A reproductive property of the time dependent boudary value problem to the Navier-Stokes equations under the general flux condition

Takahiro Okabe

Waseda University
International Workshop on Mathematical Fluid Dynamics 8-16, March, 2010

Introduction

$\Omega \subset \mathbb{R}^{3}$: b'dd smooth domain, $\partial \Omega=\bigcup_{j=0}^{L} \Gamma_{j}$, where
(i) $\Gamma_{i}: C^{\infty}$-surface,
(ii) $\Gamma_{i} \cap \Gamma_{j}=\emptyset, i \neq j$,
(iii) $\Gamma_{1}, \ldots, \Gamma_{L}$ lie inside of Γ_{0} and outside of one another.

We consider the initial boundary value problem to the Navier-Stokes equations;
(N-S)

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=f, \quad \Omega \times(0, T) \\
\operatorname{div} u=0, \quad \Omega \times(0, T) \\
\left.u\right|_{\partial \Omega}=\beta, \quad \partial \Omega \times(0, T), \\
\left(u(0)=u_{0}, \quad \Omega\right) .
\end{array}\right.
$$

where

$$
\left.\begin{array}{rl}
\left.\begin{array}{rl}
u & =u(x, t) \\
p & =p(x, t),
\end{array} u^{1}(x, t), u^{2}(x, t), u^{3}(x, t)\right), & \text { velocity } \\
\text { pressure }
\end{array}\right\} \text { unknown }
$$

compatibility condition

$$
\begin{gathered}
\begin{cases}\operatorname{div} u=0, & \Omega \times(0, T) \\
\left.u\right|_{\partial \Omega}=\beta, & \partial \Omega \times(0, T) .\end{cases} \\
\left(\text { G.F.C.) } \quad \sum_{j=0}^{L} \int_{\Gamma_{j}} \beta(t) \cdot \nu d S=0, \quad \text { for } t \geq 0 .\right. \\
0=\int_{\Omega} \operatorname{div} u d x=\int_{\partial \Omega} u \cdot \nu d S=\sum_{j=0}^{L} \int_{\Gamma_{j}} \beta \cdot \nu d S .
\end{gathered}
$$

The reproductive property

Definition (reproductive property)

we call that ($N-S$) has a reproductive property at $T>0$, if there exist an initial value u_{0} and a weak solution u of ($N-S$) such that

$$
u(T)=u_{0} \quad \text { in } L^{2}
$$

- If u is periodic with period T, then u satisfy the condition (*).

Solenoidal extension

By the trace theorem and the Bogovskii theorem, for $\beta \in C^{1}\left([0, T) ; H^{1 / 2}(\partial \Omega)\right)$ we have the solenoidal extension $b \in C^{1}\left([0, T) ; H^{1}(\Omega)\right)$ of β, i.e.,

$$
\operatorname{div} b(t)=0,\left.\quad b(t)\right|_{\partial \Omega}=\beta(t) \quad \text { for } t \geq 0
$$

$u-b=: w$
$\left(\mathrm{N}-\mathrm{S}^{\prime}\right) \quad\left\{\begin{array}{l}\partial_{t} w-\Delta w+b \cdot \nabla w+w \cdot \nabla b+w \cdot \nabla w+\nabla p=F, \\ \operatorname{div} w=0, \\ \left.w\right|_{\partial \Omega}=0 .\end{array}\right.$
where $F=f-\partial_{t} b+\Delta b-b \cdot \nabla b$.

