Concentration and Diffusion Effects of Heat Convection in an Incompressible Fluid

International Workshop on Mathematical Fluid Dynamics, Waseda

Raphael Schulz

TU Darmstadt

March 15, 2010

The Boussinesq Equations in \mathbb{R}^{d}

Heat convection in a viscous incompressible fluid under the influence of gravity is described through the Boussinesq Equations:

$$
\begin{aligned}
& u_{t}-\Delta u+(u \cdot \nabla) u+\nabla p=g \theta \text { in }[0, T) \times \mathbb{R}^{d}, \\
& \theta_{t}-\Delta \theta+(u \cdot \nabla) \theta=0 \quad \text { in }[0, T) \times \mathbb{R}^{d}, \\
& \operatorname{div} u=0 \quad \text { in }[0, T) \times \mathbb{R}^{d}, \\
& u(0)=u_{0} \\
& \text { in } \mathbb{R}^{d}, \\
& \theta(0)=\theta_{0}
\end{aligned} \quad \text { in } \mathbb{R}^{d} .
$$

The Boussinesq Equations in \mathbb{R}^{d}

Heat convection in a viscous incompressible fluid under the influence of gravity is described through the Boussinesq Equations:

$$
\begin{aligned}
u_{t}-\Delta u+(u \cdot \nabla) u+\nabla p & =g \theta \\
\theta_{t}-\Delta \theta+(u \cdot \nabla) \theta & =0 \quad \text { in }[0, T) \times \mathbb{R}^{d}, \\
\operatorname{div} u & \left.=0 \quad \text { in }[0, T) \times \mathbb{R}^{d}, T\right) \times \mathbb{R}^{d}, \\
u(0) & =u_{0} \\
\theta(0) & \text { in } \mathbb{R}^{d}, \\
\theta & \text { in } \mathbb{R}^{d} .
\end{aligned}
$$

In our case we assume the gravity g belongs to $L_{d-1}^{\infty}\left(\mathbb{R}^{d}\right)^{d}$, i.e.

$$
\|g\|_{L_{d-1}^{\infty}}:=\operatorname{ess} \sup (1+|x|)^{d-1}|g(x)|<\infty .
$$

Theorem 1: (Existence and Uniqueness of mild solutions)
Let $\left(u_{0}, \theta_{0}\right) \in L_{\delta}^{\infty}\left(\mathbb{R}^{d}\right)^{d} \times L_{\sigma}^{\infty}\left(\mathbb{R}^{d}\right)$ such that
$\operatorname{div} u_{0}=0, \delta \in(0, d], \sigma \in(0, d+1]$ and $g \in L_{d-1}^{\infty}\left(\mathbb{R}^{d}\right)^{d}$.

Theorem 1: (Existence and Uniqueness of mild solutions)
Let $\left(u_{0}, \theta_{0}\right) \in L_{\delta}^{\infty}\left(\mathbb{R}^{d}\right)^{d} \times L_{\sigma}^{\infty}\left(\mathbb{R}^{d}\right)$ such that
$\operatorname{div} u_{0}=0, \delta \in(0, d], \sigma \in(0, d+1]$ and $g \in L_{d-1}^{\infty}\left(\mathbb{R}^{d}\right)^{d}$.
Then there exist $T>0$ and a unique mild solution

$$
(u, \theta) \in C\left((0, T) ; L_{\delta}^{\infty}\left(\mathbb{R}^{d}\right)^{d}\right) \times C\left((0, T) ; L_{\sigma}^{\infty}\left(\mathbb{R}^{d}\right)\right)
$$

