Nonlinear Scalar Field Equations in \mathbf{R}^{N}
 - A Mountain Pass Approach -

Norihisa Ikoma

Graduate School of Fundamental Science and Technology, Waseda University

March 16th, 2010

Based on a joint work with
J. Hirata (Waseda) and K. Tanaka (Waseda)

§1: Introduction

We consider the following nonlinear scalar field equations:

$$
\left\{\begin{array}{c}
-\Delta u=g(u) \quad \text { in } \mathbf{R}^{N}, \tag{1}\\
u \in H_{r}^{1}\left(\mathbf{R}^{N}\right)
\end{array}\right.
$$

$N \geq 2$ and $g \in C(\mathbf{R}, \mathbf{R}), g(-s)=-g(s)$ for all $s \in \mathbf{R}$, $H_{r}^{1}\left(\mathbf{R}^{N}\right)=\left\{u \in H^{1}\left(\mathbf{R}^{N}\right) \mid u(x)=u(|x|)\right\}$.

§1: Introduction

We consider the following nonlinear scalar field equations:

$$
\left\{\begin{array}{c}
-\Delta u=g(u) \quad \text { in } \mathbf{R}^{N}, \tag{1}\\
u \in H_{r}^{1}\left(\mathbf{R}^{N}\right) .
\end{array}\right.
$$

$N \geq 2$ and $g \in C(\mathbf{R}, \mathbf{R}), g(-s)=-g(s)$ for all $s \in \mathbf{R}$,
$H_{r}^{1}\left(\mathbf{R}^{N}\right)=\left\{u \in H^{1}\left(\mathbf{R}^{N}\right) \mid u(x)=u(|x|)\right\}$.
Example of $g(s) \quad g(s)=-s+f(s)$.
(Nonlinear Klein-Gordon eq., Nonlinear Schrödinger eq.)

§1: Introduction

We consider the following nonlinear scalar field equations:

$$
\left\{\begin{array}{c}
-\Delta u=g(u) \quad \text { in } \mathbf{R}^{N}, \tag{1}\\
u \in H_{r}^{1}\left(\mathbf{R}^{N}\right) .
\end{array}\right.
$$

$N \geq 2$ and $g \in C(\mathbf{R}, \mathbf{R}), g(-s)=-g(s)$ for all $s \in \mathbf{R}$,
$H_{r}^{1}\left(\mathbf{R}^{N}\right)=\left\{u \in H^{1}\left(\mathbf{R}^{N}\right) \mid u(x)=u(|x|)\right\}$.
Example of $g(s) \quad g(s)=-s+f(s)$.
(Nonlinear Klein-Gordon eq., Nonlinear Schrödinger eq.)
Concerning (1), there are famous papers.
[BL] Berestycki-Lions, I \& II ('83). ($N \geq 3$)
[BGK] Berestycki-Gallouët-Kavian ('83). $(N=2)$
§1: Conditioins in [BL] and [BGK]
(g0) $g \in C(\mathbf{R}, \mathbf{R})$ is an odd function.

§1: Conditioins in [BL] and [BGK]

(g0) $g \in C(\mathbf{R}, \mathbf{R})$ is an odd function.
(g1) • $(N \geq 3)-\infty<\liminf _{s \rightarrow 0} \frac{g(s)}{s} \leq \limsup _{s \rightarrow 0} \frac{g(s)}{s}<0$.

- $(N=2)-\infty<\lim _{s \rightarrow 0} \frac{g(s)}{s}<0$.

§1: Conditioins in [BL] and [BGK]

(g0) $g \in C(\mathbf{R}, \mathbf{R})$ is an odd function.
(g1) • $(N \geq 3)-\infty<\liminf _{s \rightarrow 0} \frac{g(s)}{s} \leq \limsup _{s \rightarrow 0} \frac{g(s)}{s}<0$.

- $(N=2)-\infty<\lim _{s \rightarrow 0} \frac{g(s)}{s}<0$.
(g2) • $(N \geq 3) \lim _{s \rightarrow \infty} \frac{g(s)}{s^{2^{*}-1}}=0$. Here $2^{*}=2 N /(N-2)$.
- $(N=2) \lim _{s \rightarrow \infty} \frac{g(s)}{\exp \left(\alpha s^{2}\right)}=0$ for any $\alpha>0$.

