eta \Delta u+\nabla p=F(u, p, h)+\rho f, \quad \operatorname{div} u=G(u, h) \quad \text { in } J \times \Omega \backslash \Sigma \\
-P_{\Sigma} \llbracket \eta\left(\nabla u+\nabla u^{\top}\right) \rrbracket_{\Sigma} n_{\Sigma}-\sigma^{\prime}\left(c_{\Sigma}^{*}\right) \nabla_{\Sigma} c_{\Sigma}=H_{\tau}\left(u, h, c_{\Sigma} ; c_{\Sigma}^{*}\right), \\
\left(-\llbracket \eta\left(\nabla u+\nabla u^{\top}\right) \rrbracket_{\Sigma} n_{\Sigma} \mid n_{\Sigma}\right)+\llbracket p \rrbracket_{\Sigma}-\sigma\left(c_{\Sigma}^{*}\right) \Delta_{\Sigma} h=H_{\nu}\left(u, h, c_{\Sigma} ; c_{\Sigma}^{*}\right),
\end{gathered}
$$

$$
\llbracket u \rrbracket_{\Sigma}=0 \quad \text { on } J \times \Sigma,\left.\quad u\right|_{\partial \Omega}=0 \quad \text { on } J \times \partial \Omega, \quad u(0)=u_{0} \quad \text { in } \Omega \backslash \Sigma
$$

evolution of the interface
$\partial_{t} h-\left(u \mid n_{\Sigma}\right)+\left(u^{*} \mid \nabla_{\Sigma} h\right)=H_{\gamma}\left(u, h ; u^{*}\right) \quad$ on $J \times \Sigma, \quad h(0)=h_{0} \quad$ on Σ
evolution of the surfactant

$$
\partial_{t} c-d \Delta c=M(u, h, c) \quad \text { in } J \times \Omega_{+}
$$

$$
\left.\gamma^{\prime}\left(\left.c^{*}\right|_{\Sigma}\right) c\right|_{\Sigma}-c_{\Sigma}=N_{\nu}\left(c, c_{\Sigma} ; c^{*}\right), \quad \partial_{t} c_{\Sigma}-d_{\Gamma} \Delta_{\Sigma} c_{\Sigma}=N_{\tau}\left(u, h, c, c_{\Sigma}\right) \quad \text { on } J \times \Sigma
$$

$$
\left.\nabla c\right|_{\partial \Omega} \cdot n_{\partial \Omega}=0 \quad \text { on } J \times \partial \Omega, \quad c(0)=c_{0} \quad \text { in } \Omega_{+}
$$

The Principal Linear Part

Linearization w.r.t. a Reference Solution $z^{*}=\left(u^{*}, p^{*}, h^{*}, c^{*}, c_{\Sigma}^{*}\right)$

evolutions of mass and momentum

$$
\begin{gathered}
\rho \partial_{t} u-\eta \Delta u+\nabla p=f, \quad \operatorname{div} u=g \quad \text { in } J \times \Omega \backslash \Sigma \\
-P_{\Sigma} \llbracket \eta\left(\nabla u+\nabla u^{\top}\right) \rrbracket_{\Sigma} n_{\Sigma}-\sigma^{\prime}\left(c_{\Sigma}^{*}\right) \nabla_{\Sigma} c_{\Sigma}=h_{\tau}, \\
\left(-\llbracket \eta\left(\nabla u+\nabla u^{\top}\right) \rrbracket_{\Sigma} n_{\Sigma} \mid n_{\Sigma}\right)+\llbracket p \rrbracket_{\Sigma}-\sigma\left(c_{\Sigma}^{*}\right) \Delta_{\Sigma} h=h_{\nu}, \\
\llbracket u \rrbracket_{\Sigma}=0 \quad \text { on } J \times \Sigma,\left.\quad u\right|_{\partial \Omega}=0 \quad \text { on } J \times \partial \Omega, \quad u(0)=u_{0} \quad \text { in } \Omega \backslash \Sigma \\
\text { evolution of the interface }
\end{gathered}
$$

$$
\partial_{t} h-\left(u \mid n_{\Sigma}\right)+\left(u^{*} \mid \nabla_{\Sigma} h\right)=h_{\gamma} \quad \text { on } J \times \Sigma, \quad h(0)=h_{0} \quad \text { on } \Sigma
$$

