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Glossary and Notation

Steady-State Flow Flow where both velocity and pressure fields are time-independent.

Three-dimensional (or 3D) flow Flow where velocity and pressure fields depend on all three spatial

variables.

Two-dimensional (or planar, or 2D) flow Flow where velocity and pressure fields depend only on two

spatial variables belonging to a portion of a plane, and the component of the velocity orthogonal to that

plane is identically zero.

Local Solution Solution where velocity and pressure fields are known to exist only for a finite interval of

time.

Global Solution Solution where velocity and pressure fields exist for all positive times.

Regular Solution Solution where velocity and pressure fields satisfy the Navier-Stokes equations and the

corresponding initial and boundary conditions in the ordinary sense of differentiation and continuity.

At times, we may interchangeably use the words “flow” and “solution”.

Basic Notation. N is the set of positive integers. R is the field of real numbers and RN , N ∈ N, is the set
of all N -tuple x = (x1, · · · , xN ). The canonical base in RN is denoted by {e1, e2, e3, . . . , eN} ≡ {ei}.
For a, b ∈ R, b > a, we set (a, b) = {x ∈ R : a < x < b}, [a, b] = {x ∈ R : a ≤ x ≤ b},
[a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : a < x ≤ b}. By A we indicate the closure of the

subset A of RN . A domain is an open connected subset of RN . Given a second-order tensor A and a

vector a, of components {Aij} and {ai}, respectively, in the basis {ei}, by a ·A [respectively, A · a] we
mean the vector with components Aijai [respectively, Aijaj]. (We use the Einstein summation convention
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over repeated indices, namely, if an index occurs twice in the same expression, the expression is implicitly

summed over all possible values for that index.) Moreover, we set |A| =
√
AijAij . If h(z) ≡ {hi(z)}

is a vector field, by ∇h we denote the second-order tensor field whose components {∇h}ij in the given

basis are given by {∂hj/∂zi}.
Function Spaces Notation. If A ⊆ RN and k ∈ N∪ {0}, by Ck(A) [respectively, Ck(A)] we denote the
class of functions which are continuous in A up to their k-th derivatives included [respectively, are bounded
and uniformly continuous in A up to their k-th derivatives included]. The subset of Ck(A) of functions
vanishing outside a compact subset of A is indicated by Ck

0 (A). If u ∈ Ck(A) for all k ∈ N∪{0}, we shall
write u ∈ C∞(A). In analogous way we define C∞(A) and C∞

0 (A). The symbols Lq(A), Wm,q(A),
m ≥ 0, 1 ≤ q ≤ ∞, denote the usual Lebesgue and Sobolev spaces, respectively (W 0,q(A) = Lq(A)).
Norms in Lq(A) and Wm,q(A) are denoted by ‖ · ‖q,A, ‖ · ‖m,q,A. The trace space on the boundary, ∂A,
of A for functions from Wm,q(A) will be denoted by Wm−1/q,q(∂A) and its norm by ‖ · ‖m−1/q,q,∂A.

By Dk,q(A), k ≥ 1, 1 < q < ∞, we indicate the homogeneous Sobolev space of order (m, q) on A,
that is, the class of functions u that are (Lebesgue) locally integrable in A and withDβu ∈ Lq(A), |β| = k,

where Dβ = ∂|β|/∂xβ1
1 ∂xβ2

2 · · ·∂xβN

N , |β| = β1 + β2 + · · ·+ βN . For u ∈ Dk,q(A), we put

|u|k,q,A =


 ∑

|β|=k

∫

A
|Dβu|q




1/q

.

Notice that, whenever confusion does not arise, in the integrals we omit the infinitesimal volume or surface

elements. Let

D(A) = {ϕ ∈ C∞
0 (A) : divϕ = 0} .

By Lq
σ(A) we denote the completion of D(A) in the norm ‖ · ‖q . If A is any domain in RN we have

L2(A) = L2
σ(A) ⊕ G(A), where G(A) = {h ∈ L2(A) : h = ∇p , for some p ∈ D1,2(A)}; see [31,

Section III.1]. We denote by P the orthogonal projection operator from L2(A) onto L2
σ(A). By D1,2

0 (A)
we mean the completion of D(A) in the norm | · |1,2,A. D1,2

0 (A) is a Hilbert space with scalar product
[v1,v2] :=

∫
A(∂v1/∂xi) · (∂v2/∂xi). Furthermore, D−1,2

0 (A) is the dual space of D1,2
0 (A) and 〈·, ·〉A is

the associated duality pairing.

If g ≡ {gi} and h ≡ {hi} are vector fields on A, we set

(g,h)A =
∫

A
gihi ,

whenever the integrals make sense.

In all the above notation, if confusion will not arise, we shall omit the subscript A.
Given a Banach space X , and an open interval (a, b), we denote by Lq(a, b;X) the linear space of

(equivalence classes of) functions f : (a, b) → X whose X-norm is in Lq(a, b). Likewise, for r a non-
negative integer and I a real interval, we denote by Cr(I;X) the class of continuous functions from I to
X , which are differentiable in I up to the order r included.
If X denotes any space of real functions, we shall use, as a rule, the same symbol X to denote the

corresponding space of vector and tensor-valued functions.

I Definition of the Subject: A Precious Tool in Real-Life Applications

and an Outstanding Mathematical Challenge

The Navier-Stokes equations are a mathematical model aimed at describing the motion of an incompressible

viscous fluid, like many common ones as, for instance, water, glycerine, oil and, under certain circumstances,
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also air. They were introduced in 1822 by the French engineer Claude Louis Marie Henri Navier and

successively re-obtained, by different arguments, by a number of authors including Augustin-Louis Cauchy

in 1823, Siméon Denis Poisson in 1829, Adhémar Jean Claude Barré de Saint-Venant in 1837, and, finally,

George Gabriel Stokes in 1845. We refer the reader to the beautiful paper by Olivier Darrigol [17], for a

detailed and thorough analysis of the history of the Navier-Stokes equations.

Even though, for quite some time, their significance in the applications was not fully recognized,

the Navier-Stokes equations are, nowadays, at the foundations of many branches of applied sciences,

including Meteorology, Oceanography, Geology, Oil Industry, Airplane, Ship and Car Industries, Biology

and Medicine. In each of the above areas, these equations have collected many undisputed successes, which

definitely place them among the most accurate, simple and beautiful models of mathematical physics.

Notwithstanding these successes, up to the present time, a number of unresolved basic mathematical

questions remain open –mostly, but not only, for the physically relevant case of three-dimensional flow.

Undoubtedly, the most celebrated is that of proving or disproving the existence of global 3D regular

flow for data of arbitrary “size”, no matter how smooth (global regularity problem). Since the beginning

of the 20th century, this notorious question has challenged several generations of mathematicians who have

not been able to furnish a definite answer. In fact, to date, 3D regular flows are known to exist either for

all times but for data of “small size”, or for data of “arbitrary size” but for a finite interval of time only.

The problem of global regularity has become so intriguing and compelling that, in the year 2000, it was

decided to put a generous bounty on it. In fact, properly formulated, it is listed as one of the seven $1M

Millennium Prize Problems of the Clay Mathematical Institute.

However, the Navier-Stokes equations present also other fundamental open questions. For example, it

not known whether, in the 3D case, the associated initial-boundary value problem is (in an appropriate

function space) well-posed in the sense of Hadamard. Stated differently, in 3D it is open the question of

whether solutions to this problem exist for all times, are unique and depend continuously upon the data,

without being necessarily “regular”.

Another famous, unsettled challenge is whether or not the Navier-Stokes equations are able to provide

a rigorous model of turbulent phenomena. These phenomena occur when the magnitude of the driving

mechanism of the fluid motion becomes sufficiently “large”, and, roughly speaking, it consists of flow

regimes characterized by chaotic and random property changes for velocity and pressure fields throughout

the fluid. They are observed in 3D as well as in two-dimensional (2D) motions (e.g., in flowing soap

films). We recall that a 2D motion occurs when the relevant region of flow is contained in a portion of a

plane, $, and the component of the velocity field orthogonal to $ is negligible.

It is worth emphasizing that, in principle, the answers to the above questions may be unrelated. Actually,

in the 2D case, the first two problems have long been solved in the affirmative, while the third one remains

still open. Nevertheless, there is hope that proving or disproving the first two problems in 3D will require

completely fresh and profound ideas that will open new avenues to the understanding of turbulence.

The list of main open problems can not be exhausted without mentioning another outstanding question

pertaining the boundary value problem describing steady-state flow. The latter is characterized by time-

independent velocity and pressure fields. In such a case, if the flow region, R, is multiply-connected, it
is not known (neither in 2D nor in 3D) if there exists a solution under a given velocity distribution at the

boundary of R that merely satisfy the physical requirement of conservation of mass.

II Introduction

Fluid mechanics is a very intricate and intriguing discipline of the applied sciences. It is, therefore, not

surprising that the mathematics involved in the study of its properties can be, often, extremely complex
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and difficult. Complexities and difficulties, of course, may be more or less challenging depending on the

mathematical model chosen to describe the physical situation.

Among the many mathematical models introduced in the study of fluid mechanics, the Navier-Stokes

equations can be considered, without a doubt, the most popular one. However, this does not mean that they

can correctly model any fluid under any circumstance. In fact, their range of applicability is restricted to the

class of so called Newtonian fluids; see Remark 3 in Section III. This class includes several common liquids

like water, most salt solutions in water, aqueous solutions, some motor oils, most mineral oils, gasoline and

kerosene.

As mentioned in the previous section, these equations were proposed in 1822 by the French engineer

Claude Navier upon the basis of a suitable molecular model. It is interesting to observe, however, that

the law of interaction between the molecules postulated by Navier were shortly recognized to be totally

inconsistent from the physical point of view for several materials and, in particular, for liquids. It was only

more than two decades later, in 1845, that the same equations were re derived by the twenty-six year old

George Stokes in a quite general way, by means of the theory of continua.

The role of mathematics in the investigation of the fluid properties and, in particular, of the Navier-

Stokes equations, is, as in most branches of the applied sciences, twofold and aims at the accomplishment of

the following objectives. The first one, of a more fundamental nature, is the validation of the mathematical

model, and consists in securing conditions under which the governing equations possess the essential

requirements of well-posedness, that is, existence and uniqueness of corresponding solutions and their

continuous dependence upon the data. The second one, of a more advanced character, is to prove that the

model gives an adequate interpretation of the observed phenomena.

This paper is, essentially, directed toward the first objective. In fact, its goals consist of (i) formulating

the primary problems, (ii) describing the related known results, and (iii) pointing out the remaining basic

open questions, for both boundary and initial-boundary value problems. Of course, it seemed unrealistic to

give a detailed presentation of such a rich and diversified subject in a few number of pages. Consequently,

we had to make a choice which, we hope, will still give a fairly good idea of this fascinating and intriguing

subject of applied mathematics.

The plan of the chapter is the following. In Section III, we shall first give a brief derivation of the

Navier-Stokes equations from continuum theory, then formulate the basic problems and, further on, discuss

some basic properties. Section IV is dedicated to the boundary value problem in both bounded and exterior

domains. Besides existence and uniqueness, the main topics include the study of the structure of solution set

at large Reynolds number, as well as a condensed treatment of bifurcation issues. Section V deals with the

initial-boundary value problem in a bounded domain and with the related questions of well-posedness and

regularity. Finally, in section Section VI we shall outline some future directions of research. Companion

to this last section, is the list of a number of significant open questions that are mentioned throughout the

paper.

III Derivation of the Navier-Stokes Equations and Preliminary Con-

siderations

In the continuum mechanics modeling of a fluid, F , one assumes that, in the given time interval, I ≡ [0, T ],
T > 0, of its motion, F continuously fills a region, Ω, of the three-dimensional space, R3. We call

points, surfaces and volumes of F , material points (or particles), material surfaces and material volumes,
respectively. In most relevant applications, the region Ω does not depend on time. This happens, in

particular, whenever the fluid is bounded by rigid walls like, for instance, in the case of a flow past a

rigid obstacle, or a flow in a bounded container with fixed walls. However, there are also some significant
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situations where Ω depends on time as, for example, in the motion of a fluid in a pipe with elastic walls.

Throughout this chapter, we shall consider flow of F where Ω is time-independent.

Balance Laws. In order to describe the motion of F it is convenient to represent the relevant physical

quantities in the Eulerian form. Precisely, if x = (x1, x2, x3) is a point in Ω and t ∈ [0, T ], we let
ρ = ρ(x, t), v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) and a = a(x, t) = (a1(x, t), a2(x, t), a3(x, t)) be
the density, velocity and acceleration, respectively, of that particle of F that, at the time t, passes through
the point x. Furthermore, we denote by f = f(x, t) = (f1(x, t), f2(x, t), f3(x, t)) the external force per
unit volume (body force) acting on F .
In the continuum theory of non-polar fluids, one postulates that in every motion the following equations

must hold

∂ρ

∂t
(x, t) +

∂

∂xi
(ρ(x, t)vi(x, t)) = 0 ,

ρ(x, t) ai(x, t) =
∂Tji

∂xj
+ ρ(x, t) fi(x, t) , i = 1, 2, 3

Tij(x, t) = Tji(x, t) , i, j = 1, 2, 3 ,





for all (x, t) ∈ Ω × (0, T ) . (1)

These equations represent the local form of the balance laws of F in the Eulerian description. Specifically,

(1)1 expresses the conservation of mass, (1)2 furnishes the balance of linear momentum., while (1)3 is

equivalent to the balance of angular momentum. The function T = T (x, t) = {Tji(x, t)} is a second-
order, symmetric tensor field, the Cauchy stress tensor, that takes into account the internal forces exerted

by the fluid. More precisely, let S denote a (sufficiently smooth) fixed, closed surface in R3 bounding the

region RS , let x be any point on S, and let n = n(x) be the outward unit normal to S at x. Furthermore,
let R(e)

S be the region exterior to RS , with R(e)
S ∩ Ω 6= ∅. Then the vector t = t(x, t) defined as

t(x, t) := n(x) · T (x, t) , (2)

represents the force per unit area exerted by the portion of the fluid in R(e)
S on S at the point x and at time

t; see Figure 1.

Constitutive Equation. An important kinematical quantity associated with the motion of F is the stretching

Figure 1. Stress vector at the point x of the
surface S.

tensor field, D =D(x, t), whose components, Dij, are

defined as follows:

Dij = 1
2

(
∂vj

∂xi
+
∂vi

∂xj

)
, i, j = 1, 2, 3 . (3)

The stretching tensor is, of course, symmetric and,

roughly speaking, it describes the rate of deformation

of parts of F . In fact, it can be shown that a necessary

and sufficient condition for a motion of F to be rigid (namely, the mutual distance between two arbitrary

particles of F does not change in time), is thatD(x, t) = 0 at each (x, t) ∈ Ω×I. Moreover, divv(x, t) ≡

traceD(x, t) ≡
∂vi

∂xi
(x, t) = 0 for all (x, t) ∈ Ω× I, if and only if the motion is isochoric, namely, every

material volume does not change with time. A noteworthy class of fluids whose generic motion is isochoric

is that of fluids having constant density. In fact, if ρ is a positive constant, from (1)1 we find divv(x, t) = 0,
for all (x, t) ∈ Ω×I. Fluids with constant density are called incompressible. In this chapter, incompressible
fluids will be referred to as liquids.
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During the generic motion, the internal forces will, in general, produce a deformation of parts of F .
The relation between internal forces and deformation, namely, the functional relation between T and D,
is called constitutive equation and characterizes the physical properties of the fluid. A liquid is said to

be Newtonian if and only if the relation between T and D is linear, that is, there exist a scalar function

p = p(x, t) (the pressure) and a constant µ (the shear viscosity) such that

T = −pI + 2µD , (4)

where I denotes the identity matrix. In a viscous Newtonian liquid, one assumes that the shear viscosity
satisfies the restriction

µ > 0 . (5)

We will come back, in Remark 2, about the meaning of this assumption.

Navier-Stokes Equations. In view of the condition divv = 0, it easily follows from (4) that

∂Tji

∂xj
= − ∂p

∂xi
+ µ∆vi

where ∆ :=
∂2

∂xl∂xl
is the Laplace operator. Therefore, by (1) and (4) we deduce that the equations

governing the motion of a Newtonian viscous liquid are furnished by

ρ ai = −
∂p

∂xi
+ µ∆vi + ρ fi , i = 1, 2, 3

∂vi

∂xi
= 0





in Ω × (0, T ) . (6)

It is interesting to observe that both equations in (6) are linear in all kinematical variables. However, in

the Euler description, the acceleration is a nonlinear functional of the velocity, and we have

ai =
∂vi

∂t
+ vl

∂vi

∂xl
,

or, in a vector form,

a =
∂v

∂t
+ v · ∇v .

Replacing this latter expression in (6) we obtain the Navier-Stokes equations:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∆v + ρf ,

divv = 0





in Ω × (0, T ) . (7)

In these equations, the (constant) density ρ, the shear viscosity µ (satisfying (5)) and the force f are given
quantities, while the unknowns are velocity v = v(x, t) and pressure p = p(x, t) fields.
Some preliminary comments about the above equations are in order. Actually, we should notice that the

unknowns v, p do not appear in a “symmetric” way. In other words, the equation of conservation of mass
(7)2 does not involve the pressure field. This is due to the fact that, from the mechanical point of view, the

pressure plays the role of reaction force (Lagrange multiplier) associated with the isochoricity constraint

divv = 0. In other words, whenever a portion of the liquid “tries to change its volume” the liquid “reacts”
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with a suitable distribution of pressure to keep that volume constant. Thus, the pressure field must be

generally deduced in terms of the velocity field, once this latter has been determined; see Remark 1.