Theorem 1: (Existence and Uniqueness of mild solutions)
Let $\left(u_{0}, \theta_{0}\right) \in L_{\delta}^{\infty}\left(\mathbb{R}^{d}\right)^{d} \times L_{\sigma}^{\infty}\left(\mathbb{R}^{d}\right)$ such that
$\operatorname{div} u_{0}=0, \delta \in(0, d], \sigma \in(0, d+1]$ and $g \in L_{d-1}^{\infty}\left(\mathbb{R}^{d}\right)^{d}$.
Then there exist $T>0$ and a unique mild solution

$$
(u, \theta) \in C\left((0, T) ; L_{\delta}^{\infty}\left(\mathbb{R}^{d}\right)^{d}\right) \times C\left((0, T) ; L_{\sigma}^{\infty}\left(\mathbb{R}^{d}\right)\right)
$$

In particular, we can choose T such that

$$
\left\|u_{0}\right\|_{L_{\delta}^{\infty}}+\left\|\theta_{0}\right\|_{L_{\sigma}^{\infty}}+\|g\|_{L_{d-1}^{\infty}} \leq \frac{C}{\sqrt{T}(1+\sqrt{T})}
$$

Theorem 1: (Existence and Uniqueness of mild solutions)
Let $\left(u_{0}, \theta_{0}\right) \in L_{\delta}^{\infty}\left(\mathbb{R}^{d}\right)^{d} \times L_{\sigma}^{\infty}\left(\mathbb{R}^{d}\right)$ such that
$\operatorname{div} u_{0}=0, \delta \in(0, d], \sigma \in(0, d+1]$ and $g \in L_{d-1}^{\infty}\left(\mathbb{R}^{d}\right)^{d}$.
Then there exist $T>0$ and a unique mild solution

$$
(u, \theta) \in C\left((0, T) ; L_{\delta}^{\infty}\left(\mathbb{R}^{d}\right)^{d}\right) \times C\left((0, T) ; L_{\sigma}^{\infty}\left(\mathbb{R}^{d}\right)\right)
$$

In particular, we can choose T such that

$$
\left\|u_{0}\right\|_{L_{\delta}^{\infty}}+\left\|\theta_{0}\right\|_{L_{\sigma}^{\infty}}+\|g\|_{L_{d-1}^{\infty}} \leq \frac{C}{\sqrt{T}(1+\sqrt{T})} .
$$

A mild solution solves the integral equations:

$$
\begin{aligned}
& u(t)=e^{t \Delta} u_{0}-\int_{0}^{t} e^{(t-s) \Delta} \mathbb{P}(u \cdot \nabla u) d s+\int_{0}^{t} e^{(t-s) \Delta} \mathbb{P}(g \theta)(s) d s \\
& \theta(t)=e^{t \Delta} \theta_{0}-\int_{0}^{t} e^{(t-s) \Delta}(u \cdot \nabla \theta)(s) d s
\end{aligned}
$$

Spatial Asymptotic

Theorem 2: (Spatial Asymptotic Behaviour)
For $\delta \geq \frac{d+2}{2}, \sigma \geq 3$ and an initial data $\left(u_{0}, \theta_{0}\right) \in L_{\delta}^{\infty}\left(\mathbb{R}^{d}\right)^{d} \times L_{\sigma}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\operatorname{div} u_{0}=0$, let (u, θ) be the solution of the preceding theorem. The following profile holds for $|x| \gg \sqrt{t}$:

Spatial Asymptotic

Theorem 2: (Spatial Asymptotic Behaviour)

For $\delta \geq \frac{d+2}{2}, \sigma \geq 3$ and an initial data $\left(u_{0}, \theta_{0}\right) \in L_{\delta}^{\infty}\left(\mathbb{R}^{d}\right)^{d} \times L_{\sigma}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\operatorname{div} u_{0}=0$, let (u, θ) be the solution of the preceding theorem. The following profile holds for $|x| \gg \sqrt{t}$:

$$
\begin{aligned}
u(x, t) & =e^{t \Delta} u_{0}(x) \\
& +\nabla\left[\gamma_{d, 1} \sum_{h, k=1}^{d}\left(\frac{\delta_{h, k}}{d|x|^{d}}-\frac{x_{h} x_{k}}{|x|^{d+2}}\right) \cdot \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(u_{h} u_{k}\right)(y, s) d y d s\right] \\
& +\gamma_{d, 2} \sum_{h=1}^{d}\left(\frac{d x_{h} x_{j}}{|x|^{d+2}}-\frac{\delta_{j, h}}{|x|^{d}}\right) \cdot \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(g_{h} \theta\right)(y, s) d y d s+\mathcal{O}_{t}\left(|x|^{-d-2}\right), \\
\theta(x, t) & =e^{t \Delta} \theta_{0}(x)-\gamma_{d, 3} \sum_{h=1}^{d} \frac{x_{h}}{|x|^{d+2}} \cdot \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(u_{h} \theta\right)(y, s) d y d s+\mathcal{O}_{t}\left(|x|^{-d-2}\right) .
\end{aligned}
$$

Sketch of Proof

For illustration we look at the term

$$
\int_{0}^{t} e^{(t-s) \Delta} \mathbb{P}(u \cdot \nabla u) d s
$$

Sketch of Proof

For illustration we look at the term

$$
\int_{0}^{t} e^{(t-s) \Delta} \mathbb{P}(u \cdot \nabla u) d s
$$

- We rewrite $e^{t \Delta} \mathbb{P}$ div as the kernel of a convolution operator:

$$
\gamma_{d, 1}\left(\frac{\sigma_{j, h, k}(x)}{|x|^{d+2}}-(d+2) \frac{x_{j} x_{h} x_{k}}{|x|^{d+4}}\right)+|x|^{-d-1} \Psi\left(\frac{x}{\sqrt{t}}\right) .
$$

Sketch of Proof

For illustration we look at the term

$$
\int_{0}^{t} e^{(t-s) \Delta} \mathbb{P}(u \cdot \nabla u) d s
$$

- We rewrite $e^{t \Delta} \mathbb{P}$ div as the kernel of a convolution operator:

$$
\gamma_{d, 1}\left(\frac{\sigma_{j, h, k}(x)}{|x|^{d+2}}-(d+2) \frac{x_{j} x_{h} x_{k}}{|x|^{d+4}}\right)+|x|^{-d-1} \Psi\left(\frac{x}{\sqrt{t}}\right) .
$$

- Seperation of Variables: Define $v_{h, k}$ such that

$$
\left(u_{h} u_{k}\right)(x, t)=\mathcal{G}(x) \int_{R^{d}}\left(u_{h} u_{k}\right)(y, t) d y+v_{h, k}(x, t)
$$

Sketch of Proof

For illustration we look at the term

$$
\int_{0}^{t} e^{(t-s) \Delta} \mathbb{P}(u \cdot \nabla u) d s
$$

- We rewrite $e^{t \Delta} \mathbb{P}$ div as the kernel of a convolution operator:

$$
\gamma_{d, 1}\left(\frac{\sigma_{j, h, k}(x)}{|x|^{d+2}}-(d+2) \frac{x_{j} x_{h} x_{k}}{|x|^{d+4}}\right)+|x|^{-d-1} \Psi\left(\frac{x}{\sqrt{t}}\right) .
$$

- Seperation of Variables: Define $v_{h, k}$ such that

$$
\left(u_{h} u_{k}\right)(x, t)=\mathcal{G}(x) \int_{R^{d}}\left(u_{h} u_{k}\right)(y, t) d y+v_{h, k}(x, t)
$$

- We estimate the remainder terms.

Concentration and Diffusion Effects

Theorem 3: Let $d=2,3, g \in L_{d-1}^{\infty, *}$ with $g(\tilde{x})=\tilde{g}(x), 0<t_{1}<\ldots<t_{N}$ be a finite sequence and $\varepsilon>0$.

Concentration and Diffusion Effects

Theorem 3: Let $d=2,3, g \in L_{d-1}^{\infty, *}$ with $g(\tilde{x})=\tilde{g}(x), 0<t_{1}<\ldots<t_{N}$ be a finite sequence and $\varepsilon>0$.
Then there exists an initial data $\left(u_{0}, \theta_{0}\right) \in \mathcal{S}_{\sigma}\left(\mathbb{R}^{d}\right)^{d} \times \mathcal{S}\left(\mathbb{R}^{d}\right)$ and for each $i=1, . ., N$ there are $t_{i}{ }^{\prime}, t_{i}^{*}, \tilde{t}_{i}, \tilde{t}_{i}^{*} \in\left(t_{i}-\varepsilon, t_{i}+\varepsilon\right)$ such that the corresponding unique solution (u, θ) of the Boussinesq Equations satisfies, for all $i=1, \ldots, N$ and all $|x|$ large enough, the pointwise estimates

Concentration and Diffusion Effects

Theorem 3: Let $d=2,3, g \in L_{d-1}^{\infty, *}$ with $g(\tilde{x})=\tilde{g}(x), 0<t_{1}<\ldots<t_{N}$ be a finite sequence and $\varepsilon>0$.
Then there exists an initial data $\left(u_{0}, \theta_{0}\right) \in \mathcal{S}_{\sigma}\left(\mathbb{R}^{d}\right)^{d} \times \mathcal{S}\left(\mathbb{R}^{d}\right)$ and for each $i=1, . ., N$ there are $t_{i}{ }^{\prime}, t_{i}^{*}, \tilde{t}_{i}{ }^{\prime}, \tilde{t}_{i}^{*} \in\left(t_{i}-\varepsilon, t_{i}+\varepsilon\right)$ such that the corresponding unique solution (u, θ) of the Boussinesq Equations satisfies, for all $i=1, \ldots, N$ and all $|x|$ large enough, the pointwise estimates

$$
\begin{aligned}
& \left|u\left(x, t_{i}^{*}\right)\right| \leq C|x|^{-d-2}, \\
& \left|\theta\left(x, \tilde{t}_{i}^{*}\right)\right| \leq C|x|^{-d-2},
\end{aligned}
$$

and with $\omega=\frac{x}{|x|}$ there holds for almost all $|x|$ large enough

$$
\begin{aligned}
& \left|u\left(x, t_{i}^{\prime}\right)\right| \geq c_{\omega}|x|^{-d} \\
& \left|\theta\left(x, \tilde{t}_{i}^{\prime}\right)\right| \geq c_{\omega}|x|^{-d-1} .
\end{aligned}
$$

Concentration and Diffusion Effects

Theorem 3: Let $d=2,3, g \in L_{d-1}^{\infty, *}$ with $g(\tilde{x})=\tilde{g}(x), 0<t_{1}<\ldots<t_{N}$ be a finite sequence and $\varepsilon>0$.
Then there exists an initial data $\left(u_{0}, \theta_{0}\right) \in \mathcal{S}_{\sigma}\left(\mathbb{R}^{d}\right)^{d} \times \mathcal{S}\left(\mathbb{R}^{d}\right)$ and for each $i=1, . ., N$ there are $t_{i}{ }^{\prime}, t_{i}^{*}, \tilde{t}_{i}^{\prime}, \tilde{t}_{i}^{*} \in\left(t_{i}-\varepsilon, t_{i}+\varepsilon\right)$ such that the corresponding unique solution (u, θ) of the Boussinesq Equations satisfies, for all $i=1, \ldots, N$ and all $|x|$ large enough, the pointwise estimates

$$
\begin{aligned}
& \left|u\left(x, t_{i}^{*}\right)\right| \leq C|x|^{-d-2}, \\
& \left|\theta\left(x, \tilde{t}_{i}^{*}\right)\right| \leq C|x|^{-d-2},
\end{aligned}
$$

and with $\omega=\frac{x}{|x|}$ there holds for almost all $|x|$ large enough

$$
\begin{aligned}
& \left|u\left(x, t_{i}^{\prime}\right)\right| \geq c_{\omega}|x|^{-d} \\
& \left|\theta\left(x, \tilde{t}_{i}^{\prime}\right)\right| \geq c_{\omega}|x|^{-d-1} .
\end{aligned}
$$

Notation: For $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ we set $\tilde{x}:=\left(x_{2}, \ldots, x_{d}, x_{1}\right)$.