The convection term $b \cdot \nabla w+w \cdot \nabla b$

we have to handle the linear convection term to obtain a priori estimate:

$$
\begin{aligned}
\|w(t)\|_{2}^{2} & +\int_{0}^{t}\|\nabla w(\tau)\|_{2}^{2} d \tau \\
& \leq C \int_{0}^{t}\left(\|f\|_{2}^{2}+\left\|\partial_{t} b\right\|_{2}^{2}+\|\nabla b\|_{2}^{2}+\|b\|_{4}^{4}\right) d \tau+C\|a\|_{2}^{2}
\end{aligned}
$$

- the restricted flux condition
(R.F.C.)

$$
\int_{\Gamma_{j}} \beta \cdot \nu d S=0, \quad j=0, \ldots, L .
$$

Leray ('33)

- the symmetry of the domain

Kobayasi ('09), Morimoto ('09)

The convection term $b \cdot \nabla w+w \cdot \nabla b$

Kozono-Yanagisawa ('09)
$b \in W^{1,2}(\Omega)$ with div $b=0$ and $\left.b\right|_{\partial \Omega}=\beta$

$$
b=h+\operatorname{rot} \omega
$$

where h is a harmonic vector field on Ω and $\omega \in W^{2,2}(\Omega)$
Furthermore,

$$
h=\sum_{j=1}^{L}\left(\int_{\Gamma_{j}} \beta \cdot \nu d S\right) \phi_{j}
$$

where $\left\{\phi_{j}\right\}_{j=1}^{L}$ are harmonic vecter fields determined by Ω.

Main theorem

Theorem

Let $f \in L_{\text {loc }}^{2}\left([0, \infty) ; L^{2}(\Omega)\right)$. Suppose that $\beta \in C^{1}\left([0, \infty) ; H^{1 / 2}(\partial \Omega)\right)$ satisfy (G.F.C.) with a restriction
$(* *) \quad \sup _{t \geq 0}\left\|\sum_{j=1}^{L}\left(\int_{\Gamma_{j}} \beta(t) \cdot \nu d S\right) \phi_{j}\right\|_{3} \leq \frac{1}{5 C_{s}}$,
where $C_{s}=3^{-1 / 2} 2^{2 / 3} \pi^{-2 / 3}$ is the best constant of $W_{0}^{1,2} \hookrightarrow L^{6}$. For every $0<T<\infty$, there exist an initial value $u_{0} \in L_{\sigma}^{2}(\Omega)$ and a weak solution w of ($N-S^{\prime}$) such that

$$
w(T)=u_{0} \quad \text { in } L^{2}
$$

Remark

- We do not assume that f and β is periodic or small.

Remark

- We do not assume that f and β is periodic or small.
- If $\beta(T)=\beta(0)$ for some $T>0, \exists u$:a weak solution of (N-S) and $\exists u_{0}$ such that $u(T)=u_{0}$.

Remark

- We do not assume that f and β is periodic or small.
- If $\beta(T)=\beta(0)$ for some $T>0, \exists u:$ a weak solution of (N-S) and $\exists u_{0}$ such that $u(T)=u_{0}$.
- If we have the uniqueness theorem, then we obtain time periodic solutions form reproductive property.

Outline of proof

Key Lemma

Suppose that $\beta \in C^{1}\left([0, \infty) ; H^{1 / 2}(\partial \Omega)\right)$ satisfy (G.F.C.) with a restriction
(**)

$$
\sup _{t \geq 0}\left\|\sum_{j=1}^{L}\left(\int_{\Gamma_{j}} \beta(t) \cdot \nu d S\right) \phi_{j}\right\|_{3} \leq \frac{1}{5 C_{s}} .
$$

Then there exists $0<\varepsilon_{0}<1 / 5$ and $b_{\varepsilon_{0}} \in C^{1}\left([0, \infty) ; W^{1,2}\right)$ with $\operatorname{div} b_{\varepsilon_{0}}=0$ and $\left.b_{\varepsilon_{0}}\right|_{\partial \Omega}=\beta$ such that

$$
\left|\left(w \cdot \nabla b_{\varepsilon_{0}}, w\right)\right| \leq \varepsilon_{0}\|\nabla w\|_{2}^{2}, \quad \text { for } w \in W_{0, \sigma}^{1,2}, \quad t \geq 0
$$