§1: Conditioins in [BL] and [BGK]

(g0) $g \in C(\mathbf{R}, \mathbf{R})$ is an odd function.
(g1) • $(N \geq 3)-\infty<\liminf _{s \rightarrow 0} \frac{g(s)}{s} \leq \limsup _{s \rightarrow 0} \frac{g(s)}{s}<0$.

- $(N=2)-\infty<\lim _{s \rightarrow 0} \frac{g(s)}{s}<0$.
(g2) • $(N \geq 3) \lim _{s \rightarrow \infty} \frac{g(s)}{s^{2^{*}-1}}=0$. Here $2^{*}=2 N /(N-2)$.
- $(N=2) \lim _{s \rightarrow \infty} \frac{g(s)}{\exp \left(\alpha s^{2}\right)}=0$ for any $\alpha>0$.
(g3) $\exists \zeta_{0}>0 \quad$ s.t. $\quad G\left(\zeta_{0}\right)=\int_{0}^{\zeta_{0}} g(s) d s>0$.

§1: Conditioins in [BL] and [BGK]

(g0) $g \in C(\mathbf{R}, \mathbf{R})$ is an odd function.
(g1) • $(N \geq 3)-\infty<\liminf _{s \rightarrow 0} \frac{g(s)}{s} \leq \limsup _{s \rightarrow 0} \frac{g(s)}{s}<0$.

- $(N=2)-\infty<\lim _{s \rightarrow 0} \frac{g(s)}{s}<0$.
(g2) • $(N \geq 3) \lim _{s \rightarrow \infty} \frac{g(s)}{s^{2^{*}-1}}=0$. Here $2^{*}=2 N /(N-2)$.
- $(N=2) \lim _{s \rightarrow \infty} \frac{g(s)}{\exp \left(\alpha s^{2}\right)}=0$ for any $\alpha>0$.
(g3) $\exists \zeta_{0}>0 \quad$ s.t. $\quad G\left(\zeta_{0}\right)=\int_{0}^{\zeta_{0}} g(s) d s>0$.
[BL], [BGK] $\Rightarrow \quad \exists$ positive solution of (1).

§1: Ideas in [BL] and [BGK]

Consider the following minimizing problem:
$(N \geq 3)$ Minimize $\left\{\|\nabla u\|_{L^{2}}^{2} \mid \int_{\mathbf{R}^{N}} G(u) d x=1\right\}$,
$(N=2)$ Minimize $\left\{\|\nabla u\|_{L^{2}}^{2} \mid \int_{\mathbf{R}^{N}} G(u) d x=0,\|u\|_{L^{2}}=1\right\}$.

§1: Ideas in [BL] and [BGK]

Consider the following minimizing problem:
$(N \geq 3)$ Minimize $\left\{\|\nabla u\|_{L^{2}}^{2} \mid \int_{\mathbf{R}^{N}} G(u) d x=1\right\}$,
$(N=2)$ Minimize $\left\{\|\nabla u\|_{L^{2}}^{2} \mid \int_{\mathbf{R}^{N}} G(u) d x=0,\|u\|_{L^{2}}=1\right\}$.
Let v_{0} be a minimizer. Then

$$
\exists \lambda_{0}>0 \quad \text { s.t. } \quad u(x)=v_{0}\left(x / \lambda_{0}\right) \text { is a pos. sol. of }(1) .
$$

§1: Ideas in [BL] and [BGK]

Consider the following minimizing problem:
$(N \geq 3)$ Minimize $\left\{\|\nabla u\|_{L^{2}}^{2} \mid \int_{\mathbf{R}^{N}} G(u) d x=1\right\}$,
($N=2$) Minimize $\left\{\|\nabla u\|_{L^{2}}^{2} \mid \int_{\mathbf{R}^{N}} G(u) d x=0,\|u\|_{L^{2}}=1\right\}$.
Let v_{0} be a minimizer. Then

$$
\exists \lambda_{0}>0 \text { s.t. } u(x)=v_{0}\left(x / \lambda_{0}\right) \text { is a pos. sol. of (1). }
$$

