Global asymptotic stability for a class of epidemic models with delays

Yoichi Enatsu1
(Joint work with Yukihiko Nakata1 and Yoshiaki Muroya2)

1International Research Training Group 1529
Department of Pure and Applied Mathematics, Waseda University

2Department of Mathematics, Waseda University

16.03.2010
Waseda University, Japan
Outline

1. Introduction

2. Delayed SIRS epidemic model with a nonlinear incidence rate
 - Monotone iterative technique
 - Main result
 - Numerical simulations
 - An application
 - Conclusion
Global asymptotic stability for a class of epidemic models with delays

Introduction

Keywords

- Epidemiological concern - the spread of disease in time (e.g., measles, H5N1 influenza, etc.).
- Basic reproduction number
 \(\text{Threshold value}\) - the infectious disease will die out or persists?
- Time delay effect
 \(\text{Incubation (Latent) period}\) - caused by a vector
- Incidence rate of the diseases
Basic SIR model

Consider the following model.

\[
\begin{align*}
S'(t) &= B - \beta S(t)I(t) - \mu S(t), \\
I'(t) &= \beta S(t)I(t) - (\mu + \gamma)I(t), \\
R'(t) &= \gamma I(t) - \mu R(t), \quad t \geq 0, \\
S(0) &> 0, \quad I(0) > 0, \quad R(0) > 0.
\end{align*}
\]

(1.1)

\(B\): birth rate, \(\beta\): contact rate (infection force), \(\mu\): death rate, \(\gamma\): recovery rate

Figure: Diagram of disease transmission of system (1.1)
Global asymptotic stability for a class of epidemic models with delays

Introduction

Basic properties

\[
\begin{align*}
S'(t) &= B - \beta S(t)I(t) - \mu S(t), \\
I'(t) &= \beta S(t)I(t) - (\mu + \gamma)I(t), \\
R'(t) &= \gamma I(t) - \mu R(t).
\end{align*}
\]

Basic reproduction number \(R_0 = \frac{B \beta}{\mu (\mu + \gamma)}\)

\(R_0\): the expected number of secondary cases by a unit of infected individual

<table>
<thead>
<tr>
<th>(R_0)</th>
<th>DFE: (E_0 = (S_0, 0, 0))</th>
<th>EE: (E_* = (S_, I_, R_*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< 1)</td>
<td>(\text{GAS (globally asymptotically stable)*})</td>
<td>(\text{(no existence)})</td>
</tr>
<tr>
<td>(> 1)</td>
<td>(\text{unstable})</td>
<td>(\text{GAS})</td>
</tr>
</tbody>
</table>

Note: DFE = Disease-free equilibrium, EE = Endemic equilibrium

*globally asymptotically stable = uniformly stable + globally attractive
Global asymptotic stability for a class of epidemic models with delays

Introduction

Time delay effect

\[
\begin{aligned}
S'(t) &= B - \beta S(t)I(t) - \mu S(t), \\
I'(t) &= \beta S(t)I(t) - (\mu + \gamma)I(t), \\
R'(t) &= \gamma I(t) - \mu R(t).
\end{aligned}
\]

Time delay effect

Cooke (1979), Beretta et al. (1997), Takeuchi et al. (2002), etc.

\[
\begin{aligned}
S'(t) &= B - \beta S(t)I(t - \tau) - \mu S(t), \\
I'(t) &= \beta S(t)I(t - \tau) - (\mu + \gamma)I(t), \\
R'(t) &= \gamma I(t) - \mu R(t), \quad \tau \geq 0.
\end{aligned}
\]
Global asymptotic stability for a class of epidemic models with delays

Introduction

Incidence rate

Examples of nonlinear incidence rates:

- **Saturation effect** [Cholera, Holling functional response]
 Capasso and Serio (1976), Xu and Ma (2009), etc.
 (e.g., $G_1(I) \equiv I/(1 + \alpha I^p)$, $p \leq 1$)

- **Psychological effect** [SARS pandemic]
 Xiao and Ruan (2007), Huo and Ma (2010), etc.
 (e.g., $G_2(I) \equiv I/(1 + \alpha I^p)$, $p > 1$)

![Graphs showing saturated effect and psychological effect](image.png)

Saturated effect
psychological effect
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate

SIRS model

Huo and Ma (2010), psychological effect [SARS]

\[
\begin{aligned}
S'(t) &= b - dS(t) - ke^{-d\tau}S(t)\frac{I(t-\tau)}{1+\alpha I^2(t-\tau)} + \gamma R(t), \\
I'(t) &= ke^{-d\tau}S(t)\frac{I(t-\tau)}{1+\alpha I^2(t-\tau)} - (d + \mu)I(t), \\
R'(t) &= \mu I(t) - (d + \gamma)R(t), \quad \tau \geq 0, \quad t \geq 0,
\end{aligned}
\] (2.1)

Parameter setting

\begin{itemize}
\item \(b\): recruitment rate
\item \(d\): natural death rate
\item \(\mu\): natural recovery rate
\item \(ke^{-d\tau}S(t)I(t-\tau)/(1+\alpha I^2(t-\tau))\): infection force
\item \(\gamma\): rate at which recovered individuals lose immunity
\item \(\alpha\): parameter which measures the psychological effect
\end{itemize}

Note: SIRS = SIR + immunity lost
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate

SIRS model

Huo and Ma (2010), psychological effect [SARS]

\[
\begin{align*}
S'(t) &= b - dS(t) - ke^{-dt}S(t)\frac{I(t-\tau)}{1 + \alpha I^2(t-\tau)} + \gamma R(t), \\
I'(t) &= ke^{-dt}S(t)\frac{I(t-\tau)}{1 + \alpha I^2(t-\tau)} - (d + \mu)I(t), \\
R'(t) &= \mu I(t) - (d + \gamma)R(t), \quad \tau \geq 0, \quad t \geq 0,
\end{align*}
\]

with initial conditions:

\[
\begin{align*}
S(\theta) &= \phi_1(\theta), \quad I(\theta) = \phi_2(\theta), \quad R(\theta) = \phi_3(\theta), \\
\phi_i(\theta) &\geq 0, \quad \theta \in [-\tau, 0], \quad \phi_i(0) > 0, \quad i = 1, 2, 3, \\
(\phi_1(\theta), \phi_2(\theta), \phi_3(\theta)) &\in C([-\tau, 0], \mathbb{R}_+^3),
\end{align*}
\]

where \(\mathbb{R}_+^3 = \{(x_1, x_2, x_3) : x_i \geq 0, \ i = 1, 2, 3\} \).
Known results and a new result

Basic properties:

Basic reproduction number \(R_0 = \frac{bk \exp(-d\tau)}{d(d + \mu)} \)

<table>
<thead>
<tr>
<th>(R_0 < 1)</th>
<th>(R_0 > 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS</td>
<td>unstable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\tau = 0)</th>
<th>(\tau \geq 0)</th>
</tr>
</thead>
</table>

NEW RESULT

Monotone iterative technique

Our result partially solves the conjecture in Huo and Ma (2010).

\(*\text{LAS} = \text{locally asymptotically stable} \)
Outline of monotone iterative technique

Step 1: derivation of reduced system
Step 2: permanence
Step 3: formulation of the iterate map
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate
Monotone iterative technique

Step 1: derivation of reduced system

Lemma 1 (invariant set)

For system (2.1), it holds that

$$\lim_{t \to +\infty} (S(t) + I(t) + R(t)) = \frac{b}{d}. \quad (2.2)$$

\[\rightarrow \] the limit set of system (2.1) in the first octant of \mathbb{R}^3 locates on the plane $S(t) + I(t) + R(t) = b/d$.

Reduced system of (2.1):

\[
\begin{align*}
I'(t) &= ke^{-d\tau} \left(\frac{b}{d} - I(t) - R(t) \right) \frac{I(t-\tau)}{1 + \alpha I^2(t-\tau)} - (d + \mu)I(t), \\
R'(t) &= \mu I(t) - (d + \gamma)R(t), \quad \tau \geq 0, \quad t \geq 0,
\end{align*}
\]
Global asymptotic stability for a class of epidemic models with delays

Delayed SIRS epidemic model with a nonlinear incidence rate

Monotone iterative technique

Step 2: permanence

Reduced system of (2.1):

\[
\begin{align*}
I'(t) &= k e^{-d\tau} \left(\frac{b}{d} - I(t) - R(t) \right) \frac{I(t - \tau)}{1 + \alpha I^2(t - \tau)} - (d + \mu) I(t), \\
R'(t) &= \mu I(t) - (d + \gamma) R(t), \quad \tau \geq 0, \ t \geq 0,
\end{align*}
\]

Lemma 2 (permanence)

(Huo and Ma (2010)) There exists a positive constants \(\nu \) such that for any initial conditions of system (2.1),

\[
\limsup_{t \to +\infty} I(t) \equiv \bar{I} \leq \frac{b}{d}, \quad \limsup_{t \to +\infty} R(t) \equiv \bar{R} \leq \frac{b}{d},
\]

\[
\liminf_{t \to +\infty} I(t) \equiv \underline{I} \geq \nu, \quad \liminf_{t \to +\infty} R(t) \equiv \underline{R} \geq \frac{\mu}{d + \gamma} \nu.
\]
Step 3: formulation of the iterate map

Note: \(G(I) = I/(1 + \alpha I^2), \ G(I_1, I_2) = \max_{I_1 \leq I \leq I_2} G(I). \)

Key lemma 1

\[
\frac{b}{d} - \bar{I} - \bar{R} > 0, \quad \text{and} \quad \frac{b}{d} - \bar{I} - \bar{R} > 0.
\] (2.3)

Key lemma 2 (Modified iterate scheme)

For the reduced system of (2.1), it holds that

\[
\begin{cases}
0 \leq k \exp(-d\tau) \left(\frac{b}{d} - \bar{I} - \bar{R} \right) \tilde{G}(\bar{I}) - (d + \mu)\bar{I}, \\
0 \geq k \exp(-d\tau) \left(\frac{b}{d} - \bar{I} - \bar{R} \right) G(I) - (d + \mu)I.
\end{cases}
\] (2.4)
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate
Monotone iterative technique

\[
\begin{align*}
0 &= k e^{-d \tau} \left(\frac{b}{d} - \bar{I}_n - \frac{\mu}{d + \gamma} I_{n-1} \right) \max_{\bar{I}_{n-1} \leq I \leq \bar{I}_n} G(I) - (d + \mu) \bar{I}_n, \\
0 &= k e^{-d \tau} \left(\frac{b}{d} - \bar{I}_n - \frac{\mu}{d + \gamma} \bar{I}_n \right) G(I_n) - (d + \mu) I_n, \quad n \geq 1.
\end{align*}
\]

\[
\begin{align*}
\left(1 + \frac{d + \mu}{k e^{-d \tau}} \frac{\bar{h}(I_{n-1}, \bar{I}_n) - h(I_n)}{\bar{I}_n - I_n} \right) (\bar{I}_n - I_n) &= \frac{\mu}{d + \gamma} (\bar{I}_n - I_{n-1}), \\
\end{align*}
\]

\[
\begin{align*}
\bar{I}_n - I_n &= \frac{\mu}{d + \gamma} \left(1 + \frac{d + \mu}{k e^{-d \tau}} \frac{\bar{h}(I_{n-1}, \bar{I}_n) - h(I_n)}{\bar{I}_n - I_n} \right) (\bar{I}_n - I_{n-1}), \\
\bar{h}(I, I) &= I / G(I), \quad \bar{h}(I_1, I_2) = I_2 / \max_{I_1 \leq I \leq I_2} G(I), \quad n \geq 1.
\end{align*}
\]
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate
Monotone iterative technique

Sketch of an iterative scheme

\[
\bar{I}_n - I_n = \frac{\mu}{d + \gamma} \left(\frac{1}{1 + \frac{d + \mu}{ke^{-d\tau}} \frac{\bar{h}(I_{n-1}, \bar{I}_n) - h(I_n)}{\bar{I}_n - I_n}} \right) (\bar{I}_n - I_{n-1}).
\]

Sequences with respect to upper limits and lower limits:

\[I_0 \leq I \leq \bar{I} \leq \bar{I}_0\]
\[I_1 \leq I \leq \bar{I} \leq \bar{I}_1\]
\[I_2 \leq I \leq \bar{I} \leq \bar{I}_2\]

Question: When do the sequences \(\{\bar{I}_n\}_{n=0}^\infty\) and \(\{I_n\}_{n=0}^\infty\) converge to \(I^*\)? → Answer for the GAS of EE \(E_*\).
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate

Main result

Main Theorem (monotone iterative technique)

Theorem 1

Assume that \(R_0 > 1 \), \(I^* \leq \hat{I} \equiv \frac{1}{\sqrt{\alpha}} \) and for (2.5), it holds

\[
\frac{\mu}{d + \gamma} \leq 1, \quad \text{for } I_1 < \bar{I}_1, \tag{2.5}
\]

and suppose that either \(\sigma \leq 1 \) or

\[
\sigma > 1, \quad \text{and } c > a(I^* - I_0) \quad \text{or} \quad c \geq (\sigma - 1) + a(\hat{I} - I^*). \tag{2.6}
\]

Then, \(EE \ E_*= (S^*, I^*, R^*) \) of system (2.1) is GAS.
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate
Numerical simulations

Simulations for the case $R_0 < 1$ and $R_0 > 1 \ (p = 2)$

Figure: $\tau = 0.6$, $b = 4$, $k = 0.8$, $d = \alpha = \gamma = \mu = 1$ (i.e. $R_0 < 1$).

Figure: $\tau = 0.1$, $b = 4$, $k = 0.8$, $d = \alpha = \gamma = \mu = 1$ (i.e. $R_0 > 1$).

Huo and Ma (2010) say:

“... we give an interesting open problem: whether we can also obtain that EE E_\ast is GAS when $R_0 > 1.$”

↓

Our results show that E_\ast is GAS for the above parameter case.
Application: improved result \((p = 1)\)

Xu and Ma (2009), \(\frac{\beta S(t)I(t-\tau)}{1+\alpha I(t-\tau)}\): saturated effect

\[
\begin{align*}
S'(t) &= b - dS(t) - \beta S(t) \frac{I(t-\tau)}{1 + \alpha I(t-\tau)} + \gamma R(t), \\
I'(t) &= \beta S(t) \frac{I(t-\tau)}{1 + \alpha I(t-\tau)} - (d + \mu)I(t), \\
R'(t) &= \mu I(t) - (d + \gamma)R(t), \quad \tau \geq 0, \ t \geq 0.
\end{align*}
\] (2.7)

GAS condition:

<table>
<thead>
<tr>
<th></th>
<th>DFE: (E_0)</th>
<th>EE: (E^*_0) ((R_0 > 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xu and Ma (2009)</td>
<td>(R_0 < 1)</td>
<td>({\alpha(d + \mu) - \beta}(d + \gamma) > \beta \mu)</td>
</tr>
<tr>
<td>NEW RESULT</td>
<td></td>
<td>({\alpha(d + \mu) + \beta}(d + \gamma) > \beta \mu)</td>
</tr>
</tbody>
</table>

Difference: iterate scheme!
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate
An application

Difference between the iterate schemes

Key Lemma 2 (Modified iterate scheme)

For the reduced system of (2.1), it holds that

\[
\begin{aligned}
0 & \leq k \exp(-d\tau) \left(\frac{b}{d} - \bar{I} - \bar{R} \right) \bar{G}(\bar{I}, \bar{I}) - (d + \mu)\bar{I}, \\
0 & \geq k \exp(-d\tau) \left(\frac{b}{d} - \bar{I} - \bar{R} \right) G(I) - (d + \mu)\bar{I}.
\end{aligned}
\]

Xu and Ma (2009) -type scheme:

\[
\begin{aligned}
0 & \leq k \exp(-d\tau) \left(\frac{b}{d} - \bar{I} - \bar{R} \right) \bar{G}(\bar{I}, \bar{I}) - (d + \mu)\bar{I} \\
0 & \geq k \exp(-d\tau) \left(\frac{b}{d} - \bar{I} - \bar{R} \right) G(\bar{I}) - (d + \mu)\bar{I}.
\end{aligned}
\]
We established a new iterate scheme which enables us to

- partially solve the conjecture in Huo and Ma (2010)
- improve the result in Xu and Ma (2009)

concerning GAS of an endemic equilibrium (EE) for an SIRS models with a delay and nonlinear incidence rate.

Some open problems are still left concerning GAS of EE E_* for $R_0 > 1$ on a class of epidemic models (even with a bilinear incidence rate).

Related topics:
SIRS model with temporary immunity, SIS model with disease-induced death rate, Discrete SIR model (with Mickens’ approximation), etc.
Thank you for your kind attention.
Vielen Dank.

ご清聴ありがとうございました。

江夏 (Enatsu) 洋一 (Yoichi)
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate
Conclusion

Contraction of iterate maps

Key Lemma 3 (Contraction of \(\{I_n\}_{n=1}^{\infty} \) and \(\{\bar{I}_n\}_{n=1}^{\infty} \))

If

\[
\frac{\mu}{d + \gamma} \leq 1, \text{ for } I_1 < \bar{I}_1,
\]

\[
1 + \frac{d + \mu}{k \exp(-d\tau)} \frac{h(I_0, \bar{I}_1) - h(I_1)}{\bar{I}_1 - I_1}
\]

then

1. \(I_{n-1} \leq I_n \leq \bar{I}_n \leq \bar{I}_{n-1}, \quad n \geq 1, \)
2. \(I_n \) monotonically increasingly converges to \(I^* \), and
 \(\bar{I}_n \) monotonically decreasingly converges to \(\bar{I} \) as \(n \to +\infty \),
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate

Conclusion

Contraction of iterate maps

Key Lemma 3 (Contraction of \(\{I_n\}_{n=1}^\infty \) and \(\{\overline{I}_n\}_{n=1}^\infty \))

3. \(0 < \exists \lim_{n \to +\infty} I_n \equiv I^* \leq I \leq \overline{I} \leq \exists \lim_{n \to +\infty} \overline{I}_n \equiv \overline{I}^* < +\infty, \)

\[
\begin{align*}
\overline{I}^* + \frac{\mu}{d + \gamma} I^* + \frac{d + \mu}{k \exp(-d\tau)} \overline{h}(I^*, \overline{I}^*) &= \frac{b}{d}, \\
I^* + \frac{\mu}{d + \gamma} \overline{I}^* + \frac{d + \mu}{k \exp(-d\tau)} h(I^*) &= \frac{b}{d}, \\
1 + \frac{d + \mu}{k \exp(-d\tau)} \frac{\overline{h}(I^*, \overline{I}^*) - h(I^*)}{\overline{I}^* - I^*} &= \frac{\mu}{d + \gamma}, \quad \text{if } I^* < \overline{I}^*.
\end{align*}
\]
Globally asymptotic stability

Key Lemma 4 (GAS)

Assume that Key lemma 2 holds and there exist two constants $i < \bar{i}$ such that

1. $i \leq I \leq I^* \leq \bar{I} \leq \bar{i},$
 \[\frac{\mu}{d + \gamma} \]

2. \[\frac{1}{1 + \frac{d + \mu}{k e^{-d\tau}} \frac{h(i, \bar{i}) - h(i)}{\bar{i} - i}} < 1, \quad (2.8) \]

3. \[\left\{ \begin{array}{l}
 i \leq I^* \leq \bar{I}^* \leq \bar{i}, \\
 \bar{I}^* + \frac{d + \mu}{k e^{-d\tau}} h(I^*, \bar{I}^*) = \frac{d}{b} - \frac{\mu}{d + \gamma} I^*, \Rightarrow \bar{I}^* = \bar{I}^* = I^*.
 \\
 I^* + \frac{d + \mu}{k e^{-d\tau}} h(I^*) = \frac{d}{b} - \frac{\mu}{d + \gamma} I^*, \\
 \end{array} \right. \]

Then, $EE E_\ast = (S^\ast, I^\ast, R^\ast)$ of system (2.1) is GAS.
Global asymptotic stability for a class of epidemic models with delays
Delayed SIRS epidemic model with a nonlinear incidence rate

Conclusion

Distance between \underline{I}^* and \overline{I}^* ($\overline{I}^* < \hat{I} \equiv \frac{1}{\sqrt{\alpha}}$)

Put $\underline{I}^* = I^* - \varepsilon$ and $\overline{I}^* = I^* + \kappa$ in Key lemma 3.

Goal: $\varepsilon = 0$

First, assume that $\overline{I}^* < \hat{I} \equiv \frac{1}{\sqrt{\alpha}}$. Then,

$$0 \leq \varepsilon \leq I^* - I_0 \quad \text{and} \quad 0 \leq \kappa < \hat{I} - I^*. \quad (2.9)$$

By $I^* + \kappa \leq \hat{I}$, we have that

$$\begin{cases}
(I^* + \kappa) + \frac{\mu}{d + \gamma} (I^* - \varepsilon) + \frac{d + \mu}{k e^{-d \tau}} \{1 + \alpha (I^* + \kappa)^2\} = \frac{d}{b}, \\
(I^* - \varepsilon) + \frac{\mu}{d + \gamma} (I^* + \kappa) + \frac{\mu + \gamma}{k e^{-d \tau}} \{1 + \alpha (I^* - \varepsilon)^2\} = \frac{d}{b}, (2.10) \\
1 + \frac{\mu + \gamma}{k e^{-d \tau}} \alpha \{2I^* + (\kappa - \varepsilon)\} = \frac{\mu}{d + \gamma}, \text{ if } \varepsilon > 0.
\end{cases}$$
From (2.10), we have that

\[
\begin{align*}
\frac{\mu}{d + \gamma}(-\varepsilon + \sigma \kappa + a\kappa^2) &= 0, \\
\frac{\mu}{d + \gamma}(\kappa - \sigma \varepsilon + a\varepsilon^2) &= 0, \\
\sigma + a(\kappa - \varepsilon) &= 1, \quad \text{if } \varepsilon > 0,
\end{align*}
\]

where

\[
a = \frac{d+\gamma}{\mu} \frac{d+\mu}{ke-d\tau} \alpha, \quad \sigma = \frac{2(d+\gamma)}{\mu} \left(1 + \frac{d+\mu}{ke-d\tau} \alpha I^*\right), \quad c = \frac{\sigma-1+\sqrt{(\sigma-1)(\sigma+3)}}{2}.
\]

We now have that \(\varepsilon = \sigma \kappa + a\kappa^2, \quad \kappa = \sigma \varepsilon - a\varepsilon^2, \) and \(\kappa = \varepsilon + \frac{1-\sigma}{a} \) if \(\varepsilon > 0. \) Suppose that \(\varepsilon > 0. \) Then,

\[
a^2\varepsilon^2 + a(1 - \sigma)\varepsilon + (1 - \sigma) = 0,
\]

and hence, we obtain that \(\sigma > 1, \quad \varepsilon = \frac{c}{a} \) and \(\kappa = \frac{c}{a} - \frac{\sigma-1}{a}. \) This contradicts to (2.9). Thus, we have \(\varepsilon = 0. \)
Distance between I^* and \bar{I}^* ($\bar{I}^* \geq \hat{I}$)

Second, we suppose that $\bar{I}^* \geq \hat{I}$. Then, since $\tilde{h}(I) = 1 + 2\alpha \frac{I}{\hat{I}}$ for $I \geq \hat{I}$, by (2.8), we have that $\frac{1}{G(\hat{I})} - \frac{1}{G(\bar{I}^*)} \leq 0$ and

\[
\begin{align*}
(\bar{I}^* + \kappa) + \frac{\mu}{d + \gamma} (\bar{I}^* - \varepsilon) + \frac{\mu + \gamma}{ke - d\tau} \left\{ \left[1 + \alpha (\bar{I}^* + \kappa) \right]^2 \right. & \left. + \alpha \left(\frac{1}{G(\hat{I})} - \frac{1}{G(\bar{I}^*)} \right) \bar{I}^* \right\} = \frac{d}{b}, \\
(\bar{I}^* - \varepsilon) + \frac{\mu}{d + \gamma} (\bar{I}^* + \kappa) + \frac{\mu + \gamma}{ke - d\tau} \left\{ 1 + \alpha (\bar{I}^* - \varepsilon) \right\} = \frac{d}{b}, \\
1 + \frac{\mu + \gamma}{ke - d\tau} \alpha \{2\bar{I}^* + (\kappa - \varepsilon)\} + \frac{\mu + \gamma}{ke - d\tau} \alpha \left(\frac{1}{G(\hat{I})} - \frac{1}{G(\bar{I}^*)} \right) \bar{I}^* = \frac{\mu}{d + \gamma}, \\
& \text{if } \varepsilon > 0.
\end{align*}
\]

Then, similar to the above discussion, by $\frac{1}{G(\hat{I})} - \frac{1}{G(\bar{I}^*)} \leq 0$, we can derive that $\bar{I}^* \leq I^* - \frac{c}{a}$, $\bar{I}^* \leq I^* + \frac{c - (\sigma - 1)}{a}$ and hence, we have $\varepsilon = 0$.

Y. Enatsu (Joint work with Y. Nakata and Y. Muroya)
Waseda Univ.