A reproductive property of the time dependent boudary value problem to the Navier-Stokes equations under the general flux condition

Takahiro Okabe

Waseda University

International Workshop on Mathematical Fluid Dynamics 8–16, March, 2010

Introduction

$$\Omega \subset \mathbb{R}^3$$
: b'dd smooth domain, $\partial \Omega = \bigcup_{j=0}^L \Gamma_j$, where

- (i) Γ_i : C^{∞} -surface,
- (ii) $\Gamma_i \cap \Gamma_j = \emptyset$, $i \neq j$,
- (iii) $\Gamma_1, \ldots, \Gamma_L$ lie inside of Γ_0 and outside of one another.

We consider the initial boundary value problem to the Navier-Stokes equations;

$$\begin{cases} \partial_t u - \Delta u + u \cdot \nabla u + \nabla p = f, & \Omega \times (0, T) \\ \operatorname{div} u = 0, & \Omega \times (0, T) \\ u|_{\partial\Omega} = \beta, & \partial\Omega \times (0, T), \\ (u(0) = u_0, & \Omega). \end{cases}$$

where $u=u(x,t)=(u^1(x,t),u^2(x,t),u^3(x,t)),$ velocity p=p(x,t), pressure p=p(x,t), external force : p=f(x,t) boundary value : p=f(x,t)

compatibility condition

$$\begin{cases} \operatorname{div} u = 0, & \Omega \times (0, T) \\ u|_{\partial\Omega} = \beta, & \partial\Omega \times (0, T). \end{cases}$$

(G.F.C.)
$$\sum_{j=0}^{L} \int_{\Gamma_{j}} \beta(t) \cdot \nu \, dS = 0, \quad \text{for } t \geq 0.$$

$$0 = \int_{\Omega} \operatorname{div} u \, dx = \int_{\partial \Omega} u \cdot \nu \, dS = \sum_{i=0}^{L} \int_{\Gamma_{i}} \beta \cdot \nu \, dS.$$

The reproductive property

Definition (reproductive property)

we call that (N-S) has a reproductive property at T > 0, if there exist an initial value u_0 and a weak solution u of (N-S) such that

$$(*) u(T) = u_0 in L^2$$

• If u is periodic with period T, then u satisfy the condition (*).

Solenoidal extension

By the trace theorem and the Bogovskii theorem, for $\beta \in C^1([0,T);H^{1/2}(\partial\Omega))$ we have the solenoidal extension $b \in C^1([0,T);H^1(\Omega))$ of β , i.e.,

$$\operatorname{div} b(t) = 0, \quad b(t)|_{\partial\Omega} = \beta(t) \quad \text{for } t \geq 0.$$

u - b =: w

$$\text{(N-S')} \quad \begin{cases} \partial_t w - \Delta w + b \cdot \nabla w + w \cdot \nabla b + w \cdot \nabla w + \nabla p = F, \\ \operatorname{div} w = 0, \\ w|_{\partial\Omega} = 0. \end{cases}$$

where $F = f - \partial_t b + \Delta b - b \cdot \nabla b$.

The convection term $b \cdot \nabla w + w \cdot \nabla b$

we have to handle the linear convection term to obtain a priori estimate:

$$||w(t)||_{2}^{2} + \int_{0}^{t} ||\nabla w(\tau)||_{2}^{2} d\tau$$

$$\leq C \int_{0}^{t} (||f||_{2}^{2} + ||\partial_{t}b||_{2}^{2} + ||\nabla b||_{2}^{2} + ||b||_{4}^{4}) d\tau + C||a||_{2}^{2}$$

the restricted flux condition

(R.F.C.)
$$\int_{\Gamma_j} \beta \cdot \nu \, dS = 0, \quad j = 0, \dots, L.$$

Leray ('33)

• the symmetry of the domain Kobayasi ('09), Morimoto ('09)

The convection term $b \cdot \nabla w + w \cdot \nabla b$

Kozono-Yanagisawa ('09) $b \in W^{1,2}(\Omega)$ with $\operatorname{div} b = 0$ and $b|_{\partial\Omega} = \beta$

$$b = h + \text{rot } \omega$$

where h is a harmonic vector field on Ω and $\omega \in W^{2,2}(\Omega)$ Furthermore,

$$h = \sum_{j=1}^{L} \left(\int_{\Gamma_j} \beta \cdot \nu \, dS \right) \phi_j$$

where $\{\phi_j\}_{j=1}^L$ are harmonic vecter fields determined by Ω .

Main theorem

Theorem

Let $f \in L^2_{loc}([0,\infty); L^2(\Omega))$. Suppose that $\beta \in C^1([0,\infty); H^{1/2}(\partial\Omega))$ satisfy (G.F.C.) with a restriction

(**)
$$\sup_{t\geq 0} \left\| \sum_{j=1}^{L} \left(\int_{\Gamma_j} \beta(t) \cdot \nu \, dS \right) \phi_j \right\|_3 \leq \frac{1}{5C_s},$$

where $C_s = 3^{-1/2}2^{2/3}\pi^{-2/3}$ is the best constant of $W_0^{1,2} \hookrightarrow L^6$. For every $0 < T < \infty$, there exist an initial value $u_0 \in L^2_{\sigma}(\Omega)$ and a weak solution w of (N-S') such that

$$w(T) = u_0$$
 in L^2

Remark

• We do not assume that f and β is periodic or small.