Pohozaev Identity. Let u be a sol. of (1). Then

$$
P(u)=\frac{N-2}{2}\|\nabla u\|_{L^{2}}^{2}-N \int_{\mathbf{R}^{N}} G(u) d x=0 .
$$

§1: Motivation

Sol. of (1) is characterized by a critical pt. of

$$
I(u)=\frac{1}{2}\|\nabla u\|_{L^{2}}^{2}-\int_{\mathbf{R}^{N}} G(u) d x
$$

Motivation.

1 Can we obtain solutions of (1) by the mountain pass approach?
2 Extend the result of [BGK].
($\mathrm{g} 1^{\prime}$) $-\infty<\liminf _{s \rightarrow 0} \frac{g(s)}{s} \leq \limsup _{s \rightarrow 0} \frac{g(s)}{s}<0$.

§1: Main Result

Main Theorem. Suppose (g0),(g1'),(g2) and (g3). (1) has a positive least energy solution and infinitely many solutions, which are characterized by the mountain pass and symmetric mountain pass minimax arguments.

Remark. Brezis-Lieb ('84) considered the existence of a least energy solution to the more general settings. However, they did not obtain the multiplicity of solutions.

§2: Idea of proof

We seek critical points of

$$
I(u)=\frac{1}{2}\|\nabla u\|_{L^{2}}^{2}-\int_{\mathbf{R}^{N}} G(u) d x \in C^{1}\left(H_{r}^{1}\left(\mathbf{R}^{N}\right), \mathbf{R}\right)
$$

We only treat the existence of positive solution.
§2: Idea of proof
We seek critical points of

$$
I(u)=\frac{1}{2}\|\nabla u\|_{L^{2}}^{2}-\int_{\mathbf{R}^{N}} G(u) d x \in C^{1}\left(H_{r}^{1}\left(\mathbf{R}^{N}\right), \mathbf{R}\right) .
$$

We only treat the existence of positive solution.
Proposition. Under (g0), (g1'), (g2) and (g3), I satisfies the mountain pass structure;
(i) $\exists \delta, \rho>0$ s.t. $I(u) \geq \delta$ for all $\|u\|_{H^{1}}=\rho$.
(ii) There exists a $w_{0} \in H_{r}^{1}\left(\mathbf{R}^{N}\right)$ such that $\left\|w_{0}\right\|_{H^{1}}>\rho$ and $I\left(w_{0}\right)<0$.

§2: Idea of proof

Define the mountain pass value $b_{m p}$ as follows:

$$
\begin{aligned}
b_{m p} & :=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} I(\gamma(t)) \geq \delta>0, \\
\Gamma & :=\left\{\gamma \in C\left([0,1], H_{r}^{1}\left(\mathbf{R}^{N}\right)\right) \mid \gamma(0)=0, \gamma(1)=w_{0}\right\} .
\end{aligned}
$$

§2: Idea of proof

Define the mountain pass value $b_{m p}$ as follows:

$$
\begin{aligned}
b_{m p} & :=\inf _{\gamma \in \Gamma \leq t \leq 1} \max _{0} I(\gamma(t)) \geq \delta>0, \\
\Gamma & :=\left\{\gamma \in C\left([0,1], H_{r}^{1}\left(\mathbf{R}^{N}\right)\right) \mid \gamma(0)=0, \gamma(1)=w_{0}\right\} .
\end{aligned}
$$

By the mountain pass theorem (Ambrosetti-Rabinowitz ('73)),

$$
\begin{aligned}
& \exists\left(u_{n}\right) \subset H_{r}^{1}\left(\mathbf{R}^{N}\right) \quad \text { s.t. } \\
& I\left(u_{n}\right) \rightarrow b_{m p}, I^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in }\left(H_{r}^{1}\left(\mathbf{R}^{N}\right)\right)^{*},\left\|u_{n}^{-}\right\|_{H^{1}} \rightarrow 0 .
\end{aligned}
$$

