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I.1. Sectorial and R-Sectorial Operators

Definition. Let X0 be a Banach space, and A a closed linear operator

in X0. A is called pseudo-sectorial (A ∈ ΨS(X0)), if (−∞,0) ⊂ ρ(A)

and there is a constant M > 0 such that

|t(t + A)−1| ≤ M for all t > 0.

A is called sectorial (A ∈ S(X0)) if in addition D(A) = R(A) = X0.

Let Σφ denote the open sector with angle φ ∈ (0, π):

Σφ = {z ∈ C : z 6= 0, | arg(z)| < φ}.
The spectral angle φA of A is then defined by

φA = inf{φ : ρ(−A) ⊃ Σπ−φ, sup
λ∈Σπ−φ

|λ(λ + A)−1| < ∞}. (1)

Evidently, we have

φA ∈ [0, π) and φA ≥ sup{| argλ| : λ ∈ σ(A)}.



A (pseudo-)sectorial operator A is called R-(pseudo)-sectorial,
A ∈ RS(X0) (resp. A ∈ ΨRS(X0)) for short, if the set

{t(t + A)−1 : t > 0} ⊂ B(X)

is R-bounded. The R-angle of A is defined as

φR
A := inf{φ : R{λ(λ + A)−1 : λ ∈ Σπ−φ} < ∞}. (2)

Evidently φR
A ≥ φA.

Sectorial operators A allow for the Dunford calculus on sectors Σφ.
For this purpose let

H0(Σφ) := {h : Σφ → C holomorhic: sup
z∈Σφ

|(z−α + zα)h(z)| < ∞},

where α ∈ (0,1) is an exponent which may depend on h.
For h ∈ H0(Σφ) we define

h(A) :=
1

2πi

∫

Γθ

h(z)(z −A)−1dz. (3)



Here φA < θ < φ is arbitrary, thanks to Cauchy’s theorem.

The map Ψ : h 7→ h(A) is an algebra-homomorphism from the algebra

H0(Σφ) to the algebra B(X0).

The (pseudo)-sectorial operator A is said to admit an H∞-calculus if

the map Ψ is bounded for some φ ∈ (φA,2π). The infimum of such

φ > φA is called the H∞-angle of A, it is denoted by φ∞A .

In this case the Dunford calculus extends to an algebra-homomorphism

Ψ : H∞(Σφ) → B(X), for each φ > φ∞A , and there is a constant c
φ
A > 0

such that

|h(A)|B(X0)
≤ c

φ
A|h|H∞(Σφ)

.

Such estimates are a powerful tool. The concept H∞-calculus is due

to McIntosh [McI86].



Suppose that A ∈ H∞(X0). For s ∈ R, set hs(z) = zis; then hs ∈ H∞(Σ)

hence Ais := hs(A) is well-defined and forms a bounded C0-group in

X0, since |Ais|B(X) ≤ c
φ
A|hs|H∞(Σφ)

= c
φ
Ae|s|φ, s ∈ R.

Such operators are said to admit bounded imaginary powers, this class

is denoted by BIP(X0). The type of the group Ais is called power angle

of A, we denote it by ΘA. Obviously ΘA ≤ φ∞A .

Clément and Prüss [ClPr01] have shown that if X0 is of class HT , then

BIP(X0) ⊂ RS(X0), φR
A ≤ ΘA.

Here a Banach space X0 is said to be of class HT
if the Hilbert-transform

Hu(t) :=
∫

R
u(t− τ)dτ/πτ, t ∈ R,

is bounded in L2(R;X0). This class of Banach spaces coincides with

the class of UMD-spaces.



I.2. The Operator G = d/dt in Lp(J;E).

Let 1 < p < ∞, E a Banach space, and define the derivation operator

G in X0 = Lp(R;E) by means of

Gu(t) =
d

dt
u(t), t ∈ R, D(G) = H1

p (R;E).

This is a sectorial operator and its resolvent is given by

(λ + G)−1u(t) =
∫ ∞
0

e−λτu(t− τ)dτ, t ∈ R, Reλ > 0,

the spectral angle is ΦG = π/2. Note that G is a causal operator, it is

the negative generator of the translation group. When does G admit

an H∞-calculus?

Let h ∈ H0(Σφ) for some φ > π/2. Then

h(G)u =
1

2πi

∫

Γθ

h(z)(z−G)−1udz = kh ∗ u, kh(t) =
1

2πi

∫

Γθ

h(z)eztudz.



Thus kh is the inverse Laplace-transform of h, or Lkh(z) = h(z). In
other words, for h ∈ H∞(Σφ) the operator h(G) is bounded if the
function m(ξ) = h(iξ) is a Fourier-multiplier for Lp(R;E).

Now, such functions satisfy the Mikhlin condition, and the Mikhlin
theorem is valid in Lp(R;E) provided E is of class HT . On the other
hand, the simplest nontrivial multiplier satisfying the Mikhlin condition
is m(ξ) = −isgn ξ. But this is the symbol of the Hilbert transform!