evolution of the surfactant

$$
\partial_{t} c-d \Delta c=m \quad \text { in } J \times \Omega_{+}
$$

$$
\begin{gathered}
\left.\gamma^{\prime}\left(\left.c^{*}\right|_{\Sigma}\right) c\right|_{\Sigma}-c_{\Sigma}=n_{\nu}, \quad \partial_{t} c_{\Sigma}-d_{\Gamma} \Delta_{\Sigma} c_{\Sigma}=n_{\tau} \quad \text { on } J \times \Sigma \\
\left.\nabla c\right|_{\partial \Omega} \cdot n_{\partial \Omega}=0 \quad \text { on } J \times \partial \Omega, \quad c(0)=c_{0} \quad \text { in } \Omega_{+}
\end{gathered}
$$

The Principal Linear Part

L_{p}-maximal Regularity

We denote the solution spaces by

$$
\begin{aligned}
& u \in \mathbb{E}_{u}(a)=\left\{\begin{array}{c}
v \in H_{p}^{1}\left([0, a], L_{p}\left(\Omega, \mathbb{R}^{n}\right)\right) \cap L_{p}\left([0, a], H_{p}^{2}\left(\Omega \backslash \Sigma, \mathbb{R}^{n}\right)\right), \\
\llbracket v \rrbracket_{\Sigma}=0,\left.\quad v\right|_{\partial \Omega}=0
\end{array}\right\} \\
& p \in \mathbb{E}_{p}(a)=\left\{\begin{array}{c}
q \in L_{p}\left([0, a], \dot{H}_{p}^{1}(\Omega \backslash \Sigma)\right), \\
\llbracket q \rrbracket_{\Sigma} \in W_{p}^{1 / 2-1 / 2 p}\left([0, a], L_{p}(\Sigma)\right) \cap L_{p}\left([0, a], W_{p}^{1-1 / p}(\Sigma)\right)
\end{array}\right\} \\
& h \in \mathbb{E}_{h}(a)=W_{p}^{2-1 / 2 p}\left([0, a], L_{p}(\Sigma)\right) \cap H_{p}^{1}\left([0, a], W_{p}^{2-1 / p}(\Sigma)\right) \\
& \cap L_{p}\left([0, a], W_{p}^{3-1 / p}(\Sigma)\right) \\
& c \in \mathbb{E}_{c}(a)=\left\{\begin{array}{c}
e \in H_{p}^{1}\left([0, a], L_{p}\left(\Omega_{+}\right)\right) \cap L_{p}\left([0, a], H_{p}^{2}\left(\Omega_{+}\right)\right), \\
\left.e\right|_{\Sigma} \in \mathbb{E}_{c}^{\Sigma}(a),\left.\quad \nabla e\right|_{\partial \Omega} n_{\partial \Omega}=0
\end{array}\right\} \\
& c_{\Sigma} \in \mathbb{E}_{c}^{\Sigma}(a)=H_{p}^{1}\left([0, a], L_{p}(\Sigma)\right) \cap L_{p}\left([0, a], H_{p}^{2}(\Sigma)\right) \\
& \text { and set } \mathbb{E}(a)=\mathbb{E}_{u}(a) \times \mathbb{E}_{p}(a) \times \mathbb{E}_{h}(a) \times \mathbb{E}_{c}(a) \times \mathbb{E}_{c}^{\sum}(a) \text {. }
\end{aligned}
$$

