Nonlinear diffusion equations derived from nonreversible particle systems

Makiko Sasada
The University of Tokyo

13. March. 2010

Backgrounds of interacting particle systems

Large-scale interacting systems

Random walks of particles on a lattice space

Scaling limit

Interaction of the microscopic system \Rightarrow
The evolution equation of the macroscopic parameter

Simple Symmetric Exclusion Processes (SSEP)

$\mathbb{T}_{N}^{d}:=(\mathbb{Z} / N \mathbb{Z})^{d}=\{0,1 \ldots, N-1\}^{d}$: discrete torus of size N^{d}
$\chi_{N}^{d}:=\{0,1\}^{\mathbb{T}_{N}^{d}}$: state space
$\eta=\left(\eta_{x}\right)_{x \in \mathbb{T}_{N}^{d}}$: element of χ_{N}^{d}

Dynamics of SSEP

jump to one of the neighboring sites with probability $\frac{1}{2 d}$ exclusion rule jump rate is a constant 1 （the inverse of the expectation value of random waiting time）
$\eta^{N}(t)$ ：Markov process on χ_{N}^{d} with generator

$$
\left(L_{N} f\right)(\eta)=\frac{1}{2 d} \sum_{|x-y|=1} 1_{\left\{\left(\eta_{x}, \eta_{y}\right)=(1,0)\right\}}\left(f\left(\eta^{x \rightarrow y}\right)-f(\eta)\right)
$$

The number of particles is a unique conserved quantity \Rightarrow The density of particles characterizes the equilibrium states
\Rightarrow Derive an evolution equation of the density of particles

Denote by π_{t}^{N} the scaled empirical measure:

$$
\pi_{t}^{N}(d u)=\frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} \eta_{x}\left(N^{2} t\right) \delta_{\frac{x}{N}}(d u) \in \mathcal{M}\left(\mathbb{T}^{d}:=[0,1)^{d}\right)
$$

Hydrodynamic limit for the SSEP

Theorem 1. (De Masi, et al. 1984) Assume

$$
\pi_{0}^{N}(d u) \rightarrow \pi_{0}(d u)=\rho_{0}(u) d u \quad N \rightarrow \infty \quad \text { in prob }
$$

with some measurable function $\rho_{0}: \mathbb{T}^{d} \rightarrow[0,1]$. Then, $\forall t>0$,

$$
\pi_{t}^{N}(d u) \rightarrow \pi_{t}(d u)=\rho(t, u) d u \quad N \rightarrow \infty \quad \text { in prob }
$$

where $\rho(t, u)$ is the unique solution of the heat equation:

$$
\left\{\begin{aligned}
\partial_{t} \rho(t, u) & =\frac{1}{2 d} \Delta \rho(t, u) \\
\rho(0, \cdot) & =\rho_{0}(\cdot)
\end{aligned}\right.
$$

Remark 1. For the totally asymmetric simple exclusion process $(d=1)$, under the hyperbolic scaling, the hydrodynamic equation is

$$
\partial_{t} \rho(t, u)=\partial_{u}\{\rho(t, u)(1-\rho(t, u))\}
$$

Numerical simulation

Exclusion processes with velocity

$\mathbb{T}_{N}:=(\mathbb{Z} / N \mathbb{Z})=\{0,1 \ldots, N-1\}$: discrete torus of size N $\chi_{N}:=\{1,0,-1\}^{\mathbb{T}_{N}}$
each particle has a velocity 1 or -1 (direction of jump) one-dimensional periodic lattice

Dynamics

each particle jumps to the direction of its velocity with jump rate 1

Equilibrium states

The density of particles is a unique conserved quantity In the equilibrium states, each particle has a velocity +1 and -1 with same "probability"

No drift \Rightarrow Diffusive scaling limits

$$
\begin{gathered}
\pi_{t}^{N}(d u)=\frac{1}{N} \sum_{x \in \mathbb{T}_{N}} \eta_{x}\left(N^{2} t\right) \delta_{\frac{x}{N}}(d u) \in \mathcal{M}(\mathbb{T}:=[0,1)) \\
\partial_{t} \rho(t, u)=\frac{1}{2} \Delta \rho(t, u) \quad ? ?
\end{gathered}
$$

Main Theorem

Theorem 2. (S. 2010) Assume

$$
\pi_{0}^{N}(d u) \rightarrow \pi_{0}(d u)=\rho_{0}(u) d u \quad N \rightarrow \infty \quad \text { in prob }
$$

with some measurable function $\rho_{0}: \mathbb{T}^{d} \rightarrow[0,1]$. Then, $\forall t>0$,

$$
\pi_{t}^{N}(d u) \rightarrow \pi_{t}(d u)=\rho(t, u) d u \quad N \rightarrow \infty \quad \text { in prob }
$$

where $\rho(t, u)$ is the unique weak solution of PDE:

$$
\left\{\begin{aligned}
\partial_{t} \rho(t, u) & =\partial_{u}\left\{D^{\gamma}(\rho(t, u)) \partial_{u} \rho(t, u)\right\} \\
\rho(0, \cdot) & =\rho_{0}(\cdot)
\end{aligned}\right.
$$

$$
D^{\gamma}(\rho)=\frac{1}{\rho(1-\rho)} \inf _{g \in \mathcal{C}} \ll W-L g \gg \rho
$$

Properties of $D^{\gamma}(\rho)$

$D^{\gamma}(\rho)$ is strictly bigger than $\frac{1}{2}$
$D^{\gamma}(\rho)$ is continuous
$\frac{1}{2}+\frac{1-\rho}{2 \gamma} \leq D^{\gamma}(\rho) \leq \frac{1}{2}+\frac{2-\rho}{4 \gamma}$
$D^{\gamma}(\rho)$ is not a constant function in ρ ．
$D^{\gamma}(0)=\frac{1}{2}+\frac{1}{2 \gamma}$

$$
\begin{aligned}
& \lim _{\gamma \rightarrow 0} D^{\gamma}(\rho)=\infty \text { for } \rho \in[0,1) \\
& \lim _{\gamma \rightarrow \infty} D^{\gamma}(\rho)=\frac{1}{2} \text { for } \rho \in[0,1]
\end{aligned}
$$

$\gamma \rightarrow 0$ ：System goes to hyperbolic scaling
$\gamma \rightarrow \infty$ ：System goes to SSEP

Conjecture I from numerical simulation

$D^{\gamma}(\rho)$ is strictly decreasing as a function of ρ

* graph of u_{t}

$$
\begin{aligned}
& \rho_{0}(\cdot)=\frac{1}{10} u_{0}(\cdot)+\rho_{*} \\
& \rho_{t}(\cdot)=\frac{1}{10} u_{t}(\cdot)+\rho_{*}
\end{aligned}
$$

Conjecture II from numerical simulation

$D^{\gamma}(\rho)$ is strictly decreasing as a function of γ

$\rho_{0}(\cdot)=1_{[0.3,0.7]}(\cdot)$

Thank you