Remark

- We do not assume that f and β is periodic or small.
- If $\beta(T) = \beta(0)$ for some T > 0, $\exists u$:a weak solution of (N-S) and $\exists u_0$ such that $u(T) = u_0$.

Remark

- We do not assume that f and β is periodic or small.
- If $\beta(T) = \beta(0)$ for some T > 0, $\exists u$:a weak solution of (N-S) and $\exists u_0$ such that $u(T) = u_0$.
- If we have the uniqueness theorem, then we obtain time periodic solutions form reproductive property.

Outline of proof

Key Lemma

Suppose that $\beta \in C^1([0,\infty); H^{1/2}(\partial\Omega))$ satisfy (G.F.C.) with a restriction

(**)
$$\sup_{t\geq 0} \left\| \sum_{j=1}^{L} \left(\int_{\Gamma_j} \beta(t) \cdot \nu \, dS \right) \phi_j \right\|_3 \leq \frac{1}{5C_s}.$$

Then there exists $0 < \varepsilon_0 < 1/5$ and $b_{\varepsilon_0} \in C^1([0,\infty); W^{1,2})$ with $\operatorname{div} b_{\varepsilon_0} = 0$ and $b_{\varepsilon_0}|_{\partial\Omega} = \beta$ such that

$$|(w \cdot \nabla b_{\varepsilon_0}, w)| \leq \varepsilon_0 ||\nabla w||_2^2$$
, for $w \in W_{0,\sigma}^{1,2}$, $t \geq 0$.

Let w_m be approximation solution by the Galerkin method. By the key lemma, we have the energy inequatily:

$$\frac{d}{dt} \|w_m(t)\|_2^2 + 2(1 - 5\varepsilon) \|\nabla w_m(\tau)\|_2^2
\leq C \|f\|_2^2 + \|\partial_t b\|_2^2 + \|\nabla b\|_2^2 + \|b\|_4^4 := K(t)$$

Furthermore by the Poincaré inequality,

$$\frac{d}{dt}\|\mathbf{w}_m\|_2^2 + \alpha\|\mathbf{w}_m\|_2^2 \leq K(t)$$

 $\alpha > 0$. Hence

$$||w_m(T)||_2^2 \le e^{-\alpha T} ||w_m(0)||_2^2 + \int_0^T e^{-\alpha(T-t)} K(t) dt$$

$$\|w_m(T)\|_2^2 \le e^{-\alpha T} \|w_m(0)\|_2^2 + \int_0^T e^{-\alpha (T-t)} K(t) dt$$

Choose R > 0 so that

(1)
$$\int_0^T e^{-\alpha(T-t)} K(t) dt \leq R^2 (1 - e^{-\alpha T})$$

So from (1),

$$||w_m(T)||_2 \le R$$
, if $||w_m(0)||_2 \le R$.

On the other hand, the map $w_m(0) \mapsto w_m(T)$ is continuous. By the Brower fix point theorem. we have

$$w_m(0) = w_m(T)$$

Outline of proof of Key lemma

Since $\beta \in C^1([0,T);H^{1/2}(\partial\Omega))$, by the trace theorem and the Bogovskii theorem, $\exists b \in C^1([0,T);H^1(\Omega))$ with $\operatorname{div} b = 0$ and $b|_{\partial\Omega} = \beta$. Then by the decomposition theorem,

$$b(t) = h(t) + \operatorname{rot} \, \omega(t).$$

For any $\varepsilon>0$ we can take the cut-off function $\theta_{\varepsilon}(x,t)$ with $\theta_{\varepsilon}(\cdot,t)\equiv 1$ near $\partial\Omega$ such that

$$|(w \cdot \nabla \operatorname{rot} (\theta_{\varepsilon}\omega), w)| \leq \varepsilon ||\nabla w||_2^2 \quad w \in W_{0,\sigma}^{1,2} \quad t \geq 0.$$

$$b_{\varepsilon} := h + \operatorname{rot} (\theta_{\varepsilon} \omega)$$

So the convection term is estimated;

$$|(w \cdot \nabla b_{\varepsilon}, w)| \leq C_s ||h||_3 ||\nabla w||_2^2 + \varepsilon ||\nabla w||_2^2.$$

Thank you very much.

Theorem

Let Ω be a general bounded domain in \mathbb{R}^3 with smooth boundary $\partial\Omega$. Let $f \in L^2_{loc}([0,\infty);L^2(\Omega))$ and let $\beta \in C^1([0,\infty);H^{1/2}(\partial\Omega))$ with (G.F.C.). Then there exists $T_* > 0$ such that for every $0 < T < T_*$, there exist a initial velocity a and a weak solution v of (N-S') such that v(T) = a in $L^2_{\sigma}(\Omega)$.