§2: Idea of proof

Define the mountain pass value $b_{m p}$ as follows:

$$
\begin{aligned}
b_{m p} & :=\operatorname{inff}_{\gamma \in \Gamma 0 \leq \leq \leq 1} \max _{0}(\gamma(t)) \geq \delta>0, \\
\Gamma & :=\left\{\gamma \in C\left([0,1], H_{r}^{1}\left(\mathbf{R}^{N}\right)\right) \mid \gamma(0)=0, \gamma(1)=w_{0}\right\} .
\end{aligned}
$$

By the mountain pass theorem (Ambrosetti-Rabinowitz ('73)),

$$
\begin{aligned}
& \exists\left(u_{n}\right) \subset H_{r}^{1}\left(\mathbf{R}^{N}\right) \quad \text { s.t. } \\
& I\left(u_{n}\right) \rightarrow b_{m p}, I^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in }\left(H_{r}^{1}\left(\mathbf{R}^{N}\right)\right)^{*},\left\|u_{n}^{-}\right\|_{H^{1}} \rightarrow 0 .
\end{aligned}
$$

Difficulty.

Boundedness of $\left(u_{n}\right)$.

§2: Idea of proof

Define $\tilde{I}(\theta, u) \in C^{1}\left(\mathbf{R} \times H_{r}^{1}\left(\mathbf{R}^{N}\right), \mathbf{R}^{N}\right)$ by

$$
\tilde{I}(\theta, u):=\frac{e^{(N-2) \theta}}{2}\|\nabla u\|_{L^{2}}^{2}-e^{N \theta} \int_{\mathbf{R}^{N}} G(u) d x=I\left(u\left(\frac{x}{e^{\theta}}\right)\right) .
$$

(cf. Jeanjean ('97))

§2: Idea of proof

Define $\tilde{I}(\theta, u) \in C^{1}\left(\mathbf{R} \times H_{r}^{1}\left(\mathbf{R}^{N}\right), \mathbf{R}^{N}\right)$ by

$$
\tilde{I}(\theta, u):=\frac{e^{(N-2) \theta}}{2}\|\nabla u\|_{L^{2}}^{2}-e^{N \theta} \int_{\mathbf{R}^{N}} G(u) d x=I\left(u\left(\frac{x}{e^{\theta}}\right)\right) .
$$

(cf. Jeanjean ('97))
Note $\tilde{I}(0, u)=I(u)$. Furthermore, $\exists \theta_{0}>0$ such that

$$
\begin{aligned}
& \tilde{I}(\theta, u) \geq \delta>0 \quad \text { for all }|\theta| \leq \theta_{0},\|u\|_{H^{1}}=\rho \\
& \tilde{I}\left(0, w_{0}\right)=I\left(w_{0}\right)<0
\end{aligned}
$$

§2: Idea of proof

Define $\tilde{I}(\theta, u) \in C^{1}\left(\mathbf{R} \times H_{r}^{1}\left(\mathbf{R}^{N}\right), \mathbf{R}^{N}\right)$ by

$$
\tilde{I}(\theta, u):=\frac{e^{(N-2) \theta}}{2}\|\nabla u\|_{L^{2}}^{2}-e^{N \theta} \int_{\mathbf{R}^{N}} G(u) d x=I\left(u\left(\frac{x}{e^{\theta}}\right)\right)
$$

(cf. Jeanjean ('97))
Note $\tilde{I}(0, u)=I(u)$. Furthermore, $\exists \theta_{0}>0$ such that

$$
\begin{aligned}
& \tilde{I}(\theta, u) \geq \delta>0 \quad \text { for all }|\theta| \leq \theta_{0},\|u\|_{H^{1}}=\rho \\
& \widetilde{I}\left(0, w_{0}\right)=I\left(w_{0}\right)<0
\end{aligned}
$$