Initial-Boundary Value Problem. In order to find solutions to the problem (7), we have to append suitable

initial, at time t = 0, and boundary conditions. As a matter of fact, these conditions may depend on the
specific physical problem we want to model. We shall assume that the region of flow, Ω, is bounded by
rigid walls, ∂Ω, and that the liquid does not “slip” at ∂Ω. The appropriate initial and boundary conditions
then become, respectively, the following ones

v(x, 0) = v0(x) , x ∈ Ω

v(x, t) = v1(x, t) , (x, t) ∈ ∂Ω × (0, T ) ,
(8)

where v0 and v1 are prescribed vector fields.

Steady-State Flow and Boundary-Value Problem. An important, special class of solutions to (7), called

steady-state solutions, is that where velocity and pressure fields are independent of time. Of course, a

necessary requirement for such solutions to exist is that f does not depend on time as well. From (7) we
thus obtain that a generic steady-state solution, (v = v(x), p = p(x)), must satisfy the following equations

ρv · ∇v = −∇p+ µ∆v+ ρf ,

divv = 0

}
in Ω . (9)

Under the given assumptions on the region of flow, from (8)2 it follows that the appropriate boundary

conditions are

v(x) = v∗(x) , x ∈ ∂Ω , (10)

where v∗ is a prescribed vector field.

Two-Dimensional Flow. In several mathematical questions related to the unique solvability of problems

(7)–(8) and (9)–(10), separate attention deserve two-dimensional solutions describing the planar motions

of F . For these solutions the fields v and p depend only on x1, x2 (say) (and t in the case (7)–(8)), and,
moreover, v3 ≡ 0. Consequently, the relevant (spatial) region of motion, Ω, becomes a subset of R2.

Remark 1 By formally operating with “div ” on both sides of (7)1 and by taking into account (8)2, we find
that, at each time t ∈ (0, T ) the pressure field p = p(x, t) must satisfy the following Neumann problem

∆p = ρ (v · ∇v− f) in Ω

∂p

∂n
= −[µ∆v − ρ (v1 · ∇v − f)] ·n at ∂Ω

(11)

where n denotes the outward unit normal to ∂Ω. It follows that the prescription of the pressure at the
bounding walls or at the initial time independently of v, could be incompatible with (8) and, therefore,
could render the problem ill-posed. �

Remark 2 We can give a simple qualitative explanation of the assumption (5). To this end, let us consider

a steady-state flow of a viscous liquid between two parallel, rigid walls Π1, Π2, set at a distance d apart
and parallel to the x1 − x2 plane; see Figure 2. The flow is induced by a force per unit area F = Fe1,

F > 0, applied to the wall Π1, that moves Π1 with a constant velocity V = V e1, V > 0, while Π2 is kept

fixed; see Figure 2. No external force is acting on the liquid. It is then easily checked that the velocity and

pressure fields v = V (x2/d)e1 , p = p0=const. (pure shear flow) satisfy (9) with f ≡ 0, along with the
appropriate boundary conditions v(0) = 0, v(d) = V e1.
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Figure 2. Pure shear flow between parallel
plates induced by a force F .

From (2) and (4), we obtain that the force t per unit area exerted
by the fluid on Π1 is given by

t(x1, d, x3) = −e2 · T (x1, d, x3) = p0e2 − µ
V

d
e1,

that is, t has a “purely pressure” component tp = p0 e2, and

a “purely shear viscous” component tv = −µ(V/d)e1. As

expected in a viscous liquid, tv is directed parallel to F and, of

course, if it is not zero, it should also act against F , that is, tv · e1 < 0. However, (V/d) > 0, and so
we must have µ > 0. Since the physical properties of the fluid are independent of the particular flow, this
simple reasoning justifies the assumption made in (5). �

Remark 3 As mentioned in the Introduction, the constitutive equation (4) and, as a consequence, the

Navier-Stokes equations, provide a satisfactory model only for a certain class of liquids, while, for others,

their predictions are at odds with experimental data. These latter include, for example, biological fluids,

like blood or mucus, and aqueous polymeric solutions, like common paints, or even ordinary shampoo. In

fact, these liquids, which, in contrast to those modeled by (4), are called non-Newtonian, exhibit a number

of features that the linear relation (4) is not able to predict. Most notably, in liquids such as blood, the

shear viscosity is no longer a constant and, in fact, it decreases as the magnitude of shear (proportional

to
√
DijDij) increases. Furthermore, liquids like paints or shampoos show, under a given shear rate, a

distribution of stress (other than that due to the pressure) in the direction orthogonal to the direction of

shear (the so-called normal stress effect). Modeling and corresponding mathematical analysis of a variety

of non-Newtonian liquids can be found, for example, in [42] �

IV Mathematical Analysis of the Boundary Value Problem

We begin to analyze the properties of solutions to the boundary-value problem (9)–(10). We shall divide

our presentation into two parts, depending on the “geometry” of the region of flow Ω. Specifically, we shall
treat the cases when Ω is either a bounded domain or an exterior domain (flow past an obstacle). For each

case we shall describe methods, main results and fundamental open questions.

IV.1 Flow in Bounded Domains

In this section we shall analyze problem (9)–(10) where Ω is a bounded domain of R3. A similar (and

simpler) analysis can be performed in the case of planar flow, with exactly the same results.

Variational Formulation and Weak Solutions. To show existence of solutions, one may use, basically,

two types of methods that we shall describe in some detail. The starting point of both methods is the so-

called variational formulation of (9)–(10). Let ϕ ∈ D(Ω). Since divϕ = divv = 0 in Ω and ϕ|∂Ω = 0,
we have (by a formal integration by parts)

(ϕ,∇p) =
∫

∂Ω

pϕ ·n = 0 ,

(∆v,ϕ) = −[v,ϕ] +
∫

∂Ω

n · ∇v ·ϕ = −[v,ϕ]

(v · ∇v,ϕ) =
∫

∂Ω

v ·nv ·ϕ− (v · ∇ϕ,v) = −(v · ∇ϕ,v)

(12)
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where [ ·, · ] is the scalar product in D1,2
0 (Ω). Thus, if we dot-multiply both sides of (9)1 by ϕ ∈ D(Ω) and

integrate by parts over Ω, we (formally) obtain with ν := µ/ρ

ν [v,ϕ] − (v · ∇ϕ,v) = 〈f ,ϕ〉 , for all ϕ ∈ D(Ω) , (13)

where we assume that f belongs to D−1,2
0 (Ω). Equation (13) is the variational (or weak) form of (9)1.

We observe that (13) does not contain the pressure. Moreover, every term in (13) is well-defined provided

v ∈W 1,2
loc (Ω).

Definition 1 A function v ∈ W 1,2(Ω) is called a weak solution to (9)–(10) if and only if: (i) divv = 0
in Ω ; (ii) v|∂Ω = v∗ (in the trace sense) ; (iii) v satisfies (13). If, in particular, v∗ ≡ 0, we replace
conditions (i), (ii) with the single requirement: (i)′ v ∈ D1,2

0 (Ω) .

Throughout this chapter we shall often use the following result, consequence of the Hölder inequality

and of a simple approximating procedure.

Lemma 1 The trilinear form

(a, b, c) ∈ Lq(Ω) ×W 1,2(Ω) × Lr(Ω) 7→ (a · ∇b, c) ∈ R ,
1
q

+
1
r

=
1
2
,

is continuous. Moreover, (a · ∇b, c) = −(a · ∇c, b), for any b, c ∈ D1,2
0 (Ω), and for any a ∈ L2

σ(Ω).
Thus, in particular, (a · ∇b, b) = 0.

Regularity of Weak Solutions. If f is sufficiently regular, the corresponding weak solution is regular as
well and, moreover, there exists a scalar function, p, such that (9) is satisfied in the ordinary sense. Also,
if ∂Ω and v∗ are smooth enough, the solution (v, p) is smooth up to the boundary and (10) is satisfied in
the classical sense. A key tool in the proof of these properties is the following lemma, which is a special

case of a more general result due to Cattabriga [12]; see also [31, Lemma IV.6.2 and Theorem IV.6.1] .

Lemma 2 Let Ω be a bounded domain of R3, of class Cm+2, m ≥ 0, and let g ∈ Wm,q(Ω), u∗ ∈
Wm+2−1/q,q(∂Ω), 1 < q < ∞, with

∫
∂Ω
u∗ · n = 0. Moreover, let u ∈ W 1,2(Ω) satisfy the following

conditions

(a) ν [u,ϕ] = (g,ϕ) for all ϕ ∈ D(Ω) ;
(b) divu = 0 ;
(c) u = u∗ at ∂Ω in the trace sense .

Then, u ∈ Wm+2,q(Ω) and there exists a unique φ ∈ Wm+1,q(Ω), with
∫
Ω
φ = 0, such that the pair

(u, φ) satisfies the following Stokes equations

−ν∆u = ∇φ+ g

divu = 0

}
in Ω .

Furthermore, there exists a constant C = C(Ω,m, q) > 0 such that

‖u‖m+2,q + ‖φ‖m+1,q ≤ C
(
‖g‖m,q + ‖u∗‖m+2−1/q,q,∂Ω

)
.

To give an idea of how to prove regularity of weak solutions by means of Lemma 2, we consider the

case f ∈ C∞(Ω), Ω of class C∞ and v∗ ∈ C∞(∂Ω). (For a general regularity theory of weak solutions,
see [32, Theorem VIII.52].) Thus, in particular, by the embedding [31, Theorem II.2.4]

W 1,2(Ω) ⊂ Lq(Ω) , for all q ∈ [1, 6] , (14)
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and by the Hölder inequality we have that g := f − v · ∇v ∈ L3/2(Ω). From (13) and Lemma 2, we then
deduce that v ∈ W 2,3/2(Ω) and that there exists a scalar field p ∈ W 1,3/2 such that (v, p) satisfy (9) a.e.
in Ω. Therefore, because of the embedding W 2,3/2(Ω) ⊂ W 1,3(Ω) ⊂ Lr(Ω), arbitrary r ∈ [1,∞), [31,
Theorem II.2.4], we obtain the improved regularity property g ∈W 1,s(Ω), for all s ∈ [1, 3/2). Using again
Lemma 2, we then deduce v ∈W 3,s(Ω) and p ∈W 2,s(Ω) which, in particular, gives further regularity for
g. By induction, we then prove v, p ∈ C∞(Ω) .

IV.1.1 Existence Results. Homogeneous Boundary Conditions

As we mentioned previously, there are, fundamentally, two kinds of approaches to show existence of weak

solutions to (9)–(10), namely, the finite-dimensional method and the function-analytic method. We will first

describe these methods in the case of homogeneous boundary conditions, v∗ ≡ 0, deferring the study of the
non-homogeneous problem to subsection IV.1.2. In what follows, we shall refer to (9)–(10) with v∗ = 0
as (9)–(10)hom .

A. The Finite-Dimensional Method. This popular approach, usually called Galerkin method, was intro-

duced by Fujita [28] and, independently, by Vorovich and Yudovich [96]. It consists in projecting (13)

on a suitable finite dimensional space, VN , of D1,2
0 (Ω) and then in finding a solution, vN ∈ VN , of the

“projected” equation. One then passes to the limitN → ∞ to show, with the help of an appropriate uniform

estimate, that {vN} contains at least one subsequence converging to some v ∈ D1,2
0 (Ω) that satisfies con-

dition (13). Precisely, let {ψk} ⊂ D(Ω) be an orthonormal basis of D1,2
0 (Ω), and set vN =

∑N
i=1 ciNψi,

where the coefficients ciN are requested to be solutions of the following nonlinear algebraic system

ν[vN ,ψk] − (vN · ∇ψk,vN ) = 〈f ,ψk〉 , k = 1, · · · , N . (15)

By means of the Brower fixed point theorem, it can be shown (see [32, Lemma VIII.3.2]) that a solution

(c1N , · · · , cNN ) to (15) exists, provided the following estimate holds

|vN |1,2 ≤ M (16)

whereM is a finite, positive quantity independent of N . Let us show that (16) indeed occurs. Multiplying
through both sides of (15) by ckN , summing over k from 1 to N , and observing that, by Lemma 1,
(vN · ∇vN ,vN ) = 0, we obtain

ν |vN |21,2 = 〈f ,vN 〉 ≤ |f|−1,2|vN |1,2 ,

which proves the desired estimate (16) with M := |f|−1,2. Notice that the validity of this latter estimate

can be obtained by formally replacing in (13) ϕ with v ∈ D1,2
0 (Ω) and by using Lemma 1. From classical

properties of Hilbert spaces and from (16), we can select a subsequence {vN ′} and find v ∈ D1,2
0 (Ω) such

that

lim
N ′→∞

[vN ′ ,ϕ] = [v,ϕ] , for all ϕ ∈ D1,2
0 (Ω) . (17)

By Definition 1, to prove that v is a weak solution to (9)–(10)hom it remains to show that v satisfies (13).
In view of the Poincaré inequality [31, Theorem II.4.1]:

‖ϕ‖2 ≤ cP |ϕ|1,2 ϕ ∈ D1,2
0 (Ω) , cP = cP (Ω) > 0 , (18)

by (16) it follows that {vN} is bounded in W 1,2
0 (Ω) and so, by Rellich compactness theorem (see [31,

Theorem II.4.2]) we can assume that {vN ′} converges to v in L4(Ω):

lim
N ′→∞

‖vN ′ − v‖4 = 0 . (19)
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We now consider (15) with N = N ′ and pass to the limit N ′ → ∞. Clearly, by (17), we have for each
fixed k

lim
N ′→∞

[vN ′ ,ψk] = [v,ψk] . (20)

Moreover, by Lemma 1 and by (19),

lim
N ′→∞

(vN ′ · ∇ψk,vN ′ ) = (v · ∇ψk,v) ,

and so, from this latter relation, from (20), and from (15) we conclude that

ν [v,ψk] − (v · ∇ψk,v) = 〈f ,ψk〉 , for all k ∈ N ,

Since {ψk} is a basis in D
1,2
0 (Ω), this latter relation, along Lemma 1, immediately implies that v satisfies

(13), which completes the existence proof.

Remark 4 The Galerkin method provides existence of a weak solution corresponding to any given f ∈
D−1,2

0 (Ω). Moreover, it is constructive, in the sense that the solution can be obtained as limit of a sequence
of “approximate solutions” each of which can be, in principle, evaluated by solving the system of nonlinear

algebraic equations (15). �

B. The Function-Analytic Method. This approach, that goes back to the work of Leray [61, 63] and of

Ladyzhenskaya [58], consists, first, in re-writing (13) as a nonlinear equation in the Hilbert space D1,2
0 (Ω),

and then using an appropriate topological degree theory to prove existence of weak solutions. Though

more complicated than, and not constructive like the Galerkin method, this approach has the advantage of

furnishing, as a byproduct, significant information on the solutions set.

By (14) and (18) we find

D1,2
0 (Ω) ⊂ L4(Ω) , (21)

and so, from Lemma 1 and from the Riesz representation theorem, we have that, for each fixed v ∈ D1,2
0 (Ω),

there exists N (v) ∈ D1,2
0 (Ω) such that

−(v · ∇ϕ,v) = [N (v),ϕ] , for all ϕ ∈ D1,2
0 (Ω) . (22)

Likewise, we have 〈f ,ϕ〉 = [F ,ϕ], for some F ∈ D1,2
0 (Ω) and for all ϕ ∈ D1,2

0 (Ω). Thus, equation (13)
can be equivalently re-written as

N (ν,v) = F , in D1,2
0 (Ω) , (23)

where the map N is defined as follows

N : (ν,v) ∈ (0,∞)×D1,2
0 (Ω) 7→ ν v + N (v) ∈ D1,2

0 (Ω) . (24)

In order to show the above-mentioned property of solutions, we shall use some basic results related to

Fredholm maps of index 0 [84]. This approach is preferable to that originally used by Leray –which applies

to maps that are compact perturbations of homeomorphism– because it covers a larger class of problems,

including flow in exterior domains [36].

Definition 2 A map M : X 7→ Y , X , Y Banach spaces, is Fredholm, if and only if: (i) M is of class

C1 (in the sense of Fréchet differentiability) ; (ii) its derivative, DxM (x), is , at each x ∈ X , a bounded,
linear operator on X ; (ii) the integers α := dim{z ∈ X : [DxM (x)](z) = 0} and β := codim {y ∈ Y :
[DxM (x)](z) = y , for some z ∈ X} are both finite .

The integer m := α− β is independent of the particular x ∈ U [100, §5.15], and is called the index of M .
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Definition 3 A map M : X 7→ Y , is said proper if K1 := {x ∈ X : M (x) = y , y ∈ K} is compact in
X , whenever K is compact in Y .

By using the properties of proper Fredholm maps of index 0 [84], and of the associated Caccioppoli-Smale

degree [10, 84], one can prove the following result [37, Theorem I.2.2]

Lemma 3 Let M be a proper Fredholm map of index 0 and of class C2, satisfying the following.

(i) There exists y ∈ Y such that the equationM (x) = y has one and only one solution x ;

(ii) [DxM (x)](z) = 0 ⇒ z = 0 .

Then:

(a) M is surjective ;

(b) There exists an open, dense set Y0 ⊂ Y such that for any y ∈ Y0 the solution set {x ∈ X : M (x) =
y} is finite and constituted by an odd number, κ = κ(y), of points ;

(c) The integer κ is constant on every connected component of Y0 .

The next result provides the required functional properties of the map N .

Proposition 1 The map N defined in (24) is of class C∞. Moreover, for any ν > 0, N (ν, ·) : D1,2
0 (Ω) 7→

D1,2
0 (Ω) is proper and Fredholm of index 0.