The Principal Linear Part

L_{p}-maximal Regularity

We denote the data spaces by

$$
\begin{aligned}
& f \in \mathbb{F}_{f}(a)=L_{p}\left([0, a] \times \Omega, \mathbb{R}^{n}\right) \\
& g \in \mathbb{F}_{g}(a)=H_{p}^{1}\left([0, a], \dot{H}_{p}^{-1}(\Omega \backslash \Sigma)\right) \cap L_{p}\left([0, a], H_{p}^{1}(\Omega \backslash \Sigma)\right) \\
& h_{\tau} \in \mathbb{F}_{h}^{\tau}(a)=W_{p}^{1 / 2-1 / 2 p}\left([0, a], L_{p}(\Sigma, T \Sigma)\right) \cap L_{p}\left([0, a], W_{p}^{1-1 / p}(\Sigma, T \Sigma)\right) \\
& h_{\nu} \in \mathbb{F}_{h}^{\nu}(a)=W_{p}^{1 / 2-1 / 2 p}\left([0, a], L_{p}(\Sigma)\right) \cap L_{p}\left([0, a], W_{p}^{1-1 / p}(\Sigma)\right) \\
& h_{\gamma} \in \mathbb{F}_{h}^{\gamma}(a)=W_{p}^{1-1 / 2 p}\left([0, a], L_{p}\left(\Sigma, \mathbb{R}^{n}\right)\right) \cap L_{p}\left([0, a], W_{p}^{2-1 / p}\left(\Sigma, \mathbb{R}^{n}\right)\right) \\
& m \in \mathbb{F}_{m}(a)=L_{p}\left([0, a] \times \Omega_{+}\right) \\
& n_{\tau} \in \mathbb{F}_{n}^{\tau}(a)=L_{p}([0, a] \times \Sigma) \\
& n_{\nu} \in \mathbb{F}_{n}^{\nu}(a)=H_{p}^{1}\left([0, a], L_{p}(\Sigma)\right) \cap L_{p}\left([0, a], H_{p}^{2}(\Sigma)\right) \\
& \text { and set } \mathbb{F}(a)=\mathbb{F}_{f}(a) \times \mathbb{F}_{g}(a) \times \mathbb{F}_{h}^{\tau}(a) \times \mathbb{F}_{h}^{\nu}(a) \times \mathbb{F}_{h}^{\gamma}(a) \times \mathbb{F}_{m}(a) \times \mathbb{F}_{n}^{\tau}(a) \times \mathbb{F}_{n}^{\nu}(a) .
\end{aligned}
$$

The Principal Linear Part

L_{p}-maximal Regularity

Theorem

Let $p>n+2$, a>0. Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded domain with boundary of class C^{3} and let $\Sigma \subseteq \Omega$ be a compact real-analytic hypersurface. Let $\rho_{ \pm}, \eta_{ \pm}, d, d_{\Gamma}>0$ and $\sigma, \gamma \in C^{3-}(\mathbb{R}, \mathbb{R})$ with $\sigma, \gamma^{\prime}>0$. Let $z^{*} \in \mathbb{E}(a)$. Then the linear problem

$$
L\left(z ; z^{*}\right)=\left(f, g, h_{\tau}, h_{\nu}, h_{\gamma}, m, n_{\tau}, n_{\nu}\right), \quad(u(0), h(0), c(0))=\left(u_{0}, h_{0}, c_{0}\right)
$$

admits a unique solution $z \in \mathbb{E}(a)$, if and only if the data is subject to the following regularity and compatibility conditions:

$$
\begin{aligned}
& \left(f, g, h_{\tau}, h_{\nu}, h_{\gamma}, m, n_{\tau}, n_{\nu}\right) \in \mathbb{F}(a), \\
& u_{0} \in W_{p}^{2-2 / p}\left(\Omega \backslash \Sigma, \mathbb{R}^{n}\right), \quad h_{0} \in W_{p}^{3-2 / p}(\Sigma), \quad c_{0} \in W_{p}^{2-2 / p}\left(\Omega_{+}\right), \\
& \llbracket u_{0} \rrbracket_{\Sigma}=0,\left.\quad u_{0}\right|_{\partial \Omega}=0,\left.\quad c_{0}\right|_{\Sigma} \in W_{p}^{2-2 / p}(\Sigma),\left.\quad \nabla c_{0}\right|_{\partial \Omega} \cdot n_{\partial \Omega}=0, \\
& \operatorname{div} u_{0}=g(0) \quad \text { in } \Omega \backslash \Sigma, \\
& -P_{\Sigma} \llbracket \eta\left(\nabla u_{0}+\nabla u_{0}^{\top}\right) \rrbracket_{\Sigma} n_{\Sigma}-\sigma^{\prime}\left(c_{\Sigma}^{*}(0)\right) \nabla_{\Sigma} \gamma\left(\left.c_{0}\right|_{\Sigma}\right)=h_{\tau}(0) \quad \text { on } \Sigma .
\end{aligned}
$$

Moreover, the solution map is continuous between the corresponding spaces.

Thank You for Your Attention!