Thus we have

Theorem. Let 1 < p < ∞, E b a Banach space of class HT and let
G = d/dt be defined as above.
Then G ∈ H∞(Lp(R;E)) with φ∞G = π/2. Conversely, if G ∈ BIP(Lp(R;E))
for some p ∈ (1,∞) then E is necessarily of class HT .

By causality, this result is also valid in Lp(J;E) where J = R+ or
J = [0, a], with D(A) := 0H1

p(J;E) := {u ∈ H1
p (J;E) : u(0) = 0}.



I.3. An Operator-Valued H∞-Calculus

A powerful tool is the following extension of the scalar H∞-calculus of

a sectorial operator to the operator-valued case.

Theorem. Let A ∈ H∞(X0) and F ∈ H∞(Σφ;B(X0)) such that

F (λ)(µ−A)−1 = (µ−A)−1F (λ), µ ∈ ρ(A), λ ∈ Σφ.

Suppose φ > φ∞A and that F (Σφ) is R-bounded. Then F (A) ∈ B(X0).

This result is known as the Kalton-Weis theorem; cf. [KaWe01]. It

yields a so-called joint functional calculus.

Corollary. Suppose A ∈ H∞(X0) and B ∈ S(X0) are commuting,

f ∈ H∞(Σφ×Σψ) with φ > φ∞A , ψ > φB, and assume R(f(Σφ, B)) < ∞.

Then f(A, B) ∈ B(X0). In particular, this assertion holds if the func-

tional calculus for B is R-bounded.



Another consequence of the Kalton-Weis theorem is a variant of the
Dore-Venni theorem for operator sums.

Corollary. Suppose A ∈ H∞(X0) and B ∈ RS(X0) are commuting,
and such that φ∞A + φR

B < π.
Then A + B with domain D(A + B) = D(A) ∩ D(B) is closed,
A + B ∈ S(X0) with φA+B ≤ max{φ∞A , φR

B}, and

|Ax|+ |Bx| ≤ C|(A + B)x|, x ∈ D(A) ∩ D(B).

If in addition B ∈ RH∞(X0) then A + B ∈ H∞(X0)
and φ∞A+B ≤ max{φ∞A , φR∞

B }.

The following corollary deals with products of sectorial operators.

Corollary. Suppose A ∈ H∞(X0) is invertible, and B ∈ RS(X0) are
commuting, and such that φ∞A + φR

B < π.
Then AB with domain D(AB) = {x ∈ D(B) : Bx ∈ D(A)} is closed
and sectorial, with φAB ≤ φ∞A + φR

B. If in addition B ∈ RH∞(X0), then
AB ∈ H∞(X0) and φ∞AB ≤ φ∞A + φR∞

B .



I.4. Maximal Lp-Regularity

Let X0 be a Banach space with norm | · |0, and let A be a linear, closed,

densely defined operator in X0.

Let J = [0,∞) or [0, a] for some a > 0 and let

f : J → X0 be given. Consider the inhomogeneous initial value problem

u̇(t) + Au(t) = f(t) t ∈ J, (1)

u(0) = u0,

in Lp(J;X0) for p ∈ (1,∞).

The definition of maximal Lp-regularity for (1) is as follows.

Definition. A is said to belong to the class MRp(J;X0) - and we say

that there is maximal Lp-regularity for (1) - if for each f ∈ Lp(J;X0)

there exists a unique u ∈ H1
p (J;X0) ∩ Lp(J;X1) satisfying (1) in the

Lp(J;X) sense, with u0 = 0.



The closed graph theorem implies then that there exists a constant

C > 0 such that

||u||H1
p (J;X0)

+ ||Au||Lp(J;X0)
≤ C||f ||Lp(J;X0)

. (2)

Theorem. Let A ∈MRp(J;X0) for some p ∈ (1,∞).

Then the following assertions are valid.

(i) If J = [0, a] then there is ω ≥ 0 and M ≥ 1 such that

{z ∈ C : Rez ≤ −ω} ⊂ ρ(A) and the estimate

|z(z + A)−1|B(X0)
≤ M, Re z ≥ ω,

is valid. In particular, ω + A is sectorial with spectral angle < π/2.

(ii) If J = R+ then C− := {z ∈ C : Rez < 0} ⊂ ρ(A) and there is a

constant M ≥ 1 such that

|(z + A)−1|B(X0)
≤ M

1 + |z|, Re z > 0.

In particular, A is sectorial with spectral angle < π/2 and 0 ∈ ρ(A).



If one requires for the solution of (1) only u ∈ C(R+;X0) and u̇, Au ∈
Lp(R+;X0), we call the class of such operators 0MRp(R+;X0).

Corollary. Suppose A ∈ 0MRp(R+;X0).

Then A is pseudo-sectorial in X0 with spectral angle < π/2.

Moreover, A ∈ MRp(R+;X0) if and only if A ∈ 0MRp(R+;X0) and

0 ∈ ρ(A).

Thus, for a finite interval J = [0, a] its length a > 0 plays no role for

maximal Lp-regularity, and up to a shift of A, without loss of generality,

we may consider J = [0,∞) and may assume that −A is the generator

of an analytic semigroup of negative exponential type.

Assuming the latter, it is well-known that there exists a solution u ