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Concerning (1), there are famous papers.
[BL] Berestycki—Lions, I & II ('83). (/N > 3)
[BGK] Berestycki—Gallouét—Kavian ('83). (N =2)
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s—0 S s—0 S
e (N=2) -0 < |lim 9(5) < 0.
s—0 S8
(92) o (N >3) lim 89228_)1 — 0. Here 2* = 2N/(N — 2).

o g(s)
* (N=2) s||—>n<;]o exp(as?)

Co
(93) 3¢ >0 st G(C) =/O g(s)ds > 0.

— 0 for any a > 0.

[BL], [BGK] = d positive solution of (1).
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¢1: Ideas in [BL] and [BGK]

Consider the following minimizing problem:

(N > 3)Minimize {HVuH%z / G(u)dr = 1},
RN

G(u)dxr = 0, ||ull;2 = 1} .

(N = 2)Minimize {Hvuuiz
RN
Let vg be a minimizer. Then

d X >0 st wu(z) =wv9(x/Ao) is a pos. sol. of (1).
Pohozaev Identity. Let u be a sol. of (1). Then

N —2
[Vul|2. — N G(u)dr = 0.
2 RN

P(u) =



31: Motivation

Sol. of (1) is characterized by a critical pt. of

I(u) = 3| Vul3: - /R Gluyde
Motivation.
1 Can we obtain solutions of (1) by the mountain pass
approach?
2 Extend the result of [BGK].

(gl') —oco < liminf 9(s) < limsup g(s)

s—0 S s—0 S

< 0.




31: Main Result

Main Theorem. Suppose (g0),(g1'),(g2) and (g3). (1)
has a positive least energy solution and infinitely many
solutions, which are characterized by the mountain pass
and symmetric mountain pass minimax arguments.

Remark. Brezis—Lieb ('84) considered the existence of a
least energy solution to the more general settings. How-
ever, they did not obtain the multiplicity of solutions.
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32: Idea of proof

We seek critical points of
1
1) = 2|Vl —/ G(w)dz € CL(HY(RY).R).
RN

We only treat the existence of positive solution.

Proposition. Under (g0), (g91'), (g92) and (g3), I satisfies

the mountain pass structure;

(i) 30,p>0 s.t. I(u) >0 for all ||ullg = p.

(ii) There exists a wg € H}(RY) such that ||wo| g > p and
I(wg) < O.
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By the mountain pass theorem (Ambrosetti—Rabinowitz

('73)),
3 (up) C H}(RY) s.t.

I(un) = binp, I'(u,) — 0 in (Hq}(RN))*a |lup, (|72 — O.

Difficulty.
Boundedness of (u,,).
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32: Idea of proof

Define I(0,u) € C*(RxH!(RY),RY) by
o(N—2)0

16,0 = IVl — " [ Gtor=1(u(3)).
(cf. Jeanjean ('97))

Note I(0,u) = I(u). Furthermore, 3 6y > 0 such that
[(0,u) >5>0 for all u|| g2 = p,

T(O wo) — I(wo) < 0.
Thus we can define

: >
Drmp 1= ;Q’;Ongtaggl(v(t)) 6 > 0,

[':={5eC(0,1],RxH*RY)) | 5(0) = (0,0),
5(1) = (0,wo)}.
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Proposition.

bmp = bmyp-

By the mountain pass theorem, 3 (0,,,v,) € R xH(R"Y) s.t.

On — 0, ||?J,;||H1 — 0, DQT(HTMUTJ — 0.

Here

- N —2
DoI(0,,vp)= N =29 ___—||Vy,|2, —eVonN G (v, )dx
RN

— 0.
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Since 6,, — 0, (cf. Pohozaev Identity: P(u) = 0)

N-—2
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Since 6,, — 0, (cf. Pohozaev Identity: P(u) = 0)

N —2
2

P(Un) —

Vo, |5, — N G(vy,)dz — O.

RN

Proposition. (v,) is bounded in H}(RY).

Therefore 3 vg(z) > 0 s.t.

I(Uo) - bmp > 0, ]/(Uo) = 0.
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32: Idea of proof
Since 6,, — 0, (cf. Pohozaev Identity: P(u) = 0)

N-—2
Vo, |5, — N G(vy,)dz — O.
2 RN

P(”’n) —
Proposition. (v,) is bounded in H!(RY).

Therefore 3 vo(x) >0 s.t. I(vg) =bmp >0, I'(vg) = 0.

Propositioin. (cf. Jeanjean—Tanaka (02')) For any non-
trivial sol. v € H*(R") of (1),

I(uw) > I(vg).



Thank you for your attention!
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