Thus we can define

$$
\begin{aligned}
\tilde{b}_{m p} & :=\inf _{\tilde{\gamma} \in \tilde{\Gamma}} \max _{0 \leq t \leq 1} \tilde{I}(\tilde{\gamma}(t)) \geq \delta>0, \\
\tilde{\Gamma}: & =\left\{\tilde{\gamma} \in C\left([0,1], \mathbf{R} \times H_{r}^{1}\left(\mathbf{R}^{N}\right)\right) \mid \tilde{\gamma}(0)=(0,0),\right. \\
& \left.\tilde{\gamma}(1)=\left(0, w_{0}\right)\right\} .
\end{aligned}
$$

§2: Idea of proof

Proposition.

$$
b_{m p}=\widetilde{b}_{m p}
$$

§2: Idea of proof

Proposition.

$$
b_{m p}=\tilde{b}_{m p}
$$

By the mountain pass theorem, $\exists\left(\theta_{n}, v_{n}\right) \in \mathbf{R} \times H_{r}^{1}\left(\mathbf{R}^{N}\right)$ s.t.

$$
\begin{aligned}
& \tilde{I}\left(\theta_{n}, v_{n}\right) \rightarrow b_{m p}, \quad D_{u} \tilde{I}\left(\theta_{n}, v_{n}\right) \rightarrow 0 \quad \text { in }\left(H_{r}^{1}\left(\mathbf{R}^{N}\right)\right)^{*}, \\
& \theta_{n} \rightarrow 0, \quad\left\|v_{n}^{-}\right\|_{H^{1}} \rightarrow 0, \quad D_{\theta} \tilde{I}\left(\theta_{n}, v_{n}\right) \rightarrow 0 .
\end{aligned}
$$

Here

$$
\begin{aligned}
D_{\theta} \widetilde{I}\left(\theta_{n}, v_{n}\right) & =e^{(N-2) \theta_{n}} \frac{N-2}{2}\left\|\nabla v_{n}\right\|_{L^{2}}^{2}-e^{N \theta_{n}} N \int_{\mathbf{R}^{N}} G\left(v_{n}\right) d x \\
& \rightarrow 0
\end{aligned}
$$

§2: Idea of proof

Since $\theta_{n} \rightarrow 0$, (cf. Pohozaev Identity: $P(u)=0$)

$$
P\left(v_{n}\right)=\frac{N-2}{2}\left\|\nabla v_{n}\right\|_{L^{2}}^{2}-N \int_{\mathbf{R}^{N}} G\left(v_{n}\right) d x \rightarrow 0 .
$$

Proposition. $\left(v_{n}\right)$ is bounded in $H_{r}^{1}\left(\mathbf{R}^{N}\right)$.

§2: Idea of proof

Since $\theta_{n} \rightarrow 0$, (cf. Pohozaev Identity: $P(u)=0$)

$$
P\left(v_{n}\right)=\frac{N-2}{2}\left\|\nabla v_{n}\right\|_{L^{2}}^{2}-N \int_{\mathbf{R}^{N}} G\left(v_{n}\right) d x \rightarrow 0
$$

Proposition. $\left(v_{n}\right)$ is bounded in $H_{r}^{1}\left(\mathbf{R}^{N}\right)$.

Therefore $\exists v_{0}(x) \geq 0$ s.t. $I\left(v_{0}\right)=b_{m p}>0, I^{\prime}\left(v_{0}\right)=0$.

§2: Idea of proof

Since $\theta_{n} \rightarrow 0$, (cf. Pohozaev Identity: $P(u)=0$)

$$
P\left(v_{n}\right)=\frac{N-2}{2}\left\|\nabla v_{n}\right\|_{L^{2}}^{2}-N \int_{\mathbf{R}^{N}} G\left(v_{n}\right) d x \rightarrow 0
$$

Proposition. $\left(v_{n}\right)$ is bounded in $H_{r}^{1}\left(\mathbf{R}^{N}\right)$.
Therefore $\exists v_{0}(x) \geq 0$ s.t. $I\left(v_{0}\right)=b_{m p}>0, I^{\prime}\left(v_{0}\right)=0$.
Propositioin. (cf. Jeanjean-Tanaka (02')) For any nontrivial sol. $u \in H^{1}\left(\mathbf{R}^{N}\right)$ of (1),

$$
I(u) \geq I\left(v_{0}\right)
$$

Thank you for your attention!