Step I

Using Theorem 2 we have

$$
\begin{aligned}
u(x, t) & =\nabla\left[\gamma_{d, 1} \sum_{h, k=1}^{d}\left(\frac{\delta_{h, k}}{d|x|^{d}}-\frac{x_{h} x_{k}}{|x|^{d+2}}\right) \cdot \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(u_{h} u_{k}\right)(y, s) d y d s\right] \\
& +\gamma_{d, 2} \sum_{h=1}^{d}\left(\frac{d x_{h} x_{j}}{|x|^{d+2}}-\frac{\delta_{j, h}}{|x|^{d}}\right) \cdot \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(g_{h} \theta\right)(y, s) d y d s+\mathcal{O}_{t}\left(|x|^{-d-2}\right), \\
\theta(x, t) & =-\gamma_{d, 3} \sum_{h=1}^{d} \frac{x_{i}}{|x|^{d+2}} \cdot \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(u_{h} \theta\right)(y, s) d y d s+\mathcal{O}_{t}\left(|x|^{-d-2}\right),
\end{aligned}
$$

provided the initial data u_{0} and θ_{0} are Schwartz functions.

Step I

Using Theorem 2 we have

$$
\begin{aligned}
u(x, t) & =\nabla\left[\gamma_{d, 1} \sum_{h, k=1}^{d}\left(\frac{\delta_{h, k}}{d|x|^{d}}-\frac{x_{h} x_{k}}{|x|^{d+2}}\right) \cdot \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(u_{h} u_{k}\right)(y, s) d y d s\right] \\
& +\gamma_{d, 2} \sum_{h=1}^{d}\left(\frac{d x_{h} x_{j}}{|x|^{d+2}}-\frac{\delta_{j, h}}{|x|^{d}}\right) \cdot \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(g_{h} \theta\right)(y, s) d y d s+\mathcal{O}_{t}\left(|x|^{-d-2}\right), \\
\theta(x, t) & =-\gamma_{d, 3} \sum_{h=1}^{d} \frac{x_{i}}{|x|^{d+2}} \cdot \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(u_{h} \theta\right)(y, s) d y d s+\mathcal{O}_{t}\left(|x|^{-d-2}\right)
\end{aligned}
$$

provided the initial data u_{0} and θ_{0} are Schwartz functions.
At the moment t_{i}^{*} or \tilde{t}_{i}^{*}, respectively, we would like to have for all h, k :

$$
\begin{aligned}
& \qquad \int_{0}^{t_{i}^{*}} \int_{\mathbb{R}^{d}}\left(u_{h} u_{k}\right)(y, s) d y d s=\int_{0}^{t_{i}^{*}} \int_{\mathbb{R}^{d}}\left(g_{h} \theta\right)(y, s) d y d s=0 \\
& \int_{Q_{\text {Barmstade }}}^{\tilde{t}_{i}^{*}} \int_{\mathbb{R}^{d}}\left(u_{h} \theta\right)(y, s) d y d s=0
\end{aligned}
$$

Step II

If we assume a symmetry property of the gravity $g(\tilde{x})=\tilde{g}(x)$ and the initial data

$$
\left(u_{0}, \theta_{0}\right)(\tilde{x})=\left(\tilde{u}_{0}, \theta_{0}\right)(x),
$$

this propagates during the evolution:

$$
(u, \theta)(\tilde{x}, t)=(\tilde{u}, \theta)(x, t) .
$$

Step II

If we assume a symmetry property of the gravity $g(\tilde{x})=\tilde{g}(x)$ and the initial data

$$
\left(u_{0}, \theta_{0}\right)(\tilde{x})=\left(\tilde{u}_{0}, \theta_{0}\right)(x),
$$

this propagates during the evolution:

$$
(u, \theta)(\tilde{x}, t)=(\tilde{u}, \theta)(x, t) .
$$

Furthermore, we would have in the case $d=3$:

$$
\begin{aligned}
\int u_{1} u_{2} & =\int u_{2} u_{3}
\end{aligned}=\int u_{3} u_{1}, \quad \int g_{1} \theta=\int g_{2} \theta=\int g_{3} \theta,
$$

Step II

If we assume a symmetry property of the gravity $g(\tilde{x})=\tilde{g}(x)$ and the initial data

$$
\left(u_{0}, \theta_{0}\right)(\tilde{x})=\left(\tilde{u}_{0}, \theta_{0}\right)(x),
$$

this propagates during the evolution:

$$
(u, \theta)(\tilde{x}, t)=(\tilde{u}, \theta)(x, t) .
$$

Furthermore, we would have in the case $d=3$:

$$
\begin{aligned}
\int u_{1} u_{2} & =\int u_{2} u_{3}
\end{aligned}=\int u_{3} u_{1}, \quad \int g_{1} \theta=\int g_{2} \theta=\int g_{3} \theta,
$$

Thus all these terms vanish in t_{i}^{*} or \tilde{t}_{i}^{*}, respectively, if and only if

$$
\int_{0}^{t_{i}^{*}} \int_{\mathbb{R}^{d}}\left(u_{1} u_{2}\right)(y, s) d y d s=\int_{0}^{t_{i}^{*}} \int_{\mathbb{R}^{d}}\left(g_{1} \theta\right)(y, s) d y d s=0
$$

$$
\underset{\text { R. Schulz }}{\text { resp. }} \int_{(\text {Det Alstadt })}^{\tilde{t}_{i}^{*}} \int_{\text {d }}\left(u_{1} \theta\right)(y, s) d y d s=0
$$

Step III

We represent the solution as a limit of an iteration as follows:

$$
\begin{aligned}
& T_{1}\left(u_{0}, \theta_{0}\right):=e^{t \Delta} u_{0}, \quad \tilde{T}_{1}\left(u_{0}, \theta_{0}\right):=e^{t \Delta} \theta_{0}, \\
& T_{k}\left(u_{0}, \theta_{0}\right):=\sum_{l=1}^{k-1} \mathcal{B}\left(T_{l}\left(u_{0}, \theta_{0}\right), T_{k-l}\left(u_{0}, \theta_{0}\right)\right)+\mathcal{C}\left(\tilde{T}_{k}\left(u_{0}, \theta_{0}\right)\right), \\
& \tilde{T}_{k}\left(u_{0}, \theta_{0}\right):=\sum_{l=1}^{k-1} \mathcal{D}\left(T_{l}\left(u_{0}, \theta_{0}\right), \tilde{T}_{k-l}\left(u_{0}, \theta_{0}\right)\right), \quad k \geq 2
\end{aligned}
$$

Under smallness assumption on the initial data the series

$$
\phi\left(u_{0}, \theta_{0}\right):=\sum_{k=1}^{\infty} T_{k}\left(u_{0}, \theta_{0}\right) \quad \text { and } \quad \psi\left(u_{0}, \theta_{0}\right):=\sum_{k=1}^{\infty} \tilde{T}_{k}\left(u_{0}, \theta_{0}\right)
$$

are absolutely convergent and $(\phi, \psi)\left(u_{0}, \theta_{0}\right)$ is a solution of the equations

$$
u=e^{t \Delta} u_{0}+\mathcal{B}(u, u)+\mathcal{C}(\theta), \quad \theta=e^{t \Delta} \theta_{0}+\mathcal{D}(u, \theta)
$$

Step IV

With this representation of the solution and $\eta>0$ sufficiently small our considered terms with respect to the initial data $\left(\eta u_{0}, \eta^{2} \theta_{0}\right)$ behave like:

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(u_{1} u_{2}\right)(y, s) d y d s \approx \eta^{2} \int_{0}^{t} \int_{\mathbb{R}^{d}} e^{s \Delta} u_{0,1}(y) e^{s \Delta} u_{0,2}(y) d y d s \\
&+2 \eta^{3} \int_{0}^{t} \int_{\mathbb{R}^{d}} \mathcal{C}\left(u_{0}, \theta_{0}\right)(y, s) d y d s \\
& \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(g_{1} \theta\right)(y, s) d y d s \approx \eta^{2} \int_{0}^{t} \int_{\mathbb{R}^{d}} g_{1}(y) e^{s \Delta} \theta_{0}(y) d y d s, \\
& \int_{0}^{t} \int_{\mathbb{R}^{d}}\left(u_{1} \theta\right)(y, s) d y d \approx \eta^{3} \int_{0}^{t} \int_{\mathbb{R}^{d}} e^{s \Delta} u_{0,1}(y) e^{s \Delta} \theta_{0}(y) d y d s .
\end{aligned}
$$

Step V

What still left is to construct such an initial data $\left(u_{0}, \theta_{0}\right)$ as provided above with the following properties:

- $u_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)^{d}$ with $\operatorname{div} u_{0}=0 \quad$ and $\quad \theta_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,

Step V

What still left is to construct such an initial data $\left(u_{0}, \theta_{0}\right)$ as provided above with the following properties:

- $u_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)^{d}$ with $\operatorname{div} u_{0}=0 \quad$ and $\quad \theta_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,
- $\left(u_{0}, \theta_{0}\right)(\tilde{x})=\left(\tilde{u}_{0}, \theta_{0}\right)(x)$,

Step V

What still left is to construct such an initial data $\left(u_{0}, \theta_{0}\right)$ as provided above with the following properties:

- $u_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)^{d}$ with $\operatorname{div} u_{0}=0 \quad$ and $\quad \theta_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,
- $\left(u_{0}, \theta_{0}\right)(\tilde{x})=\left(\tilde{u}_{0}, \theta_{0}\right)(x)$,

$$
\int_{0}^{t} \int_{\mathbb{R}^{d}} e^{s \Delta} u_{0,1}(y) e^{s \Delta} u_{0,2}(y) d y d s=0 \quad \text { for all } \quad t>0
$$

$$
\int_{0}^{t} \int_{\mathbb{R}^{d}} g_{1}(y) e^{s \Delta} \theta_{0}(y) d y d s \quad \text { and } \quad \int_{0}^{t} \int_{\mathbb{R}^{d}} e^{s \Delta} u_{0,1}(y) e^{s \Delta} \theta_{0}(y) d y d s
$$

changes sign inside $\left(t_{i}-\varepsilon, t_{i}+\varepsilon\right)$.

Thank you for your attention! Arigatoo gozaimasu.

Appendix

In Theorem 3 the gravity g belongs to $L_{d-1}^{\infty, *}$. The *-Notation means a quite weak symmetry property of the Fourier transform of $\frac{g(x)}{1+|x|^{2}}$:
Either for all c there is $\xi \in \mathbb{R}^{d}$ with $|\xi|=c$ such that

$$
\mathfrak{g}_{\text {neven }}(\xi):=g^{*}(\xi)-g^{*}(-\xi)+g^{*}(\tilde{\xi})-g^{*}(-\tilde{\xi}) \neq 0
$$

or for all c there is $\xi \in \mathbb{R}^{d}$ with $|\xi|=c$ such that

$$
\mathfrak{g}_{\text {nodd }}(\xi):=g^{*}(\xi)+g^{*}(-\xi)+g^{*}(\tilde{\xi})+g^{*}(-\tilde{\xi}) \neq 0
$$

with $g^{*}(\xi):=\mathcal{F}^{-1}\left(\frac{g(x)}{1+|x|^{2}}\right)(\xi)$.
This strange property is used in Step V to construct the certain initial data.