Let w_{m} be approximation solution by the Galerkin method. By the key lemma, we have the energy inequatily:

$$
\begin{aligned}
& \frac{d}{d t}\left\|w_{m}(t)\right\|_{2}^{2}+2(1-5 \varepsilon)\left\|\nabla w_{m}(\tau)\right\|_{2}^{2} \\
& \quad \leq C\|f\|_{2}^{2}+\left\|\partial_{t} b\right\|_{2}^{2}+\|\nabla b\|_{2}^{2}+\|b\|_{4}^{4}:=K(t)
\end{aligned}
$$

Furthermore by the Poincaré inequality,

$$
\frac{d}{d t}\left\|w_{m}\right\|_{2}^{2}+\alpha\left\|w_{m}\right\|_{2}^{2} \leq K(t)
$$

$\alpha>0$. Hence

$$
\left\|w_{m}(T)\right\|_{2}^{2} \leq e^{-\alpha T}\left\|w_{m}(0)\right\|_{2}^{2}+\int_{0}^{T} e^{-\alpha(T-t)} K(t) d t
$$

$$
\left\|w_{m}(T)\right\|_{2}^{2} \leq e^{-\alpha T}\left\|w_{m}(0)\right\|_{2}^{2}+\int_{0}^{T} e^{-\alpha(T-t)} K(t) d t
$$

Choose $R>0$ so that

$$
\begin{equation*}
\int_{0}^{T} e^{-\alpha(T-t)} K(t) d t \leq R^{2}\left(1-e^{-\alpha T}\right) \tag{1}
\end{equation*}
$$

So from (1),

$$
\left\|w_{m}(T)\right\|_{2} \leq R, \quad \text { if } \quad\left\|w_{m}(0)\right\|_{2} \leq R
$$

On the other hand, the map $w_{m}(0) \mapsto w_{m}(T)$ is continuous. By the Brower fix point theorem. we have

$$
w_{m}(0)=w_{m}(T)
$$

Outline of proof of Key lemma

Since $\beta \in C^{1}\left([0, T) ; H^{1 / 2}(\partial \Omega)\right)$, by the trace theorem and the Bogovskii theorem, $\exists b \in C^{1}\left([0, T) ; H^{1}(\Omega)\right)$ with $\operatorname{div} b=0$ and $\left.b\right|_{\partial \Omega}=\beta$. Then by the decomposition theorem,

$$
b(t)=h(t)+\operatorname{rot} \omega(t) .
$$

For any $\varepsilon>0$ we can take the cut-off function $\theta_{\varepsilon}(x, t)$ with $\theta_{\varepsilon}(\cdot, t) \equiv 1$ near $\partial \Omega$ such that

$$
\begin{gathered}
\left|\left(w \cdot \nabla \operatorname{rot}\left(\theta_{\varepsilon} \omega\right), w\right)\right| \leq \varepsilon\|\nabla w\|_{2}^{2} \quad w \in W_{0, \sigma}^{1,2} \quad t \geq 0 . \\
b_{\varepsilon}:=h+\operatorname{rot}\left(\theta_{\varepsilon} \omega\right)
\end{gathered}
$$

So the convection term is estimated;

$$
\left|\left(w \cdot \nabla b_{\varepsilon}, w\right)\right| \leq C_{s}\|h\|_{3}\|\nabla w\|_{2}^{2}+\varepsilon\|\nabla w\|_{2}^{2} .
$$

Thank you very much.

Theorem

Let Ω be a general bounded domain in \mathbb{R}^{3} with smooth boundary $\partial \Omega$. Let $f \in L_{\text {loc }}^{2}\left([0, \infty) ; L^{2}(\Omega)\right)$ and let $\beta \in C^{1}\left([0, \infty) ; H^{1 / 2}(\partial \Omega)\right)$ with (G.F.C.). Then there exists $T_{*}>0$ such that for every $0<T<T_{*}$, there exist a initial velocity a and a weak solution v of $\left(N-S^{\prime}\right)$ such that $v(T)=a$ in $L_{\sigma}^{2}(\Omega)$.