Proof. It is a simple exercise to prove that N is of class C∞ [37, Example I.1.6]. By the compactness

of the embedding W 1,2
0 (Ω) ⊂ L4(Ω) [31, Theorem II.4.2], from Lemma 1 and from the definition of the

map N (see (22)), one can show that N is compact, that is, it maps bounded sequences of D1,2
0 (Ω) into

relatively compact sequences. Therefore, N (ν, ·) is a compact perturbation of a multiple of the identity
operator. Moreover, by (22) and by Lemma 1 we show that [N (v),v] = 0, which implies,

[N (ν,v),v] = ν|v|21,2 . (25)

Using the Schwartz inequality on the left-hand side of (25), we infer that |N(ν,v)|1,2 ≥ ν|v|1,2 and so,

for each fixed ν > 0 we have |N(ν,v)|1,2 → ∞ as |v|1,2 → ∞, that is, N (ν, ·) is (weakly) coercive.
Consequently, N (ν, ·) is proper [7, Theorem 2.7.2]. Finally, since the derivative of a compact map is

compact [7, Theorem 2.4.6], the derivative map DvN (ν,v) ≡ νI + DvN (v), I identity operator, is,
for each fixed ν > 0, a compact perturbation of a multiple of the identity, which implies that N (ν, ·) is
Fredholm of index 0 [100, Theorem 5.5.C]. �
It is easy now to show that, for any fixed ν > 0, N (ν, ·) satisfies all the assumptions of Lemma 3.

Actually, in view of Proposition 1, we have only to prove the validity of (i) and (ii). We take y ≡ 0, and so,
from (25) we obtain that the equationN (ν,v) = 0 has only the solution x ≡ v = 0, so that (i) is satisfied.
Furthermore, from (22) it follows that the equation DvN (ν, 0)(w) = 0 is equivalent to νw = 0, and so
also condition (ii) is satisfied for ν > 0. Thus, we have proved the following result (see also [26]).

Theorem 1 For any ν > 0 and F ∈ D1,2
0 (Ω), equation (23) has at least one solution v ∈ D1,2

0 (Ω).
Moreover, for each fixed ν > 0, there exists open and dense O = O(ν) ⊂ D1,2

0 (Ω) with the following
properties: (i) For any F ∈ O the number of solutions to (23), n = n(F , ν) is finite and odd ; (ii) the
integer n is constant on each connected component of O .
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Next, for a given F ∈ D1,2
0 (Ω), consider the solution manifold

S(F ) =
{
(ν,v) ∈ (0,∞)×D1,2

0 (Ω) : N (ν,v) = F
}
.

By arguments similar to those used in the proof of Theorem 1, one can show the following “generic”

characterization of S(F ) [37, Example I.2.4]; see also [93, Chapter 10.3] .

Theorem 2 There exists dense P ⊂ D1,2
0 (Ω) such that, for every F ∈ P, the set S(F ) is a C∞ 1-

dimensional manifold. Moreover, there exists an open and dense subset of (0,∞), Λ = Λ(F ), such that
for each ν ∈ Λ, equation (23) has a finite number m = m(F , ν) > 0 of solutions. Finally, the integer m
is constant on every open interval contained in Λ.

Figure 3. Sketch of the manifold S(F ).

In other words, Theorem 2 expresses the property that, for

every F ∈ P, the set S(F ) is the union of smooth and
non-intersecting curves. Furthermore, “almost all” lines

ν = ν0 = const. intersect these curves at a finite number
of points, m(ν0,F ), each of which is a solution to (23) cor-
responding to ν0 and to F . Finally, m(ν0,F ) = m(ν1,F )
whenever ν0 and ν1 belong to an open interval of a suit-

able dense set of (0,∞). A sketch of the manifold S(F )
is provided in Figure 3.

IV.1.2 Existence Results. Non-Homogeneous Boundary Conditions

Existence of solutions to (9)–(10) when v∗ 6≡ 0 leads to one of the most challenging open questions in the
mathematical theory of the Navier-Stokes equations, in the case when the boundary ∂Ω is constituted by

more than one connected component. In order to explain the problem, let Si, i = i, · · · ,K, K ≥ 1, denote
these components. Conservation of mass (9)2 along with Gauss theorem imply the following compatibility

condition on the data v∗
K∑

i=1

∫

Si

v∗ ·ni ≡
K∑

i=1

Φi = 0 , (26)

where ni denotes the outward unit normal to Si. From the physical point of view, the quantity ρΦi

represents the mass flow-rate of the liquid through the surface Si. Now, assuming v∗ and Ω sufficiently

smooth (for example, v∗ ∈ W 1/2,2(∂Ω) and Ω locally Lipschitzian [32, §VIII.4]), we look for a weak
solution to (9)–(10) in the form v = u + V , where V ∈ W 1,2(Ω) is an extension of v∗ with divV = 0
in Ω. Thus, if we use, for example, the Galerkin method of Subsection IV.1.1(A), from (15) we obtain that
the “approximate solution” uN =

∑N
i=1 ciNψi must satisfy the following equations (k = 1, · · · , N )

ν[uN ,ψk]− (uN ·∇ψk,uN )− (uN ·∇ψk,V )− (V ·∇ψk,uN )− (V ·∇ψk,V )+ν[V ,ψk] = 〈f ,ψk〉.
(27)

Therefore, existence of a weak solution will be secured provided we show that the sequence {vN :=
uN + V } satisfies the bound (16). In turn, this latter is equivalent to showing

|uN |1,2 ≤ M1 , (28)

where M1 is a finite, positive quantity independent of N . Multiplying through both sides of (27) by ckN ,

summing over k from 1 to N , and observing that, by Lemma 1, (uN · ∇uN ,uN ) = (V · ∇uN ,uN ) = 0,
we find

ν|uN |21,2 = (uN · ∇uN ,V ) + (V · ∇uN ,V ) − [V ,uN ] + 〈f ,uN 〉 .
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By using (14), the Hölder inequality and the Cauchy-Schwartz inequality

a b ≤ ε a2 + (1/4ε) b2, a, b, ε > 0 (29)

on the last three terms on the right-hand side of this latter equation, we easily find, for a suitable choice of

ε,
ν

2
|uN |21,2 ≤ (uN · ∇uN ,V ) + C , (30)

where C = C(V ,f ,Ω) > 0. From (30) it follows that, in order to obtain the bound (28) without restrictions
on the magnitude of ν, it suffices that V meets the following requirement:

Given ε > 0, there is V = V (ε,x) such that (ϕ · ∇ϕ,V ) ≤ ε|ϕ|21,2 for all ϕ ∈ D(Ω) . (31)

As indicated by Leray [61, pp. 28-30] and clarified by Hopf [52], if Ω is smooth enough and if K = 1,
that is, if ∂Ω is constituted by only one connected component, S1, it is possible to construct a family of

extensions satisfying (31), with ε = ν/2, say. Notice that, in such a case, condition (26) reduces to the
single condition Φ1 = 0. If K > 1, the same construction is still possible but with the limitation that
Φi = 0, for all i = 1, · · · ,K. It should be emphasized that this condition is quite restrictive from the

physical point of view, in that it does not allow for the presence, in the region of flow, of isolated “sources”

and “sinks” of liquid. Nevertheless, one may wonder if, by using a different construction, it is still possible

to satisfy (31). Unfortunately, as shown by Takeshita [90] by means of explicit examples, in general, the

existence of extensions satisfying (31) implies Φi = 0, for all i = 1, · · · ,K; see also [32, §VIII.4].
We wish to emphasize that the same type of conclusion holds if, instead of the Galerkin method, we

use the function-analytic approach; see [61], [32, Notes to Chapter VIII].

Finally, it should be remarked that, in the special case of two-dimensional domains possessing suitable

symmetry and of symmetric boundary data, Amick [1] and Fujita [29] have shown existence of corresponding

symmetric solutions under the general assumption (26). However, we have the following.

Open Question. Let Ω be a smooth domain in Rn, n = 2, 3, with ∂Ω constituted by K > 1 connected
components, Si, i = 1, · · · ,K, and let v∗ be any smooth field satisfying (26). It is not known if the
corresponding problem (9)–(10) has at least one solution.

IV.1.3 Uniqueness and Steady Bifurcation

It is a well-established experimental fact that a steady flow of a viscous incompressible liquid is “observed”,

namely, it is unique and stable, if the magnitude of the driving force, usually measured through a dimen-

sionless number λ ∈ (0,∞), say, is below a certain threshold, λc . However, if λ > λc, this flow becomes

unstable and another, different flow is instead observed. This latter may be steady or unsteady (typically,

time-periodic). In the former case, we say that a steady bifurcation phenomenon has occurred. From the

physical point of view, bifurcation happens because the liquid finds a more “convenient” motion (than the

original one) to dissipate the increasing energy pumped in by the driving force. From the mathematical

point of view, bifurcation occurs when, roughly speaking, two solution-curves (parameterized with the ap-

propriate dimensionless number) intersect. (As we know from Theorem 2, the intersection of these curves

is not “generic”.) It can happen that one curve exists for all values of λ, while the other only exists for
λ > λc (supercritical bifurcation). The point of intersection of the two curves is called bifurcation point.

Thus, in any neighborhood of the bifurcation point, we must have (at least) two distinct solutions and so

a necessary condition for bifurcation is the occurrence of non-uniqueness. This section is dedicated to the

above issues.

Uniqueness Results. It is simple to show that, if |v|1,2 is not “too large”, then v is the only weak solution
to (9)–(10) corresponding to the given data.
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Theorem 3 (Uniqueness) Let Ω be locally Lipschitzian and let

|v|1,2 < ν/κ , (32)

with κ = κ(Ω) > 0. Then, there is only one weak solutions to (9)–(10).

Proof. Let v, v1 = v + u be two different solutions. From (13) we deduce

ν[u,ϕ] = (u · ∇ϕ,v) + (v1 · ∇ϕ,u) , for all ϕ ∈ D(Ω). (33)

If Ω is locally Lipschitzian, then u ∈ D1,2
0 (Ω) [31, Theorem II.3.2 and §II.3.5], and since D(Ω) is dense

in D1,2
0 (Ω), with the help of Lemma 1 we can replace ϕ with u in (33) to get

ν|u|21,2 = (u · ∇u,v) .

We now use (14) and Lemma 1 on the right-hand side of this equation to find

(ν − κ |v|1,2)|u|21,2 ≤ 0 ,

with κ = κ(Ω) > 0, which proves u = 0 in D1,2
0 (Ω), namely, uniqueness, if v satisfies (33). �

Remark 5 As we have seen previously, if v∗ ≡ 0, weak solutions satisfy ν|v|1,2 ≤ |f |−1,2. Thus, (32)

holds if |f |−1,2 ≤ ν2/κ. If v∗ 6= 0, then one can show that (32) holds if |f |−1,2 + (1 + ν)‖v∗‖1/2,2,∂Ω +
‖v∗‖2

1/2,2,∂Ω ≤ ν2/κ1, where κ1 has the same properties as κ; see [32, Theorem VIII.4.2]. Notice that

these conditions are satisfied if a suitable non-dimensional parameter λ ∼
(
|f |−1,2 + ‖v∗‖1/2,2,∂Ω

)
is

“sufficiently small”. �

Remarkably enough, one can give explicit examples of non-uniqueness, if condition (32) is violated.

More specifically, we have the following result [32, Theorem VIII.2.2].

Theorem 4 (Non-Uniqueness) Let Ω be a bounded smooth body of revolution around an axis r, that does
not include points of r. For example, Ω is a torus of arbitrary bounded smooth section. Then there are

smooth fields f and v∗ and a value of ν > 0 such that problem (9)–(10) corresponding to these data
admits at least two distinct and smooth solutions.

Some Bifurcation Results. By using the functional setting introduced in Section IV.1.1(B), it is not difficult

to show that steady bifurcation can be reduced to the study of a suitable nonlinear eigenvalue problem in

the space D1,2
0 (Ω). To this end, we recall certain basic definitions.

Let U be an open interval of R and let

M : (x, µ) ∈ X × U 7→ Y . (34)

Definition 4 The point (x0, µ0) is called a bifurcation point of the equation

M (x, µ) = 0 (35)

if and only if (a) M (x0, µ0) = 0, and (b) there are (at least) two sequences of solutions, {(xm, µm)} and
{(x∗m, µm)}, to (35), with xm 6= x∗m, for all m ∈ N, such that (xm, µm) → (x0, µ0) and (x∗m, µm) →
(x0, µ0) as m → ∞.

If M is suitably smooth around (x0, µ0), a necessary condition for (x0, µ0) to be a bifurcation point is
that DxM (x0, µ0) is not a bijection. In fact, we have the following result which is an immediate corollary
of the implicit function theorem (see, e.g., [37, Lemma III.1.1]) .
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Lemma 4 Suppose that DxM exists in a neighborhood of (x0, µ0), and that both M and DxM are

continuous at (x0, µ0). Then, if (x0, µ0) is a bifurcation point of (34), DxM (x0, µ0) is not a bijection.
If, in particular, DxM (x0, µ0) is a Fredholm operator of index 0 (see Definition 2), then the equation
DxM (x0, µ0)x = 0 has at least one nonzero solution.

Let v0 = v0(ν), ν ∈ (0,∞) be a family of weak solution to (9)–(10) corresponding to given data f
and v∗. We assume that f and v∗ are fixed. Denoting by v any other solution corresponding to the same
data, by an argument completely similar to that leading to (23), we find that u := v − v0, satisfies the

following equation in D1,2
0 (Ω)

νu+B(v0)(u) + N (u) = 0 , (36)

with B(v0) := DvN (v0) and N defined in (22). Obviously, (v0(ν0), ν0) is a bifurcation point for the
original equation if and only if (0, ν0) is such for (36). Thus, in view of Lemma 4, a necessary condition
for (0, ν0) to be a bifurcation point for (36) is that the equation

ν0v +B(v0(ν0))(v) = 0 (37)

has at least one nonzero solution v ∈ D1,2
0 (Ω).

In several significant situations it happens that, after a suitable non-dimensionalization of (36), the

family of solutions v0(ν), ν ∈ (0,∞) is independent of the parameter ν which, this time, has to be
interpreted as the inverse of an appropriate dimensionless number (Reynolds number), like, for instance, in

the Taylor-Couette problem; see the following subsection. Now, from Proposition 1, we know that B(u)
is compact at each u ∈ D1,2

0 (Ω), so that νI +B(u) is Fredholm of index 0, at each u ∈ D1,2
0 (Ω), for all

ν > 0 [100, Theorem 5.5.C]. Therefore, whenever v0 does not depend on ν, in a neighborhood of ν0, from

Lemma 4 we find that a necessary condition for (v0, ν0) to be a bifurcation point for (35) is that ν0 is an

eigenvalue of the (compact) linear operator B(v0).
The stated condition becomes also sufficient, provided we make the additional assumptions that ν0 is

a simple eigenvalue of B(v0). This is a consequence of the following theorem (see, e.g., [37, Lemma
III.1.2]).

Theorem 5 Let X ⊂ Y and let the operator M in (34) be of the form M = µ I + T , where I is the
identity in X and T is of class C1. Furthermore, set L := DxT (0). Suppose that µ0 I + L is Fredholm
of index 0 (Definition 2), for some µ0 ∈ U , and that −µ0 is a simple eigenvalue for L, namely, the
equation µ0 x + L(x) = 0 has one and only one (nonzero) independent solution, x1, while the equation

µ0x+ L(x) = x1 has no solutions. Then, (0, µ0) is a bifurcation point for the equationM (x, µ) = 0 .

Bifurcation of Taylor-Couette Flow. A notable application of Theorem 5 is the bifurcation of Taylor-

Couette flow. In this case the liquid fills the space between two coaxial, infinite cylinders, C1 and C2, of

radii R1 and R2 > R1, respectively. C1 rotates around the common axis, a, with constant angular velocity

ω, while C2 is at rest. Denote by (r, θ, z) a system of cylindrical coordinates with z along a and oriented
as ω and let (er , eθ, ez) the associated canonical base. The components of a vector w in such a base are

denoted by wr, wθ and wz, respectively. If we introduce the non-dimensional quantities

u = v/(ω r1) , x = x/r1 , p = p/(ρω2r21) , R = R2/R1 ,

with ω = |ω|, we see at once that the following velocity and pressure fields

u0 = (1 − R2)−1(r − R2/r)eθ , p0 = |u0|2 ln r + const , (38)

solve (9), with f = 0, for all values of the Reynolds number λ := ρω r21/µ. Moreover, u0 satisfies the

boundary conditions

u0(r) = 0 at r = 1 , u0(r) = eθ at r = R. (39)
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Experiments show that, if λ exceeds a critical value, λc, a flow with entirely different features than the

flow (38) is observed. In fact, this new flow is dominated by large toroidal vortices, stacked one on top of

Figure 4. Sketch of the stream-
lines of Taylor vortices, at the
generic section θ=const.

the other, called Taylor vortices. They are periodic in the z-direction
and axisymmetric (independent of θ); see Figure 4. Therefore, we look
for bifurcating solutions of the form u0(r) +w(r, z), p0(r) + p(r, z),
satisfying (39). and where w and p are periodic in the z-direction with
period P, and w satisfies the following parity conditions:

wr(r, z) = wr(r,−z) , wθ(r, z) = wθ(r,−z) , wz(r, z) = −wz(r,−z).
(40)

Moreover, the relevant region of flow becomes the periodicity cell Ω :=
(1, R) × (0,P). If we now introduce the stream function ψ

∂ψ

∂z
= wr ,

∂(rψ)
∂r

= −r wz ; ψ(r, z) = −ψ(r,−z) , (41)

and the vector u := (ψ,wθ), it can be shown [99, §72.7] that u satisfies an equation of the type (36),
namely,

u + λ
(
B(v0)(u) + N (u)

)
= 0 in H(Ω) (42)

where the operators B(v0) and N obey the same functional properties as B(v0) and N , and where

H(Ω) is the Banach space of functions u := (ψ,wθ) ∈ C4,α(Ω) × C2,α(Ω), α ∈ (0, 1), such that:
(i) u(r, 0) = u(r,P) for all r ∈ (1, R) , (ii) u satisfies the parity conditions in (40), (41) , and (iii) ψ =
∂ψ/∂r = wθ = 0 at r = 1, R. Thus, in view of Theorem 5 and of the properties of the operators involved
in (42), we will obtain that (0, λ0) is a bifurcation point for (41) if the following two conditions are met

(a) u+ λ0B(v0)(u) = 0 has one and only one independent solution, u1 ∈ H(Ω) ;

(b) the equation u+ λ0B(v0)(u) = u1 has no solution in H(Ω) .
(43)

It can be shown [99, Lemma 72.14] that there exists a period P for which both conditions in (43) are

satisfied. In addition, for all λ ∈ (0, λ0) the equation u+ λB(v0)(u) = 0 has only the trivial solution in
H(Ω), which, by Lemma 4, implies that no bifurcation occurs for λ ∈ (0, λ0), which, in turn, means that
the bifurcation is supercritical.

IV.2 Flow in Exterior Domains

One of the most significant questions in fluid mechanics is to determine the properties of the steady flow

of a liquid past a body B of simple symmetric shape (such as sphere or cylinder), over the entire range of
the Reynolds number λ := ρUL/µ ∈ (0,∞); see, e.g., [4, §4.9]. Here L is a length scale representing
the linear dimension of B, while v∞ = −Ue1, U = const> 0, is the uniform velocity field of the liquid
at large distances from B. In the mathematical formulation of this problem, one assumes that the liquid
fills the whole space, Ω, outside the closure of the domain B ⊂ Rn, n = 2, 3. Thus, by scaling v by U
and x by L, from (9)–(10) we obtain that the steady flow past a body consists in solving the following
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non-dimensional exterior boundary-value problem

−∆w − λ
∂w

∂x1
+ λw · ∇w = −∇p+ f

divw = 0





in Ω

w(x) = e1 , x ∈ ∂Ω , lim
|x|→∞

w(x) = 0 ,

(44)

where w := v + e1 and where we assume, for simplicity, that v∗ ≡ 0. (However, all the stated results
continues to hold, more generally, if v∗ belongs to a suitable trace space.)
Whereas in the three-dimensional case (e.g., flow past a sphere) the investigation of (44) is, to an

extent, complete, in the two-dimensional case (e.g., flow past a circular cylinder) there are still fundamental

unresolved issues. We shall, therefore, treat the two cases separately.

We need some preliminary considerations.

Extension of the Boundary Data. If Ω is smooth enough (locally Lipschitzian, for example), since∫
∂Ω
e1 · n = 0, by what we observed in Section VI.1.2, for any λ > 0 we find V = V (λ,x), with

divV = 0 in Ω, and satisfying (31) with ε = 1/(2λ), say. Actually, as shown in [36, Proposition 3.1],
the extension V can be chosen, in particular, to be of class C∞((0,∞)× Ω) and such that the support of
V (λ, ·) is contained in a bounded set, independent of λ. The proof given in [36, loc.cit.] is for Ω ⊂ R3,

but it can be easily extended to the case Ω ⊂ R2.

Variational Formulation and Weak Solutions. Setting u = w − V in (44)1, dot-multiplying through

both sides of this equation by ϕ ∈ D(Ω), integrating by parts and taking into account (12), we find

[u,ϕ]− λ

(
∂u

∂x1
,ϕ

)
− λ (u · ∇ϕ,u) − λ{(u · ∇ϕ,V ) + (V · ∇ϕ,u)} + (H,ϕ)

= 〈f ,ϕ〉 , for all ϕ ∈ D(Ω) .

(45)

where

H = H(V ) := ∆V + λ
∂V

∂x1
− λV · ∇V .

Definition 5 A function w ∈ D1,2(Ω) is called a weak solution to (44) if and only if w = u + V where

u ∈ D1,2
0 (Ω) and u satisfies (45).

Regularity of Weak Solutions. (A) Local Regularity. The proof of differentiability properties of weak

solutions can be carried out in a way similar to the case of a bounded domain. In particular, if f and Ω are
of class C∞, one can show that w ∈ C∞(Ω) and there exists a scalar field p ∈ C∞(Ω) such that (44)1,2,3

holds in the ordinary sense. For this and other intermediate regularity results, we refer to [32, Theorem

IX.1.1].

(B) Regularity at Infinity. The study of the validity of (44)4 and, more particularly, of the asymptotic

structure of weak solutions, needs a much more involved treatment, and the results depend on whether

the flow is three- or two-dimensional. In the three-dimensional case, if f satisfies suitable summability
assumptions outside a ball of large radius, by using a local representation of a weak solution, (namely, at

all points of a ball of radius 1 and centered at x ∈ Ω, dist (x, ∂Ω) > 1) one can prove that w and all its

derivatives tend to zero at infinity uniformly pointwise and that a similar property holds for p [32, Theorem
IX.6.1]. The starting point of this analysis is the crucial fact that

if Ω ⊂ R3, D1,2
0 (Ω) is continuously embedded in L6(Ω) , (46)
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which implies that w tends to zero at infinity in a suitable sense. However, the existence of the “wake”

behind the body along with the sharp order of decay of w and p requires a more complicated analysis based
on the global representation of a weak solution (namely, at all points outside a ball of sufficiently large

radius) by means of the Oseen fundamental tensor, along with maximal regularity estimates for the solution

of the linearized Oseen problem, this latter being obtained by suppressing the nonlinear term w · ∇w in

(44) [32, §§IX.6, IX.7 and IX.8]. In particular, one can prove the following result concerning the behavior
of w; see [32, Theorems IX.7.1, IX.8.1 and Remark IX.8.1].

Theorem 6 Let Ω be a three-dimensional exterior domain of class C2, and let w be a weak solution to

(44) corresponding to a given f ∈ Lq(Ω), for all q ∈ (1, q0], q0 > 3. Then

w ∈ Lr(Ω) , if and only if r > 2 . (47)

If, in addition, f is of bounded support, then, denoting by θ the angle made by a ray starting from the
origin of coordinates (taken, without loss of generality, in R3 −Ω) with the positively directed x1-axis, we

have

|w(x)| ≤ M

|x| [1 + |x|(1 + cos θ)]
, x ∈ Ω , (48)

where M = M (λ,Ω) > 0.

Remark 6 Two significant consequences of Theorem 6 are: (i) the total kinetic energy of the flow past

an obstacle (≡ 1
2
ρ‖w‖2

2) is infinite , see (47) ; and (ii) the asymptotic decay of w is faster outside any

semi-infinite cone with its axis coinciding with the negative x1-axis (existence of the “wake”); see (48) .�

The study of the asymptotic properties of solutions in the two-dimensional case is deferred till Section

IV.2.3.

IV.2.1 Three-Dimensional Flow. Existence of Solutions and Related Properties

As in the case of a bounded domain, we may use two different approaches to the study of existence of

weak solutions.

A. Finite-Dimensional Method. Assume f ∈ D−1,2
0 (Ω). With the same notation as in Subsection

IV.1.1(A), we look for “approximate solutions” to (45) of the form uN =
∑N

i=1 ciNψi, where

[uN ,ψk] − λ

(
∂uN

∂x1
,ψk

)
− λ (uN · ∇ψk,uN ) − λ{(uN · ∇ψk,V )

+ (V · ∇ψk,uN )} + (H,ψk) = 〈f ,ψk〉 , k = 1, · · · , N .
(49)

As in the case of a bounded domain, existence to the algebraic system (49), in the unknowns ciN , will be
achieved if we show the uniform estimate (28). By dot-multiplying through both sides of (49) by ckN , by

summing over k between 1 and N and by using Lemma 1 we find

|uN |21,2 = λ (uN · ∇uN ,V ) − (H,uN ) + 〈f ,uN 〉 . (50)

From the properties of the extension of the boundary data, we have that V satisfies (31) with ε = 1/(2λ)
and that, moreover −(H ,uN ) ≤ C|uN |1,2, for some C = C(Ω, λ) > 0. Thus, from this and from (50)
we deduce the uniform bound (28). This latter implies the existence of a subsequence {uN ′} converging to
some u ∈ D1,2

0 (Ω) weakly. Moreover, by Rellich theorem, uN ′ → u in L4(K), whereK := Ω∩{|x| > ρ},
all sufficiently large and finite ρ > 0 [31, Theorem II.4.2]. Consequently, recalling that ψk is of compact
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support in Ω, we proceed as in the bounded domain case and take the limit N ≡ N ′ → ∞ in (49) to

show that u satisfies (45) with ϕ ≡ ψk . Successively, by taking into account that every ϕ ∈ D(Ω) can be
approximated in L3(Ω) by linear combinations of ψk (see [31, Lemma VII.2.1]) by (46) and by Lemma

1 we conclude that u satisfies (45). Notice that, as in the case of flow in bounded domains, this method
furnishes existence for any λ > 0 and any f ∈ D−1,2

0 (Ω).
B. The Function-Analytic Method. As in the case of flow in a bounded domain, Subsection IV.1.(B),

our objective is to rewrite (45) as a nonlinear operator equation in an appropriate Banach space, where the

relevant operator satisfies the assumptions of Lemma 3. In this way, we may draw the same conclusions

of Theorem 1 also in the case of a flow past an obstacle. However, unlike the case of flow in a bounded

domain, the map

ϕ ∈ D(Ω) 7→ (u · ∇ϕ,u) ∈ R

can not be extended to a linear, bounded functional in D1,2
0 (Ω), if u merely belongs to D1,2

0 (Ω). Analogous
conclusion holds for the map ϕ ∈ D(Ω) 7→ (∂u/∂x1,ϕ) ∈ R . The reason is because, in an exterior
domain, the Poincaré inequality (18) and, consequently, the embedding (21) are, in general, not true. It is

thus necessary to consider the above functionals for u in a space strictly contained in D1,2
0 (Ω). Set

[|u|] := sup
ϕ∈D(Ω)

∣∣∣∣
(
∂u

∂x1
,ϕ

)∣∣∣∣
|ϕ|1,2

and let

X = X(Ω) :=
{
u ∈ D1,2

0 (Ω) : [|u|] < ∞
}
.

Clearly, X(Ω) endowed with the norm | · |1,2 + [| · |] is a Banach space. Moreover, X(Ω) ⊂ L4(Ω),
continuously; see [36, Proposition 1.1]. We may thus conclude, by Riesz theorem, by Hölder inequality

and by the properties of the extension V that, for any u ∈ X(Ω), there exist L(u), M(u), V(u), and
H(λ) in D1,2

0 (Ω) such that, for all ϕ ∈ D(Ω),

−
(
∂u

∂x1
,ϕ

)
= [L(u),ϕ] ; −(u · ∇ϕ,u) = [M(u),ϕ] ;

−(u · ∇ϕ,V ) − (V · ∇ϕ,u) = [V(u),ϕ] ; (H,ϕ) = [H(λ),ϕ] .

Consequently, we obtain that (45) is equivalent to the following equation

M (λ,u) = F in D1,2
0 (Ω) , (51)

where

M : (λ,u) ∈ (0,∞)×X(Ω) 7→ u + λ (L(u) + V(u) + M(u)) + H(λ) ∈ D1,2
0 (Ω) .

A detailed study of the properties of the operatorM is done in [36, §5], where, in particular, the following
result is proved.

Lemma 5 The operator M is of class C∞. Moreover, for each λ > 0, M (λ, ·) : X(Ω) 7→ D1,2
0 (Ω) is

proper and Fredholm of index 0, and the two equationsM (λ,u) = H(λ) and DuM (λ,0)(w) = 0 only
have the solutions u = w = 0.

From this lemma and with the help of Lemma 3, we obtain the following result analogous to Theorem 1.
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Theorem 7 For any λ > 0 and F ∈ D1,2
0 (Ω) the equation (51) has at least one solution u ∈ X(Ω).

Moreover, for each fixed λ > 0, there exists open and dense Q = Q(λ) ⊂ D1,2
0 (Ω) with the following

properties: (i) For any F ∈ Q the number of solutions to (51), n = n(F , λ) is finite and odd ; (ii) the
integer n is finite on each connected component of Q .

Finally, concerning the geometric structure of the set of pairs (λ,u) ∈ (0,∞) ×X(Ω) satisfying (51) for
a fixed F , a result entirely similar to Theorem 2 continues to hold; see [36, Theorem 6.2].

IV.2.2 Three-Dimensional Flow. Uniqueness and Steady Bifurcation

There is both experimental [91, 97] and numerical [68, 95] evidence that a steady flow past a sphere is

unique (and stable) if the Reynolds number λ is sufficiently small. Moreover, experiments report that a
closed recirculation zone first appears at λ around 20-25, and the flow stays steady and axisymmetric up to
at least λ '130. This implies that the first bifurcation occurs through a steady motion. For higher values
of λ, the wake behind the sphere becomes time-periodic, thus suggesting the occurence of unsteady (Hopf)
bifurcation; see Figure 5.

Figure 5. Visualization of a flow past a sphere at increasing
Reynolds numbers λ; after S. Taneda [91]

In this section we shall collect the relevant results avail-

able for uniqueness and steady bifurcation of a flow past

a three-dimensional obstacle.

Uniqueness Results. Unlike the case of a flow in a

bounded domain where uniqueness in the class of weak

solutions is simply established (see Theorem 3), in the

situation of a flow past an obstacle, the uniqueness proof

requires the detailed study of the asymptotic behavior

of a weak solution mentioned in Section IV.2; see also

Theorem 6. Precisely, we have the following result, for
whose proof we refer to [32, Theorem IX.5.3].

Theorem 8 Suppose f ∈ L6/5(Ω)∩L3/2(Ω), λ ∈ (0, λ], for some λ > 0, and let w be the corresponding

weak solution. (Notice that, under the given assumptions, f ∈ D−1,2
0 (Ω).) There exists C = C(Ω, λ) > 0

such that, if

‖f‖6/5 + λ < C ,

then w is the only weak solution corresponding to f .

Some Bifurcation Results. The rigorous study of steady bifurcation of a flow past a body is a very

challenging mathematical problem. However, the function-analytic framework developed in the previous

section allows us to formulate sufficient conditions for steady bifurcation, that are formally analogous to

those discussed in Section IV.1.3 for the case of a flow in a bounded domain; see [36, §VII]. To this end,
fix f ∈ D−1,2

0 (Ω), once and for all, and let u0 = u0(λ), λ in some open interval I ⊆ (0,∞), be a given
curve in X(Ω), constituted by solutions to (51) corresponding to the prescribed f . If u + u0, is another

solution, from (51) we easily obtain that u satisfies the following equation in D1,2
0 (Ω)

u + λ (L(u) + B(u0(λ))(u) + M(u)) = 0 , u ∈ X(Ω) , (52)

where B(u0) := DuM(u0) . In this setting, the branch u0(λ) becomes the solution u ≡ 0 and the bifur-
cation problem thus reduces to find a nonzero branch of solutions u = u(λ) to (52) in every neighborhood
of some bifurcation point (0, λ0); see Definition 4. Define the map

F : (λ,u)∈ (0,∞)×X(Ω) 7→ u + λ (L(u) + B(u0(λ))(u) + M(u)) ∈ D1,2
0 (Ω) . (53)

In [36, §VII] the following result is shown.
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Lemma 6 The map F is of class C∞. Moreover, the derivative

DuF (λ,0)(w) = w + λ (L(w) + B(u0(λ))(w)) ,

is Fredholm of index 0

Therefore, from this lemma and from Lemma 4 we obtain that a necessary condition for (0, λ0) to be a
bifurcation point to (52) is that the linear problem

w1 + λ0 (L(w1) + B(u0(λ0))(w1)) = 0 , w1 ∈ X(Ω) , (54)

has a non-zero solution w1 . Once this necessary condition is satisfied, one can formulate several sufficient

conditions for the point (0, λ0) to be a bifurcation point. For a review of different criteria for global
and local bifurcation for Fredholm maps of index 0, we refer to [41, Section 6]. Here we wish to use

the criterion of Theorem 5 to present a very simple (in principle) and familiar sufficient condition in the

particular case when the given curve u0 can be made (locally, in a neighborhood of λ0) independent of

λ. This may depend on the particular non-dimensionalization of the Navier-Stokes equations and on the
special form of the family of solutions u0. In fact, there are several interesting problems formulated in

exterior domains where this circumstance takes place, like, for example, the problem of steady bifurcation

considered in the previous section and the one studied in [40, Section 6]. Now, if u0 does not depend on

λ, from Theorem 5 and from (54) we immediately find that a sufficient condition in order that (0, λ0) be
a bifurcation point is that the following problem

w + λ0L(w) = w1 , w ∈ X(Ω) , (55)

with L := L + B(u0) and w1 solving (54), has no solution. In different words, a sufficient condition for

(0, λ0) to be a bifurcation point is that −1/λ0 is a simple eigenvalue of the operator L. It is interesting to
observe that this condition is formally the same as the one arising in steady bifurcation problems for flow

in a bounded domain; see Section IV.1.3. However, while in this latter case L (≡ B(v0)) is compact and
defined on the whole of D1,2

0 (Ω), in the present situation L, with domain D := X(Ω) ⊂ D1,2
0 (Ω), is an

unbounded operator. As such, we can not even be sure that L has real simple eigenvalues. Nevertheless,

since, by Lemma 6, I+λL is Fredholm of index 0 for all λ ∈ (0,∞), and since one can show [36, Lemma
7.1] that L is graph-closed, if u0 ∈ L3(Ω) (this latter condition is satisfied under suitable hypotheses on f ;
see Theorem 6) from well-known results of spectral theory [46, Theorem XVII.2.1], it follows that the set

Λ of real eigenvalues of L satisfies the following properties: (a) Λ is at most countable; (b) Λ is constituted
by isolated points of finite algebraic and geometric multiplicities, and (c) points in Λ can only cluster at 0.
Consequently, the bifurcation condition requiring the simplicity of −1/λ0 (namely, algebraic multiplicity

1) is perfectly meaningful.

IV.2.2 Two-Dimensional Flow. The Problem of Existence

The planar motion of a viscous liquid past a cylinder is among the oldest problems to have received a

systematic mathematical treatment. Actually, in 1851, it was addressed by Sir George Stokes in his work

on the motion of a pendulum in a viscous liquid [89]. In the wake of his successful study of the flow past a

sphere in the limit of vanishing λ (Stokes approximation), Stokes looked for solutions to (44), with f ≡ 0
and λ = 0, in the case when Ω is the exterior of a circle. However, to his surprise, he found that this

linearized problem has no solution, and he concluded with the following (wrong) statement [89], p. 63,

“It appears that the supposition of steady motion is inadmissible.”
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Such an observation constitutes what we currently call Stokes Paradox.

This is definitely a very intriguing starting point for the resolution of the boundary-value problem (44),

in that it suggests that, if the problem has a solution, the nonlinear terms have to play a major role. In this

regard, by using, for instance, the Galerkin method and proceeding exactly as in Subsection IV.2.1(A), we

can prove the existence of a weak solution to (44), for any λ > 0 and f ∈ D−1,2
0 (Ω). In addition, this

solution is as smooth as allowed by the regularity of Ω and f (see Section IV.2) and, in such a case, it
satisfies (44)1,2,3 in the ordinary sense. However, unlike the three-dimensional case (see eq. (46)), the space

D1,2
0 (Ω) is not embedded in any Lq-space and, therefore, we can not be sure that, even in an appropriate

generalized sense, this solution vanishes at infinity, as requested by (44)4. Actually, if Ω ⊂ R2 there are

functions in D1,2
0 (Ω) becoming unbounded at infinity. Take, for example, w = (ln |x|)α eθ, α ∈ (0, 1),

and Ω the exterior of the unit circle. In this sense, we call these solutions weak, and not because of lack

of local regularity (they are as smooth as allowed by the smoothness of Ω and f). This problem was first
pointed out by Leray [61, pp. 54-55].

The above partial results leave open the worrisome possibility that a Stokes paradox could also hold for

the fully nonlinear problem (45). If this chance turned out to be indeed true, it would cast serious doubts

on the Navier-Stokes equations as reliable fluid model, in that they would not be able to catch the physics

of a very elementary phenomenon, easily reproduced experimentally.

The possibility of a nonlinear Stokes paradox was ruled out by Finn and Smith in a deep paper published

in 1967 [19], where it is shown that if f ≡ 0 and if Ω is sufficiently regular, then (45) has a solution, at

least for “small” (but nonzero!) λ . The method used by these authors is based on the representation of
solutions and careful estimates of the Green tensor of the Oseen problem. Another approach to existence

for small λ, relying upon the Lq theory of the Oseen problem, was successively given by Galdi [30] where

one can find the proof of the following result.

Theorem 9 Let Ω be of class C2 and let f ∈ Lq(Ω), for some q ∈ (1, 6/5). Then there exists λ1 > 0
and C = C(Ω, q, λ1) > 0 such that if, for some λ ∈ (0, λ1],

| logλ|−1 + λ2(1/q−1)‖f‖q < C ,

problem (45) has at least one weak solution that, in addition, satisfies (45)4 uniformly pointwise.

It can be further shown that the above solutions meet all the basic physical requirements. In particular, as

in the three-dimensional case (see Section IV.2), they exhibit a “wake” in the region x1 < 0. Moreover, the
solutions are unique in a ball of a suitable Banach space, centered at the origin and of “small” radius. For

the proof of these two statements, we refer to [32, §§X.4 and X.5].
Though significant, these results leave open several fundamental questions. The most important is, of

course, that of whether problem (44) is solvable for all λ > 0 and all f in a suitable space. As we already
noticed, this solvability would be secured if we can show that the weak solution does satisfy (44)4, even

in a generalized sense. It should be emphasized that, since, as shown previously, there are functions in

D1,2
0 (Ω) that become unbounded at infinity, the proof of this asymptotic property must be restricted to
functions satisfying (44)1,2,3. This question has been taken up in a series of remarkable papers by Gilbarg

and Weinberger [44], [45] and by Amick [2] in the case when f ≡ 0. Some of their results lead to the
following one due to Galdi [35, Theorem 3.4].

Theorem 10 Let w be a weak solution to (44) with f ≡ 0. Then, there exists ξ ∈ R2 such that

lim
|x|→∞

w(x) = ξ uniformly.

23



Open Question. It is not known if ξ = 0, and so it is not known if w satisfies (44)4. Thus, the question

of the solvability of (44) for arbitrary λ > 0, even when f ≡ 0, remains open.

When Ω is symmetric around the direction of e1, in [33] Galdi has suggested a different approach to the

solvability of (44) (with f ≡ 0) for arbitrary large λ > 0. Let C be the class of vector fields, v = (v1, v2),
and scalar fields τ such that (i) v1 and τ are even in x2 and v2 is odd in x2, and (ii) |v|1,2 < ∞. The
following result holds.

Theorem 11 Let Ω be symmetric around the x1-axis. Assume that the homogeneous problem:

∆u = u · ∇u+ ∇φ

divu = 0

}
in Ω

u|∂Ω = 0 , lim
|x|→∞

u(x) = 0 uniformly ,

(56)

has only the zero solution, u ≡ 0, p = const., in the class C . Then, there is a set M with the following

properties:

(i) M ⊂ (0,∞);

(ii) M ⊃ (0, c) for some c = c(Ω) > 0;

(iii) M is unbounded;

(iv) For any λ ∈ M , problem (44) has at least one solution in the class C.

Open Question. The difficulty with the above theorem relies in establishing the validity of its hypothesis,

namely, whether or not (56) has only the zero solution in the class C. Moreover, supposing that the
hypothesis holds true, the other fundamental problem is the study of the properties of the set M . For a
detailed discussion of these issues, we refer to [35, §4.3].

V Mathematical Analysis of the Initial-Boundary Value Problem

Objective of this section is to present the main results and open questions regarding the unique solvability

of the initial-boundary value problem (7)–(8), and significant related properties.

V.1 Preliminary Considerations

In order to present the basic problems for (7)–(8) and the related results, we shall, for the sake of simplicity,

restrict ourselves to the case when f ≡ v1 ≡ 0.

In what follows, we shall denote by (7)–(8)hom this homogeneous problem.

The first, fundamental problem that should be naturally set for (7)–(8)hom is the classical one of (global)

well-posedness in the sense of Hadamard.

Problem 1. Find a Banach space, X , such that for any initial data v0 in X there is a corresponding

solution (v, p) to (7)-(8)hom satisfying the following conditions: (i) it exists for all T > 0, (ii) it is unique
and (iii) it depends continuously on v0.
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In different words, the resolution of Problem 1 will ensure that the Navier-Stokes equations furnish, at

all times, a deterministic description of the dynamics of the liquid, provided the initial data are given in a

“sufficiently rich” class. It is immediately seen that the class X should meet some necessary requirements

for Problem 1 to be solvable. For instance, if we take v0 only bounded, we find that problem (7)–(8), with

Ω = Rn and f = 0, admits the following two distinct solutions

v1(x, t) = 0 , p1(x, t) = 0 ; v2(x, t) = sin t e1 , p2(x, t) = −x1 cos t ;

corresponding to the same initial data v0 = 0.
Furthermore, we observe that the resolution of Problem 1, does not exclude the possibility of the

formation of a “singularity”, that is, the existence of points in the space-time region where the solution may

become unboundedly large in certain norms. This possibility depends, of course, on the regularity of the

functional class where well-posedness is established.

One is thus lead to consider the next fundamental (and most popular) problem.

Problem 2. Given an initial distribution of velocity v0, no matter how smooth, with

∫

Ω

|v0(x)|2 < ∞ , (57)

determine a corresponding regular solution v(x, t), p(x, t) to (7)–(8)hom for all times t ∈ (0, T ) and all
T > 0.
By “regular” here we mean that v and p are both of class C∞ in the open cylinder Ω × (0, T ), for all

T > 0. When Ω ≡ R3, Problem 1 is, basically, the third Millennium Prize Problem posted by the Clay

Mathematical Institute in May 2000.

The requirement (57) on the initial data is meaningful from the physical point of view, in that it ensures

that the kinetic energy of the liquid is initially finite. Moreover, it is also necessary from a mathematical

viewpoint because, if we relax (57) to the requirement that the initial distribution of velocity is, for example,

only bounded, then Problem 2 has a simple negative answer. In fact, the following pair

v(x, t) =
1

τ − t
e1 p(x, t) = − x1

(τ − t)2
, t ∈ [0, τ ) , τ > 0

is a solution to (7)–(8)hom with f ≡ 0 and Ω = R3, that becomes singular at t = τ , for any given positive
τ .
An alternative way of formulating Problem 2 in “more physical” terms is as follows.

Problem 2′. Can a spontaneous singularity arise in a finite time in a viscous liquid that is initially in an

arbitrarily smooth state?

Though, perhaps, the gut answer to this question could be in the negative, one can bring very simple

examples of dissipative nonlinear evolution equations where spontaneous singularities do occur, if the initial

data are sufficiently large. For instance, the initial-value problem v′ +σ v = v2 , v(0) = v0, σ > 0, has the
explicit solution

v(t) =
σ v0

v0 − eσ t(v0 − σ)

which shows that, if v0 ≤ σ, then v is smooth for all t > 0, while if v0 > σ, then v becomes unbounded
in a finite time:

v(t) ≥ 1
τ − t

, t ∈ [0, τ ) , τ :=
1
σ

log
(

v0
v0 − σ

)
.

If the occurence of singularities for problem (7)–(8)hom can not be at all excluded, one can still theorize

that singularities are unstable and, therefore, “undetectable”. Another plausible explanation could be that
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singularity may appear in the Navier-Stokes equations due to the possible break-down of the continuum

model at very small scales.

It turns out that, in the case of two-dimensional (2D) flow, both problems 1 and 2 are completely

resolved, while they are both open in the three-dimensional (3D) case. The following section will be

dedicated to these issues.

V.2 On the Solvability of Problems 1 and 2

As in the steady-state case, a basic tool for the resolution of both Problems 1 and 2 is the accomplishment

of “good” a priori estimates. By “good”, we mean that (i) they have to be global, namely, they should hold

for all positive times, and (ii) they have to be valid in a sufficiently regular function class. These estimates

can then be used along suitable “approximate solutions” which eventually will converge, by an appropriate

limit procedure, to a solution to (7)–(8)hom. To date, “good” estimates for 3D flow are not known.

Unless explicitly stated, throughout this section we assume that Ω is a bounded, smooth (of class C2,

for example) domain of Rn, n = 2, 3.

V.2.1 Derivation of Some Fundamental A Priori Estimates

We recall that, for simplicity, we are assuming that the boundary data, v1, in (8) is vanishing. Thus, if we

formally dot-multiply through both sides of (7)1 (with f ≡ 0) by v, integrate by parts over Ω and take into
account (12) and Lemma 1, we obtain the following equation

1
2
d

dt
‖v(t)‖2

2 + ν |v(t)|21,2 = 0 . (58)

The physical interpretation of (58) is straightforward. Actually, if we dot-multiply both sides of the identity

divD(v) = ∆v by v, where D = D(v) is the stretching tensor (see (3)), and integrate by parts over Ω,
we find that |v|1,2 = ‖D(v)‖2. Since, as we observed in Section III, D takes into account the deformation

of the parts of the liquid, equation (58) simply relates the rate of decreasing of the kinetic energy to the

dissipation inside the liquid, due to the combined effect of viscosity and deformation. If we integrate (58)

from s ≥ 0 to t ≥ s, we obtain the so-called energy equality

‖v(t)‖2
2 + 2ν

∫ t

s

|v(ρ)|21,2dρ = ‖v(s)‖2
2 0 ≤ s ≤ t . (59)

Notice that the nonlinear term v · ∇v does not give any contribution to equation (58) (and, consequently,
to equation (59)), in virtue of the fact that (v · ∇v,v) = 0; see Lemma 1. By taking s = 0 in (59), we
find a bound on the kinetic energy and on the total dissipation for all times t ≥ 0, in terms of the initial
data only, provided the latter satisfy (57). In concise words, the energy equality (59) is a global a priori

estimate. It should be emphasized that the energy equality is, basically, the only known global a priori

estimate for 3D flow.

From (59) it follows, in particular,

v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;D1,2
0 (Ω)) , all T > 0 . (60)

A second estimate can be obtained by dot-multiplying through both sides of (7)1 by P∆v and by
integrating by parts over Ω. Taking into account that

(
∂v

∂t
, P∆v

)
=

(
∂v

∂t
,∆v

)
= −1

2
d

dt
|v|21,2 , (∇p, P∆v) = 0 ,
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we deduce
1
2
d

dt
|v|21,2 + ν‖P∆v‖2

2 = (v · ∇v, P∆v) . (61)

Since the right-hand side of this equation need not be zero, we get that, unlike (58), the nonlinear term does

contribute to (61). In addition, since the sign of this contribution is basically unknown, in order to obtain

useful estimates we have to increase it appropriately. To this end, we recall the validity of the following

inequalities

‖u‖∞ ≤





c1 ‖u‖
1
2
2 ‖P∆u‖

1
2
2 if n = 2, for all u ∈ L2

σ(Ω), with P∆u ∈ L2(Ω) and u|∂Ω = 0,

c2 |u|
1
2
1,2‖P∆u‖

1
2
2 if n = 3, for all u ∈ D1,2

0 (Ω), with P∆u ∈ L2(Ω) ,
(62)

where ci = ci(Ω) > 0, i = 1, 2. These relations follow from the Sobolev embedding theorems along with
Lemma 2. We shall sketch a proof in the case n = 3. By the property of the projection operator P , u
satisfies the assumptions of Lemma 2 with g := P∆u, and, consequently, we have, on the one hand, that
u ∈W 2,2(Ω), and, on the other hand,

‖u‖2,2 ≤ c ‖P∆u‖2 , (63)

with c = c(Ω) > 0. We now recall that there exists an extension operator E : u ∈ W 2,2(Ω) 7→ E(u) ∈
W 2,2(R3) such that

‖E(u)‖k,2 ≤ Ck‖u‖k,2 , k = 0, 1, 2 ; (64)

see [88, Chapter VI, Theorem 5]. Next, take ϕ ∈ C∞
0 (R3). From the identity∆(|ϕ|2) = 2(ϕ·∆ϕ+|∇ϕ|2)

we have the representation

|ϕ(x)|2 = − 1
2π

∫

R3

ϕ(y) · ∆ϕ(y) + |∇ϕ(y)|2

|x− y|
dy . (65)

Using Schwarz inequality on the right-hand side of (65) along with the classical Hardy inequality [31,

§II.5]: ∫

R3

|ϕ(y)|2

|x− y|2
dy ≤ 4|ϕ|21,2 ,

we recover ‖ϕ‖∞ ≤ (2/π)1/2|ϕ|
1
2
1,2|ϕ|

1
2
2,2. Since C

∞
0 (R3) is dense inW 2,2(R3), from this latter inequality

we deduce, in particular,

‖u‖∞ ≤ (2/π)1/2|E(u)|
1
2
1,2|E(u)|

1
2
2,2 ,

which, in turn, by (64) and Poincaré’s inequality (18) implies that

‖u‖∞ ≤ c5|u|
1
2
1,2‖u‖

1
2
2,2 ,

with c5 = c5(Ω) > 0. Equation (62)2 then follows from this latter inequality and from (63). (For the proof
of (62) in more general domains, as well as in domains with less regularity, we refer to [9, 67, 98] . I am

not aware of the validity of (62) in an arbitrary (smooth) domain.) We now employ (62) and (29) into (61)

to obtain

1
2
d

dt
|v|21,2 +

ν

2
‖P∆v‖2

2 ≤





c3 ‖v‖2
2|v|41,2 if n = 2,

c4 |v|61,2 if n = 3,
(66)
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where ci = ci(Ω, ν) > 0, i = 3, 4. Thus, observing that, from (59), ‖v(t)‖2 ≤ ‖v0‖2, if we assume, further,

that v0 ∈ D1,2
0 (Ω), from the previous differential inequality, we obtain the following uniform bound

|v(t)|1,2 ≤ M (Ω, ν, t, ‖v0‖1,2) , for all t ∈ [0, τ ) , and some τ ≥ 1/(K |v0|α1,2) , (67)

where M is a continuous function in t and K = 8c3, α = 2 if n = 2, while K = 4c4 , α = 4 if n = 3.
Equation (67) provides the second a priori estimate. Notice that, unlike (59), we do not know if in (67)

we can take t arbitrary large, namely, we do not know if τ = ∞. Integrating both sides of (66) from 0 to
t < τ , and taking into account (67) we find that

∫ t

0

‖P∆v(s)‖2
2ds ≤M1(Ω, ν, t, ‖v0‖1,2) , for all t ∈ [0, τ ) , (68)

with M1 continuous in t. From (68), (67), (60) and (63) one can then show that

v ∈ L∞(0, t;W 1,2
0 (Ω)) ∩ L2(0, t;W 2,2(Ω)) , t ∈ [0, τ ). (69)

A third a priori estimate, on the time derivative of v, can be formally obtained by dot-multiplying both
sides of (7)1 and by integrating by parts over Ω. By using arguments similar to those leading to (61) we
find

ν

2
d

dt
|v|21,2 +

∥∥∥∥
∂v

∂t

∥∥∥∥
2

2

= −(v · ∇v, ∂v
∂t

) , (70)

and so, employing Hölder inequality on the right-hand side of (62) along with (29), (67) and (68) we show

the following estimate

∫ t

0

∥∥∥∥
∂v(s)
∂s

∥∥∥∥
2

2

ds ≤ M2(Ω, ν, t, ‖v0‖1,2) , for all t ∈ [0, τ ) , (71)

with M2 continuous in t. This latter inequality implies that

∂v

∂t
∈ L2(0, t;L2(Ω)) , t ∈ [0, τ ). (72)

V.2.2 Existence, Uniqueness, Continuous Dependence and Regularity Results

We shall now use estimates (59), (67), (68), (71) along a suitable approximate solution constructed by the

finite-dimensional (Galerkin) method to show existence to (7)–(8)hom in an appropriate function class. We

shall briefly sketch the argument. Similarly to the steady-state case, we look for an approximate solution

to (7)–(8)hom of the form vN (x, t) =
∑N

i=0 ciN (t)ψi, where {ψi} is a base of L2
σ(Ω) constituted by the

eigenvectors of the operator −P∆, namely,

−ν∆ψi = λiψi + ∇Φi , divψi = 0 in Ω , ψi|∂Ω = 0 , i ∈ N , (73)

where λi are the corresponding eigenvalues. The coefficients ciN (t) are requested to satisfy the following
system of ordinary differential equations

(
∂vN

∂t
,ψk) + (vN · ∇vN ,ψk) = ν(∆vN ,ψk) , k = 1, · · · , N , (74)

with initial conditions ciN (0) = (v0,ψi), i = 1, · · · , N . Multiplying both sides of (74), in the order, by
ckN , by λkckN and by dckN/dt and summing over k from 1 to N , we at once obtain, with the help of
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(73) and of Lemma 1, that vN satisfies (59), (66) and (70). Consequently, vN satisfies the uniform (in N )
bounds (58) (evaluated at s = 0) (67), (68) and (71). Employing these bounds together with, more or less,
standard limiting procedures, we can show the existence of a field v in the classes defined by (69) and (72)
satisfying the relation

(
∂v

∂t
+ v · ∇v − ν∆v,ϕ) = 0 , for all ϕ ∈ D(Ω) and a.a. t ∈ [0, τ ). (75)

Because of (69) and (72), the function involving v in (75) belongs to L2(Ω), a.e. in [0, τ ), and therefore, in
view of the orthogonal decomposition L2(Ω) = L2

σ(Ω) ⊕ G(Ω) and of the density of D(Ω) in L2
σ(Ω), we

find p ∈ L2(0, t;W 1,2(Ω)), t ∈ [0, τ ), such that (v, p) satisfies (7)1 for a.a. (x, t) ∈ Ω × [0, τ ). We thus
find the following result, basically due to G. Prodi, to whose paper [72] we refer for all missing details;

see also [86, Chapter V.4].

Theorem 12 (Existence) For every v0 ∈ D1,2
0 (Ω), there exist v = v(x, t) and p = p(x, t) such that

v ∈ L∞(0, τ ;L2(Ω)) ∩ L2(0, τ ;D1,2
0 (Ω)) ,

v ∈ C([0, t];D1,2
0 (Ω)) ∩ L2(0, t;W 2,2(Ω)) ,

∂v

∂t
∈ L2(0, t;L2(Ω)) , p ∈ L2(0, t;W 1,2(Ω)) ,





for all t ∈ [0, τ ) ,
(76)

with τ given in (67), satisfying (7) for a.a. (x, t) ∈ Ω × [0, τ ), and (8)2 (with v1 ≡ 0) for a.a. (x, t) ∈
∂Ω × [0, τ ). Moreover, the initial condition (8)1 is attained in the following sense:

lim
t→0+

‖v(t) − v0‖1,2 = 0 .

We also have.

Theorem 13 (Uniqueness and Continuous Dependence on the Initial Data) Let v0 be as in Theorem 12.

Then the corresponding solution is unique in the class (76). Moreover, it depends continuously on v0 in

the norm of L2(Ω), in the time interval [0, τ ).

Proof. Let (v, p) and (v+u, p+ p1) be two solutions corresponding to data v0 and v0 +u0, respectively.

From (7)–(8)hom we then find

∂u

∂t
+ u · ∇u+ v · ∇u+ u · ∇v = −∇(p1/ρ) + ν∆u , divu = 0 , a.e. in Ω × (0, τ ) . (77)

Employing the properties of the function v and u, it is not hard to show the following equation

1
2
d

dt
‖u‖2

2 + ν|u|21,2 = −(u · ∇v,u) , (78)

that is formally obtained by dot-multiplying both sides of (77)1 by u, and by using (77)2 and Lemma 1
along with the fact that u has zero trace at ∂Ω. By Hölder inequality and inequalities (14), (18) and (29),
we find

|(u · ∇v,u)| ≤ ‖u‖2‖u‖4|v|1,4 ≤ c1‖u‖2|u|1,2‖v‖2,2 ≤ c2 ‖v‖2
2,2‖u‖2

2 +
ν

2
|u|21,2 ,

where c1 = c1(Ω) > 0 and c2 = c2(Ω, ν) > 0. If we replace this inequality back into (78) we deduce

d

dt
‖u‖2

2 ≤ 2c2‖v‖2
2,2‖u‖2

2 ,
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and so, by Gronwall’s lemma and by the fact that
∫ t

0 ‖v(s)‖2
2,2ds < ∞, t ∈ [0, τ ) (see Theorem 12), we

prove the desired result. �
Finally, we have the following result concerning the regularity of solutions determined in Theorem 12,

for whose proof we refer to [39] and [34, Theorem 5.2].

Theorem 14 (Regularity) Let Ω be a bounded domain of class C∞. Then, the solution (v, p) constructed
in Theorem 12 is of class C∞(Ω × (0, τ )).

Remark 7 The results of Theorem 12–Theorem 14 can be extended to arbitrary domains of Rn, provided

their boundary is sufficiently smooth; see [50, 34]. Moreover, the continuous dependence result in Theorem

13 can be proved in in the stronger norm of D1,2
0 (Ω). �

V.2.3 Times of Irregularity and Resolution of Problems 1 and 2 in 2D

Theorem 12–Theorem 14 furnish a complete and positive answer to both Problems 1 and 2, provided we

show that τ = ∞. Our next task is to give necessary and sufficient conditions for this latter situation to
occur. To this end, we give the following.

Definition 6 Let (v, p) be a solution to (7)–(8)hom in the class (76). We say that τ is a time of irregularity
if and only if (i) τ < ∞, and (ii) (v, p) can not be continued, in the class (76), to an interval [0, τ1) with
τ1 > τ .

If τ is a time of irregularity, we expect that some norms of the solution may become infinite at t = τ ,
while being bounded for all t ∈ [0, τ ). In order to show this rigorously, we premise a simple but useful
result.

Lemma 7 Assume that v is a solution to (7)–(8)hom in the class (76) for some τ > 0. Then, |v(t)|1,2 < ∞,
for all t ∈ [0, τ ). Furthermore, for all q ∈ (n,∞], and all t ∈ [0, τ )

∫ t

0

‖v(s)‖r
q ds < ∞ ,

2
r

+
n

q
= 1 .

Proof. The proof of the first statement is obvious. Moreover, by the Sobolev embedding theorem (see [69,

Theorem at p. 125]) we find, for n = 2,

‖v‖q ≤ c1 ‖v‖2/q
2 |v|1−2/q

1,2 , q ∈ (2,∞) (79)

and

‖v‖∞ ≤ c2‖v‖2,2 ,

with c1 = c1(q) > 0, c2 = c2(Ω) > 0 while, if n = 3,

‖v‖q ≤ c3, ‖v‖(6−q)/2q
2 |v|3(q−2)/2q

1,2 , if q ∈ [2, 6] ,

‖v‖2q/(q−3)
q ≤ c4‖v‖(q−6)/(q−3)

2,2 |v|(6+q)/(q−3)
1,2 , if q ∈ (6,∞] ,

(80)

where ci = ci(Ω, q) > 0, i = 3, 4. Since, by (76),

sup
t∈[0,τ ]

‖v(t)‖2 + |v(t)|1,2 +
∫ t

0

‖v(s)‖2
2,2ds < ∞ , t ∈ [0, τ ) ,

the lemma follows by noting that (q − 6)/(q − 3) < 2 for q > 3. �
We shall now furnish some characterization of the possible times of irregularity in terms of the behavior,

around them, of the norms of the solution considered in Lemma 7.
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Lemma 8 (Criteria for the Existence of a Time of Irregularity) Let (v, p) be a solution to (7)–(8)hom in

the class (76) for some τ ∈ (0,∞]. Then, the following properties hold:
(i) If τ is a time of irregularity, then

lim
t→τ−

|v(t)|1,2 = ∞ . (81)

Conversely, if τ < ∞ and (81) holds, then τ is a time of irregularity. Moreover, if τ is a time of irregularity,
for all t ∈ (0, τ ) the following growth estimates hold

|v(t)|21,2 ≥





C

τ − t
if n = 2 ,

C√
τ − t

if n = 3 ,
(82)

with C = C(Ω, ν) > 0.
(ii) If τ is a time of irregularity, then, for all q ∈ (n,∞],

∫ τ

0

‖v(s)‖r
q ds = ∞ ,

2
r

+
n

q
= 1 . (83)

Conversely, if τ < ∞ and (83) holds for some q = q ∈ (n,∞], then, τ is a time of irregularity.
(iii) If n = 3, there exists K = K(Ω, ν) > 0 such that, if ‖v0‖2|v0|1,2 < K, then τ = ∞.

Proof. (i) Clearly, if τ < ∞ and (81) holds, then τ is a time of irregularity. Conversely, suppose τ is a
time of irregularity and assume, by contradiction, that there exists a sequence {tk} in [0, τ ) and M > 0,
independent of k, such that

tk → τ , |v(tk)|1,2 ≤M .

Since v(tk) ∈ D1,2
0 (Ω), by Theorem 12 we may construct a solution (v, p) with initial data v(tk), in a

time interval [tk, tk + τ∗) where (see (67))

τ∗ ≥ A/|v(tk)|α1,2 ≥ AMα ≡ τ∗ , α = 2(n− 1) ,

and A depends only on Ω and ν. By Theorem 12, v belongs to the class (76) in the time interval [tk, tk+τ∗],
with τ∗ independent of k and, by Theorem 13, v must coincide with v in the time interval [tk, τ ). We
may now choose tk ≡ τ0 such that τ0 + τ∗ > τ , contradicting the assumption that τ is time of irregularity.
We next show (82) when n = 3, the proof for n = 2 being completely analogous. Integrating (66) (with
n = 3) we find

1
|v(t)|41,2

− 1
|v(s)|41,2

≤ c4(s− t), 0 < t < s < τ.

Letting s → τ and recalling (81), we prove (82).
(ii) Assume that τ is a time of irregularity. Then, (82)2 holds. Now, by the Sobolev embedding theorems,

one can show that (see [34, proof of Lemma 5.4])

(v · ∇v, P∆v) ≤ C ‖v‖2q/(q−n)
q |v|21,2 +

ν

2
‖P∆v‖2

2 , for all q ∈ (n,∞] ,

where C = C(Ω, ν) > 0. If we replace this relation into (61) and integrate the resulting differential
inequality from 0 to t < τ , we find

|v(t)|21,2 ≤ |v0|21,2 exp{2C
∫ t

0

‖v(s)‖r
qds} , for all t ∈ [0, τ ) . (84)
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If condition (83) is not true for some q ∈ (n,∞], then (84) evaluated for that particular q, would contradict
(82). Conversely, assume (83) holds for some q = q ∈ (n,∞], but that, by contradiction, the solution of
Theorem 12 can be extended to [0, τ1) with τ1 > τ . Then, by Lemma 7 we would get the invalidity of
condition (83) with q = q, and the proof of (ii) is completed.
(iii) By integrating the differential inequality (66)2, we find

|v(t)|21,2 ≤
|v0|21,2

1 − 2c4|v0|21,2

∫ t

0
|v(s)|21,2ds

, t ∈ [0, τ ) .

Thus, by (59) with s = 0 in this latter inequality we find

|v(t)|21,2 ≤
|v0|21,2

1 − c5|v0|21,2‖v0‖2
2

, t ∈ [0, τ ) ,

with c5 = c5(Ω, ν) > 0, which shows that (82)2 can not occur if the initial data satisfy the imposed
“smallness” restriction. �
A fundamental consequence of Lemma 8 is that, in the case n = 2, a time of irregularity can not occur.

In fact, for example, (82) is incompatible with the fact that v ∈ L2(0, τ ;D1,2
0 (Ω)) (see (75)1). We thus

have the following theorem, which answers positively both Problems 1 and 2 in the 2D case.

Theorem 15 (Resolution of Problems 1 and 2 in 2D) Let Ω ⊂ R2. Then, in Theorem 12–Theorem 14 we

can take τ = ∞.
The conclusion of Theorem 15 also follows from Lemma 8(ii). In fact, in the case n = 2, by (79) we

at once find that

L2q/(q−2)(0, T : Lq(Ω)) ⊂ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;D1,2
0 (Ω)) , for all T > 0 and all q ∈ (2,∞) .

(85)

so that, from (76)1, we deduce∫ τ

0

‖v(t)‖2q/(2−q)
q dt < ∞ , for all q ∈ (2,∞) .

which, by Lemma 8(ii), excludes the occurence of time of irregularity.

Unfortunately, from all we know, in the case n = 3, we can not draw the same conclusion. Actually,
in such a case, (82)2 and (77)1 are no longer incompatible. Moreover, from Lemma 8(ii) it follows that a

sufficient condition for τ not to be a time of irregularity is that
∫ τ

0

‖v(t)‖r
qdt < ∞ ,

2
r

+
3
q

= 1 , some q ∈ (3,∞] . (86)

However, from (80)1 and from (76)1, it is immediately verified that, in the case n = 3, the solutions
constructed in Theorem 12 satisfy the following condition

∫ τ

0

‖v(t)‖r
qdt <∞ ,

2
r

+
3
q

= 1 +
1
2
, all q ∈ [2, 6] . (87)

Therefore, in view of Lemma 8(iii), the best conclusion we can draw is that for 3D flow Problems 1 and

2 can be positively answered if the size of the initial data is suitably restricted.

Remark 8 In the case n = 3, besides (86), one may furnish other sufficient conditions for the absence of
a time of irregularity. We refer, among others, to the papers [6, 15, 56, 18, 80, 8, 57, 70]. In particular,

we would like to direct attention to the work [18, 80], where the difficult borderline case q = n = 3 in
condition (86) is worked out by completely different methods than those used here. �
Open Question. In the case n = 3, it is not known whether or not condition (86) (or any of the other
conditions referred to in Remark 8) holds along solutions of Theorem 12.
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V.3 Less Regular Solutions and Partial Regularity Results in 3D

As shown in the previous section, we do not know if, for 3D flow, the solutions of Theorem 12 exist

in an arbitrarily large time interval, without restricting the magnitude of the initial data: they are local

solutions. However, following the line of thought introduced by J. Leray [62], we may extend them to

solutions defined for all times, for initial data of arbitrary magnitude, namely, to global solutions, but

belonging to a functional class, C, a priori less regular than that given in (76) (weak solutions). Thus,
if, besides existence, we could prove in C also uniqueness and continuous dependence, Problem 1 would
receive a positive answer. Unfortunately, to date, the class where global solutions are proved to exist is,

in principle, too large to secure the validity of these latter two properties and some extra assumptions are

needed. Alternatively, in relation to Problem 2, one may investigate the “size” of the space-time regions

where these generalized solutions may (possibly) become irregular. As a matter of fact, singularities, if they

at all occur, have to be concentrated within “small” sets of space-time. Our objective in this section is to

discuss the above issues and to present the main results.

For future purposes, we shall present some of these results also in space dimension n = 2, even though,
as shown in Theorem 15, in this case, both Problems 1 and 2 are answered in the affirmative.

V.3.1 Weak Solutions and Related Properties

We begin to introduce the corresponding definition of weak solutions in the sense of Leray-Hopf [62, 54].

By formally dot-multiplying through both sides of (7) by ϕ ∈ D(Ω) and by integrating by parts over Ω,
with the help of (12) we find

d

dt
(v(t),ϕ) + ν(∇v(t),∇ϕ) + (v(t) · ∇v(t),ϕ) = 0 , for all ϕ ∈ D(Ω) . (88)

Definition 7 Let Ω ⊂ Rn, n = 2, 3. A field v : Ω × (0,∞) 7→ Rn is a weak solution to (7)–(8)hom if and

only if: (i) v ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;D1,2

0 (Ω)) , for all T > 0; (ii) v satisfies (88) for a.a. t ≥ 0 ,
and (iii) lim

t→0+
(v(t) − v0,ϕ) = 0, for all ϕ ∈ D(Ω) .

A. Existence. The proof of existence of weak solutions is easily carried out, for example, by the finite-

dimensional (Galerkin) method indicated in Subsection V.2.2. This time, however, along the “approximate”

solutions vN to (74), we only use the estimate corresponding to the energy equality (59). We thus obtain

‖vN (t)‖2
2 + 2ν

∫ t

s

|vN (ρ)|21,2dρ = ‖vN (s)‖2
2 , 0 ≤ s ≤ t . (89)

As we already emphasized, the important feature of this estimate is that it holds for all t ≥ 0 and all
data v0 ∈ L2

σ(Ω). From (89) it follows, in particular, that the sequence {vN} is uniformly bounded in
the class of function specified in (i) of Definition 7. Using this fact together with classical weak and

strong compactness arguments in (74), we can show the existence of at least one subsequence converging,

in suitable topologies, to a weak solution v. We then have the following result for whose complete proof
we refer, e.g., to [34, Theorem 3.1] .

Theorem 16 For any v0 ∈ L2
σ(Ω) there exists at least one weak solution to (7)–(8)hom. This solution

verifies, in addition, the following properties.

(i) The energy inequality:

‖v(t)‖2
2 + 2ν

∫ t

s

|v(ρ)|21,2dρ ≤ ‖v(s)‖2
2 , for a.a. s ∈ [0,∞), 0 included, and all t ≥ s. (90)

(ii) lim
t→0+

‖v(t) − v0‖2 = 0 .
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B. On the Energy Equality. In the case n = 3, weak solutions in Theorem 16 only satisfy the energy
inequality (90) instead of the energy equality (see (59)). (For the case n = 2, see Remark 9.) This is an
undesired feature that is questionable from the physical viewpoint. As a matter of fact, for fixed s ≥ 0, in
time intervals [s, t] where (90) were to hold as a strict inequality, the kinetic energy would decrease by an
amount which is not only due to the dissipation. From a strictly technical viewpoint, this happens because

the convergence of (a subsequence of) the sequence {vN} to the weak solution v can be proved only in
the weak topology of L2(0, T ;D1,2

0 (Ω)) and this only ensures that, as N → ∞, the second term on the
left-hand side of (89) tends to a quantity not less than the one given by the second term on the left-hand

side of (90). One may think that this circumstance is due to the special method used for constructing the

weak solutions. Actually, this is not the case because, in fact, we have the following.

Open Question. If n = 3, it is not known if there are solutions satisfying (90) with the equality sign and
corresponding to initial data v0 ∈ L2

σ(Ω) of unrestricted magnitude.

Remark 9 A sufficient condition for a weak solution, v, to satisfy the energy equality (59) is that v ∈
L4(0, t;L4(Ω)), for all t > 0 [34, Theorem 4.1]. Consequently, from (85) it follows that, if n = 2, weak
solutions satisfy (59) for all t > 0. Moreover, from (80)1, we find that the solutions of Theorem 12, for
n = 3, satisfy the energy equality (59), at least for all t ∈ [0, τ ). �

Remark 10 For future purposes, we observe that the definition of weak solution and the results of Theorem

16 can be extended easily to the case when f 6≡ 0. In fact, it is enough to change Definition 7 by requiring
that v satisfies the modification of (88) obtained by adding to its right-hand side the term (f ,ϕ). Then, if
f ∈ L2(0, T ;D−1,2

0 (Ω)), for all T > 0, one can show the existence of a weak solution satisfying condition
(ii) of Theorem 16 and the variant of (90) obtained by adding the term

∫ t

0
(f ,v) ds on its right-hand side.

�

C. Uniqueness and Continuous Dependence. The following result, due to Serrin [83, Theorem 6] and

Sather [75, Theorem 5.1], is based on ideas of Leray [62, §32] and Prodi [71]. A detailed proof is given
in [34, Theorem 4.2].

Theorem 17 Let v, u be two weak solutions corresponding to data v0 and u0. Assume that u satisfies
the energy inequality (90) with s = 0, and that

v ∈ Lr(0, T ;Lq(Ω)) , for some q ∈ (n,∞] such that
2
r

+
n

q
= 1 . (91)

Then,

‖v(t) − u(t)‖2
2 ≤ C ‖v0 − u0‖2

2 exp{
∫ t

0

‖v(ρ)‖r
qdρ} , for all t ∈ [0, T ]

where C = C(Ω, ν) > 0. Thus, in particular, if v0 = u0, then v = u a.e. in Ω × [0, T ] .

Remark 11 If n = 2, from (85) and Remark 9 we find that every weak solution satisfies the assumptions
of Theorem 17. Therefore, in such a case, every weak solution is unique in the class of weak solutions and

depends continuously upon the data. Furthermore, if n = 3, the uniqueness result continues to hold if in
condition (91), we take q = n = 3; see [87, 55]. �

Open Question. While the existence of weak solutions u satisfying the hypothesis Theorem 17 is secured
by Theorem 16, in the case n = 3 it is not known if there exist weak solutions having the property stated
for v. (In principle, as a consequence of Definition 7(i) and (80)1, v only satisfies (87).) Consequently in
the case n = 3 uniqueness and continuous dependence in the class of weak solution remains open, and so
does the resolution of Problem 1.
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Remark 12 As a matter of fact, weak solutions possess more regularity than that implied by their very

definition. Actually, if n = 2, they are indeed smooth (see Remark 13). If n = 3, by means of sharp
estimates for solutions to the linear problem −obtained from (7)–(8) by neglecting the nonlinear term v ·∇v
(Stokes problem)− one can show that every corresponding weak solution satisfies the following additional
properties (see [43, Theorem 3.1], [87, 3.4 Theorem])

∂v

∂t
∈ Ll(δ, T ;Ls(Ω)) , v ∈ Ll(δ, T ;W 2,s(Ω)) , for all T > 0 and all δ ∈ (0, T ) ,

where the numbers l, s obey the following conditions

2
l

+
3
s
≥ 4 , l ∈ [1, 2] , s ∈ [1,

3
2
] .

Moreover, there exists p ∈ Ll(δ, T ;W 1,s(Ω)) ∩ Ll(δ, T ;L3s/(3−s)(Ω)) such that the pair (v, p) satisfies
(7) for a.a. (x, t) ∈ Ω × (0,∞) . If, in addition, v0 lies in a sufficiently regular subspace of L

2
σ(Ω), we

can take δ = 0. However, the above properties are still not enough to ensure the validity of condition (91).
Weak solutions enjoying further regularity properties are constructed in [21, Theorem 3.1 and Corollary

3.2], [14] and [65]. �

D. Partial Regularity and “Suitable” Weak Solutions. A problem of fundamental importance is to

investigate the set of space-time where weak solutions may possibly become irregular, and to give an

estimate of how “big” this set can be.

To this end, we recall that, for a given S ⊂ Rd+1, d ∈ N ∪ {0}, and κ ∈ (0,∞), the κ-dimensional
(spherical) Hausdorff measure Hκ of S is defined as

Hκ(S) = lim
δ→0

Hκ
δ (S),

where Hκ
δ (S) = inf

∑
i r

κ
i , the infimum being taken over all at most countable coverings {Bi} of S of

closed balls Bi ⊂ Rd of radius ri with ri < δ; see, e.g., [20]. If d ∈ N, the κ-dimensional parabolic
Hausdorff measure Pκ of S is defined as above, by replacing the ball Bi with a parabolic cylinder of

radius ri:

Qri(x, t) = {(y, s) ∈ Rd × R : |y − x| < ri , |s− t| < r2i } . (92)

In general, it is Hκ(S) ≤ CPκ(S), C > 0; see [20, §2.10.1] for details .
The following lemma is a direct consequence of the preceding definition.

Lemma 9 For any S ⊂ Rd+1 , d ∈ N ∪ {0} (respectively, d ∈ N), we have Hκ(S) = 0 (respectively,
Pκ(S) = 0) if and only if, for each δ > 0, S can be covered by closed balls {Bi} (respectively, parabolic
cylinders {Qi}) of radii ri, i ∈ N, such that

∑∞
i=1 r

κ
i < δ .

We begin to consider the collection of times where weak solutions are (possibly) not smooth and show

that they constitute a very “small” region of (0,∞). Specifically, we have the following result, basically,
due to Leray [62, pp. 244-245] and completed by Scheffer [76].

Theorem 18 Let Ω be a bounded domain of class C∞. Assume v is a weak solution determined in Theorem
16. Then, there exists a union of disjoint and, at most, countable open time intervals T = T (v) ⊂ (0,∞)
such that:

(i) v is of class C∞ in Ω × T ,

(ii) There exists T ∗ ∈ (0,∞) such that T ⊃ (T ∗,∞);
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(iii) If v0 ∈ D1,2
0 (Ω) then T ⊃ (0, T1) for some T1 > 0 ;

(iv) Let (s, τ ) be a generic bounded interval in T (v) and suppose v 6∈ C∞(Ω × (s, τ1)), τ1 > τ . Then,
both following conditions must hold

|v(t)|21,2 ≥ C

(τ − t)1/2
, t ∈ (s, τ ) and lim

t→τ−

∫ t

s

‖v(s)‖2q/(q−3)
q ds = ∞ , for all q > 3 , (93)

where C = C(Ω, ν) > 0 ;

(v) The 1
2-dimensional Hausdorff measure of I(v) := (0,∞)− T is zero;

Proof. By (90) we may select T ∗ > 0 with the following properties: (a) ‖v(T ∗)‖2|v(T ∗)|1,2 < K , and
(b) the energy inequality (90) holds with s = T ∗ , where K the constant introduced in Lemma 8(iii). Let

us denote by ṽ the solution of Theorem 12 corresponding to the data v(T ∗). By Lemma 8(iii), ṽ exists for
all times t ≥ T ∗ and, by Theorem 14, it is of class C∞ in Ω× (T ∗,∞). By Lemma 7 and by Theorem 17
we must have v ≡ ṽ in Ω× (T ∗,∞), and part (iii) is proved. Next, denote by I the set of those t ∈ [0, T ∗)
such that (a) ‖v(t)‖1,2 < ∞, and (b) the energy inequality (90) holds with s ∈ I. Clearly, [0, T ∗] − I
is of zero Lebesgue measure. Moreover, for every t0 ∈ I we can construct in (t0, t0 + T (t0)) a solution
ṽ assuming at t0 the initial data v(t0) (∈ D1,2

0 (Ω)); see Theorem 12. From Theorem 14, Lemma 7 and
Theorem 17, we know that ṽ is of class C∞ in Ω × (t0, t0 + T (t0)) and that it coincides with v, since
this latter satisfies the energy inequality with s = t0. Furthermore, if v0 ∈ D1,2

0 (Ω), then 0 ∈ I. Properties

(ii)–(iv) thus follow with T ≡
⋃

i∈I

(si, τi) ∪ (T ∗,∞), where (si, τi) are the connected components in I.

Notice that

(si, τi) ⊂ [0, T ∗], for all i ∈ I; (si, τi) ∩ (sj , τj) = ∅, i 6= j , (94)

and that, moreover, the (1-dimensional) Lebesgue measure of I := T − (0,∞) is 0. Finally, property (iv)
is an immediate consequence of Lemma 8 and Theorem 14 . It remains to show (v). From (iv) and (90)

we find ∑

i∈I

(τi − si)1/2 ≤ 1/(2C)
∑

i∈I

∫ si

τi

‖∇v(τ )‖2
2dt ≤ ‖v0‖2

2/(4C).

Thus, for every δ > 0 we can find a finite part Iδ of I such that

∑

i/∈Iδ

(τi − si) < δ,
∑

i/∈Iδ

(τi − si)1/2 < δ. (95)

By (94)1, ∪i∈I(si, τi) ⊂ [0, T ∗] and so the set [0, T ∗]−∪i∈Iδ (si, τi) consists of a finite number of disjoint
closed intervals Bj , j = 1, . . . , N . Clearly,

N⋃

j=1

Bj ⊃ I(v). (96)

By (94)2, each interval (si, τi), i /∈ Iδ , is included in one and only one Bj . Denote by Ij the set of all

indeces i satisfying Bj ⊃ (si, τi). We thus have

I = Iδ ∪




N⋃

j=1

Ij


 , Bj =


 ⋃

i∈Ij

(si, τi)


 ∪ (Bj ∩ I(v)) . (97)
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Since I has zero Lebesgue measure, from (97)2 we have diamBj =
∑

i∈Ij

(τi−si). Thus, by (95) and (97)1,

diamBj ≤
∑

i/∈Iδ

(τi − si) < δ (98)

and, again by (95) and (97)1,

N∑

j=1

(diamBj)1/2 ≤
N∑

j=1


∑

i∈Ij

(τi − si)




1/2

≤
∑

i/∈Iδ

(τi − si)1/2 < δ. (99)

Therefore, property (v) follows from (96), (98), (99) and Lemma 9. �

Remark 13 If Ω is of class C∞, from (85), Remark 11 and from Theorem 18(v) we at once obtain that,

for n = 2, every weak solution is of class C∞(Ω × (0, t)), for all t > 0 . �

We shall next analyze, in more details, the set of points where weak solutions may possibly lose

regularity. In view of Remark 13, we shall restrict ourselves to consider the case n = 3 only.
Let (s, τ ) be a bounded interval in T (v) and assume that, at t = τ , the weak solution v becomes

irregular. We may wish to estimate the spatial set Σ = Σ(τ ) ⊆ Ω where v(τ ) becomes irregular. By
defining Σ as the set of x ∈ Ω where v(x, τ ) is not continuous, in the case Ω = R3, Scheffer has shown

that H1(Σ) < ∞ [77].

More generally, one may wish to estimate the “size” of the region of space-time where points of

irregularity (appropriately defined, see Definition 9 below) may occur. This study, initiated by Scheffer

[77, 78] and continued and deepened by Caffarelli, Kohn and Nirenberg [11], can be performed in a class

of solutions called suitable weak solutions which, in principle, due to the lack of an adequate uniqueness

theory, is more restricted than that of weak solutions.

Definition 8 A pair (v, p) is called a suitable weak solution to (7)–(8)hom if and only if: (i) v satisfies
Definition 7(i) and p ∈ L3/2((0, T );L3/2(Ω)), for all T > 0 ; (ii) (v, p) satisfies

d

dt
(v(t),ψ) + ν(∇v(t),∇ψ) + (v(t) · ∇v(t),ψ) − (p(t), divψ) = 0 , for all ψ ∈ C∞

0 (Ω) ,

and (iii) (v, p) obeys the following localized energy inequality

2
∫ T

0

∫

Ω

|∇v|2φdxdt ≤
∫ T

0

∫

Ω

{|v|2(∂φ
∂t

+ ∆φ) + (|v|2 + 2p)v · ∇φ}dxdt ,

for all non-negative φ ∈ C∞
0 (Ω × (0, T )).

Remark 14 By taking l = 3/2, s = 9/8 in Remark 12, it follows that every weak solution, corresponding
to sufficiently regular initial data, matches requirements (i) and (ii) of Definition 8 (recall thatΩ is bounded).
However, it is not known, to date, if it satisfies also condition (iii). Moreover, it is not clear if the finite-

dimensional (Galerkin) method used for Theorem 16 is appropriate to construct solutions obeying such

a condition (see, [47] for a partial answer). Nevertheless, by using different methods, one can show the

existence of at least one weak solution satisfying the properties stated in Theorem 16, and which, in addition,

is a suitable weak solution; see [11, Theorem A.1], [5], [64, Theorem 2.2]. �
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Definition 9 A point P := (x, t) ∈ ΩT := Ω× (0, T ) is called regular for a suitable weak solution (v, p),
if and only if there exists a neighborhood, I, of P such that v is in L∞(I). A point which is not regular
will be called irregular.

Remark 15 The above definition of regular point is reinforced by a result of Serrin [82], from which we

deduce that, in the neighborhood of every regular point, a suitable weak solution is, in fact, of class C∞

in the space variables.

The next result is crucial in assessing the “size” of the set of possible irregular points in the space-time

domain. For its proof, we refer to [64], [60, Theorem 2.2], [11, Proposition 2]. We recall that Qr(x, t) is
defined in (92).

Lemma 10 Let (v, p) be a suitable weak solution and let (x, t) ∈ ΩT . There exists K > 0 such that, if

lim sup
r→0

r−1

∫

Qr(x,t)

|∇v(y, s)|2dy ds < K , (100)

then (x, t) is regular.

Now, let let S = S(v, p) ⊆ Ω × (0, T ) be the set of possible irregular points for a suitable weak
solution (v, p), and let V be a neighborhood of S . By Lemma 10 we then have that, for each δ > 0, there
is Qr(x, t) ⊂ V with r < δ, such that

K−1

∫

Qr(x,t)

|∇v(y, s)|2dy ds > r . (101)

Let Q = {Qr(x, t)} be the collection of all Q satisfying this property. Since Ω × (0, T ) is bounded,
from [11, Lemma 6.1] we can find an at most countable, disjoint subfamily of Q, {Qri (xi, ti)}, such that
S ⊂ ∪i∈IQ5ri(xi, ti). From (101) it follows, in particular, that

∑

i∈I

ri ≤ K−1
∑

i∈I

∫

Qri
(xi,ti)

|∇v(y, s)|2dy ds ≤ K−1

∫

V

|∇v|2 . (102)

Since δ is arbitrary, (102) implies, on the one hand, that S is of zero Lebesgue measure and, on the other
hand, that

P1(S) ≤ 5
K

∫

V

|∇v|2 ,

for every neighborhood V of S . Thus, by the absolute continuity of the Lebesgue integral, from this latter
inequality and from Lemma 9 we have the following [11, Theorem B].

Theorem 19 Let (v, p) be a suitable weak solution and let S = S(v, p) ⊆ Ω×(0, T ) be the corresponding
set of possible irregular points. Then P1(S) = 0.

Remark 16 Let

Z = Z(v, p) := {t ∈ (0, T ) : (x, t) ∈ S(v, p) , for some x ∈ Ω} .

Clearly, t ∈ Z if and only if v becomes essentially unbounded around (x, t), for some x ∈ Ω. Namely,
for any M > 0 there is a neighborhood of (x, t), IM , such that |v(y, s)| > M for a.a. (y, s) ∈ IM . From
Theorem 18(ii) we deduce at once that Z(v, p) ⊂ I(v), where I(v) is the set of all possible times of
irregularity; see Definition 6. Thus, from Theorem 18(i) we find H1/2(Z) = 0. �

Remark 17 There is a number of papers dedicated to the formulation of sufficient conditions for the

absence of irregular points, (x, t), for a suitable weak solution, when x is either an interior or a boundary
point. In this latter case, the definition of regular point as well as that of suitable weak solution must be,

of course, appropriately modified. Among others, we refer to [11, 64, 81, 49, 48]. �
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V.4 Long-Time Behavior and Existence of the Global Attractor

Suppose a viscous liquid moves in a fixed spatial bounded domain, Ω, under the action of a given time-
independent driving mechanism, m, and denote by λ > 0 a non-dimensional parameter measuring the
“magnitude” of m. To fix the ideas, we shall assume that the velocity field of the liquid, v1, vanishes

at ∂Ω, for each time t ≥ 0, This assumption is made for the sake of simplicity. All main results can be
extended to the case v1 6≡ 0, provided v1(x, t) ·n|∂Ω = 0, for all t ≥ 0, where n is the unit normal on
∂Ω. We then take m to be a (non-conservative) time-independent body force, f ∈ L2(Ω) with λ ∼ ‖f‖2.

We shall denote by (7)–(8)Hom the initial-boundary value problem (7)–(8) with v1 ≡ 0. As we know
from Theorem 3 and Remark 5, if λ is “sufficiently” small, less than λc, say, there exists one and only

one (steady-state) solution, (v, p) to the boundary-value problem (9)–(10) (with v∗ ≡ 0). Actually, it is
easy to show that, with the above restriction on λ, every solution to the initial-boundary value problem
(8)–(11)Hom, belonging to a sufficiently regular function class and corresponding to the given f and to
arbitrary v0 ∈ L2

σ(Ω), decays exponentially fast in time to (v, p). In fact, by setting u := v−v, P := p−p,
from (7)–(10) we find

∂u

∂t
+ u · ∇u+ u · ∇v + v · ∇u = −∇P + ν∆u ,

divu = 0





in Ω × (0, T ) ;

u(x, 0) = v0(x) − v(x) , x ∈ Ω ; u = 0 at ∂Ω × (0, T ) .

(103)

If we formally dot-multiply through both sides of (103)1 by u, integrate by parts over Ω and take into

account (12) and Lemma 1, we obtain

1
2
d

dt
‖u‖2

2 + ν|u|21,2 = −(u · ∇v,u) . (104)

From Lemma 1, (21) and (18), we find |(u · ∇v,u)| ≤ c1 |u|21,2|v|1,2, with c1 = c1(Ω) > 0. Thus, by
Remark 5, it follows that

|(u · ∇v,u)| ≤ c2
ν

‖f‖2|u|21,2 ,

with c2 = c2(Ω) > 0, which, in turn, once replaced in (104), furnishes

1
2
d

dt
‖u‖2

2 +
(
ν − c2

ν
‖f‖2

)
|u|21,2 ≤ 0 .

Therefore, if γ := ν − (c2/ν)‖f‖2 > 0, from (18) and from the latter displayed equation we deduce

‖u(t)‖2
2 ≤ ‖u(0)‖2

2 e
−2(γ/CP ) t , (105)

which gives the desired result. Estimate (105) can be read, in “physical terms” in the following way: after

a certain amount of time (depending on how close γ is to 0, namely, on how close λ is to λc), the transient

motion will die out exponentially fast and the “true” dynamics of the fluid will be described by the unique

steady-state flow corresponding to the given force f . From a mathematical point of view, the steady-state
(v, p) is, in a suitable function space, a one-point set which is invariant under the flow. Now, let us increase
λ higher and higher beyond λc. Following Eberhard Hopf [53], we expect that, after a while, the transient

motion will yet die out, and that the generic flow will approach a certain manifold,M = M(λ) which need
not reduce to a single point. (There are, however, explicit examples where M(λ) remains a single point
for any λ > 0; see [66].) Actually, in principle, the structure of M can be very involved. Nevertheless, we
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envisage that M is still invariant under the flow, and that it is M where, eventually, the “true” dynamics

of the liquid will take place. For obvious reasons, the manifold M is called global attractor.

The existence of a global attractor and the study of the dynamics of the liquid on it, could be of the

utmost importance in the effort of formulating a mathematical theory of turbulence. Actually, as is well

known, if the magnitude of the driving force becomes sufficiently large, the corresponding flow becomes

chaotic and the velocity and pressure of the liquid exhibit large and completely random variation in space

and time. According to the ideas proposed by Smale [85] and by Ruelle and Takens [74], this chaotic

behavior could be explained by the existence of a very complicated global attractor, where, as mentioned

before, the ultimate dynamics of the liquid occurs.

V.4.1 Existence of the Global Attractor for Two-Dimensional Flow, and Related Properties.

Throughout this section we shall consider two-dimensional flow, so that, in particular, Ω ⊂ R2.

Let f ∈ L2(Ω) and ν > 0 be given. Consider the one-parameter family of operators

St : a ∈ L2
σ(Ω) 7→ St(a) := v(t) ∈ L2

σ(Ω) , t ∈ [0,∞)

where v(t) is, at each t, the weak solution to (7)–(8)Hom corresponding to the initial data a; see Remark
10. From Remark 9 and Remark 11 we deduce that the family {St}t≥0 defines a (strongly) continuous

semigroup in L2
σ(Ω), namely (i) St1St2 (a) = St1+t2(a) for all a ∈ L2

σ(Ω) and all t1, t2 ∈ [0,∞); (ii)
S0(a) = a , and (iii) the map t 7→ St(a) is continuous for all a ∈ L2

σ(Ω).

Definition 10 For any given f ∈ L2(Ω), the corresponding pair {L2
σ(Ω), St} is called semi-flow associ-

ated to (7)–(8)Hom

Our objective is to study the asymptotic properties (as t → ∞) of the semi-flow {L2
σ(Ω), St}. To this

end, we need to recall some basic facts.

Given A1,A2 ⊂ L2
σ(Ω), we set

d(A1,A2) = sup
u1∈A1

inf
u2∈A2

‖u1 − u2‖2 .

Notice that d(A1,A2) = 0 ⇒ A1 ⊆ A2. Moreover, we denote by A the class of all bounded subset of

L2
σ(Ω).

Definition 11 B ⊂ L2
σ(Ω) is called: (i) absorbing iff for any A ∈ A there is t0 = t0(A) ≥ 0 such that

St(A) ⊆ B, for all t ≥ t0 ; (ii) attracting iff lim
t→∞

d(St(A),B) = 0, for all A ∈ A ; (iii) invariant iff

St(B) = B, for all t ≥ 0 ; (iv) maximal invariant iff it is invariant and contains every invariant set in A ;
(v) global attractor iff it is compact, attracting and maximal invariant.

Clearly, if a global attractor exists, it is unique. Furthermore, roughly speaking, its existence is se-

cured whenever the semiflow admits a bounded absorbing set on which the semiflow becomes, eventually,

relatively compact; see [94, Theorem 1.1]. The following result holds.

Theorem 20 For any f ∈ L2
σ(Ω) and ν > 0, the corresponding semi-flow {L2

σ(Ω), St} admits a global
attractor M = M(f , ν) which is also connected.

Proof. In view of [94, Theorem 1.1] and of Rellich compactness theorem [31, Theorem II.4.2], it suffices

to show the following two properties: (a) existence of a bounded absorbing set, and (b) givenM > 0, there
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is t0 = t0(M,f , ν) > 0 such that ‖a‖2 ≤ M implies |St(a)|1,2 ≤ C, for all t ≥ t0 and for some C > 0
independent of t. The starting point is the analog of (58) and (61) which, this time, take the form

1
2

d

dt
‖v(t)‖2

2 + ν |v(t)|21,2 = (f ,v) ,

1
2

d

dt
|v(t)|21,2 + ν ‖Pv(t)‖2

2 = (v · ∇v, P∆v) − (f , P∆v)

(106)

By using in these equations the Schwarz inequality, and inequalities (18), (29), (62)1 and (63), we deduce

d

dt
‖v(t)‖2

2 + (ν/CP ) ‖v(t)‖2
2 ≤ F ,

d

dt
|v(t)|21,2 − g(t) |v(t)|21,2 ≤ F ,

(107)

where F := ‖f‖2
2/ν, g(t) := c1‖v(t)‖2

2|v(t)|21,2, and c1 = c1(Ω) > 0. By integrating (107)1, we find

‖St(a)‖2
2 := ‖v(t)‖2

2 ≤ ‖a‖2
2 e

−νt/CP + (1 − e−νt/CP )F/CP . (108)

Thus, setting

B := {ϕ ∈ L2
σ(Ω) : ‖ϕ‖2 ≤ (2F/CP )1/2 ≡ ρ} , (109)

from (107) we deduce that, whenever ‖a‖2 < M , there exists t1 = t1(M,F, ν) > 0 such that St(a) ∈ B,
which shows that B is absorbing. Next, again from Schwarz inequality and from (106)1, we obtain

∫ t+1

t

|v(s)|21,2ds ≤
1
ν
‖f‖2

∫ t+1

t

‖v(s)‖2ds ≤
(
ρ4M2CP

2ν2

)1/2

≡ ρ1 for all t ≥ t1 , (110)

which, in particular, implies

|v(t)|21,2 ≤ ρ2
1 , for some t ∈ (t, t+ 1), all t ≥ t1 . (111)

We next integrate (107)2 from t to t+ 1 and use (110), to get

|v(t+ 1)|21,2 ≤ (ρ2
1 + F ) e

∫ t+1
t

g(ζ)dζ ≤ (ρ2
1 + F ) eρ2 ∫ t+1

t
|v(ζ)|21,2dζ ≤ (ρ2

1 + F ) eρ2ρ2
1 , for all t ≥ t1 ,

which proves also property (b) . �

Remark 18 In the proof of the previous theorem the assumption of the boundedness of Ω is crucial, in

order to ensure the validity of Rellich’s compactness theorem. However, a different approach, due to Rosa

[73, Theorem 3.2] allows us to draw the same conclusion of Theorem 20 under the more general assumption

that in Ω the Poincaré inequality (18) holds. This happens whenever Ω is contained in a strip of finite

width (like in a flow in an infinite channel). �

We shall now list some further properties of the global attractor M, for whose proofs we refer to the

monographs [59, 94, 22]

A. Smoothness. The restriction of the semigroup St to M can be extended to a group, S̃t, defined for

all t ∈ (−∞,∞). Therefore, the pair {M, S̃t} constitutes a flow (dynamical system). This flow is as
smooth as allowed by f and Ω. In particular, if f and Ω are of class C∞, then the solutions to (7)–(8)Hom

belonging to M are of class C∞ in space and time as well. Further significant regularity properties can be

found in [27].
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B. Finite Dimensionality. Let X be a bounded set of a metric space and let N (X, ε) be the smallest
number of balls of radius ε necessary to cover X . The non-negative (possibly infinite) number

df (X) = lim sup
ε→0+

lnN (X, ε)
ln(1/ε)

,

is called the fractal dimension of X . If X is closed with df (X) < ∞, then there exists a Lipschitz-
continuous function, g : X 7→ Rm, m > 2df (X), possessing a Hölder-continuous inverse on g(X) [24,
Theorem 1.2].

The fundamental result states that df (M) is finite and that, moreover,

df (M) ≤ c ‖f‖2/(ν2CP ) := cG , (112)

where c is a positive constant depending only on the “shape” of Ω; see [92]. The quantity G is non-

dimensional (often called Grashof number). Consequently,M is (in particular) homeomorphic to a compact

set of Rm, with m = 2cG+ 1. Notice that, in agreement with what conjectured by E. Hopf, (112) gives
a rigorous estimate of how the dimension of M is expected to increase with the magnitude of the driving

force. (Recall, however, that, as remarked previously, there are example where df (M(G)) = 0, for all
G > 0.)
Open Question. Since M can be parameterized by a finite number of parameters, or, equivalently, it can

be “smoothly” embedded in a finite-dimensional space, it is a natural question to ask whether or not one

can construct a finite-dimensional dynamical system having a global attractor on which the dynamics is

“equivalent” to the Navier-Stokes dynamics on M. This question, which is still unresolved, has lead to

the introduction of the idea of inertial manifold [25] and of the associated approximate inertial manifold

[23], for whose definitions and detailed properties we refer to [94, Chapter VIII]; see, however, also [51].

V.4.2 Further Questions Related to the Existence of the Global Attractor.

In this section we shall address two further important aspects of the theory of attractors for the Navier-

Stokes equations, namely, the three-dimensional case (in a bounded domain) and the case of a flow past an

obstacle.

A. Three-Dimensional Flow in a Bounded Domain. If we go through the first part of the proof of

Theorem 20, we see that the assumption of planar flow has not been used. In fact, by the same token,

we can still prove for three-dimensional flow the existence of an “absorbing set”, in the sense that every

solution departing from any bounded set of L2
σ , A, will end up in the setB defined in (109), after a time t0,

dependent on A and F . However, the difficulty in extending the results of Theorem 20 to three-dimensional
flow, resides, fundamentally, in the lack of well-posedness of (7)–(8)Hom in the space L

2
σ(Ω); see Part C in

section V.3.1. In order to overcome this situation, several strategies of attack have been proposed. One way

is to make an unproved assumption on all possible solutions, which guarantees the existence of a semiflow

on L2
σ(Ω); see [16, Chapter I]. In such a case, all the fundamental results proven for the 2D flow, continue

to hold in 3D as well [16]. Another way is to weaken the definition of global attractor, by requiring the

attractivity property in the weak topology of L2; see [22, Chapter III.3], and a third way is to generalize the

definition of semiflow in such a way that the uniqueness property is no longer required; see [79, 3, 13].

B. Flow Past an Obstacle. In this case, the relevant initial-boundary value to be investigated is (7)–(8)

with f ≡ v1 ≡ 0, endowed with the condition at infinity lim|x|→∞ v(x, t) = U , where U = Ue1 is a

given, non-zero constant vector. For the reader’s convenience, we shall rewrite here this set of equations
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and put them in a suitable non-dimensional form:

∂v

∂t
+ λv · ∇v = ∆v −∇p

divv = 0





in Ω × (0,∞)

v(x, t)|∂Ω = 0, lim
|x|→∞

v(x, t) = e1 , t > 0 ; v(x, 0) = v0(x) .

(113)

In (113), λ := |U |d/ν, with d a length scale, is the appropriate Reynolds number which furnishes the
magnitude of the driving mechanism.

As we observed in Remark 18, the least requirement on the spatial domain for the existence of a global

attractor in a two-dimensional flow, is that there holds Poincaré’s inequality (18). Since this inequality is no

longer valid in an exterior domain, the problem of the existence of an attractor for a flow past an obstacle

is, basically, unresolved. Actually, the situation is even more complicated than what we just described. In

fact, from Theorem 9 and from the considerations developed after it, we know that there is λc > 0 such that
if λ < λc, the corresponding boundary-value problem has one and only one solution, (v, p), in a suitable
function class. Now, it is not known if this solution is attracting. More precisely, in the two-dimensional

flow, it is not known if, for sufficiently small λ, solutions to (113), defined in an appropriate class, tend,
as t→ ∞, to the only corresponding steady solution.
In the three-dimensional case, the situation is slightly better, but still, the question of the existence of

an attractor is completely open. We would like to go in more detail about this point. We begin to observe

that there is λ0 > 0such that if λ < λ0, for any given v0 with (v0 − e1) ∈ L3
σ(Ω), problem (113) has one

and only one (smooth) solution that tends to the (uniquely determined) corresponding steady-state solution,

(v, p). In particular
lim

t→∞
‖v(t) − v‖3 = 0 ; (114)

see [38]. The fundamental question that stays open is then that of investigating the behavior of solutions

to (113) for large t, when λ > λ0. As a matter of fact, it is not known whether there exists a norm with

respect to which solutions to (113), in a suitable class, remain bounded uniformly in time, for all λ > 0.
In this respect, it is readily seen that, unlike the bounded domain situation, solutions to (113), in general,

can not be bounded in L2(Ω), uniformly in time, even when λ < λ0. This means that the kinetic energy

associated to the motion described by (113) has to grow unbounded for large times. To see this, assume

λ < λ0 and that there exists K > 0, independent of t, such that

‖v(t) − e1‖2 ≤ K , (115)

where v is a solution to (113). Then, we can find an unbounded sequence, {tm}, and an elementw ∈ L2
σ(Ω)

(possibly depending on the sequence) such that

lim
m→∞

(v(tm) − e1,ϕ) = (w,ϕ) , for all ϕ ∈ D(Ω) . (116)

By (114) and (116) we thus must have w = v− e1, which in turn implies (v− e1) ∈ L2
σ(Ω), which, from

Theorem 6, we know to be impossible. Consequently, (115) can not be true. Thus, the basic open question

is whether or not there exists a function space, Y , where the solution v(t)− e1 remains uniformly bounded

in t ∈ (0,∞), for all λ > 0. (The bound, of course, may depend on λ.) The above considerations along
with Theorem 6 suggest then that a plausible candidate for Y is Lq

σ(Ω), for some q > 2. However, the
proof of this property for q ≥ 3 appears to be overwhelmingly challenging because, in view of Theorem 18
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and Remark 8, it would be closely related to the existence of a global, regular solution. Nevertheless, one

could investigate the validity of the following weaker property

‖v(t) − e1‖q ≤ K1 , for some q ∈ (2, 3) , (117)

where K1 is independent of t ∈ (0,∞). Of course, the requirement is that (117) holds for all λ > 0 and
for all corresponding solutions. It is worth emphasizing that the proof of (117) would be of “no harm” to

the outstanding global regularity Problem 2, since, according to the available regularity criteria for weak

solutions that we discussed in Section V.3, the corresponding solutions, while global in time, will still

be weak, even though more regular than those described in Theorem 16. However, notwithstanding its

plausibility and “harmlessly”, the property (117) appears to be very difficult to establish.

VI Future Directions

The fundamental open questions that we have pointed out throughout the chapter constitute as many topics

for future investigation. Actually, it is commonly believed that the answer to most of these questions (in

the affirmative or in the negative) will probably shed an entirely new light not only on the mathematical

theory of the Navier-Stokes equations but also on other disciplines of applied mathematics.
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[13] Cheskidov A, Foiaş C (2006) On Global Attractors of the 3D Navier-Stokes Equations. J. Diff. Eq.

231:714-754

[14] Constantin P (1990) Navier-Stokes Equations and Area of Interfaces. Comm. Math. Phys. 129:241-266

[15] Constantin P, Fefferman C (1993) Direction of Vorticity and the Problem of Global Regularity for the

Navier-Stokes Equations. Indiana Univ. Math. J. 42:775-789
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[25] Foiaş C, Sell GR, Temam R (1988) Inertial Manifolds for Nonlinear Evolutionary Equations. J. Diff.

Eq. 73:309-353
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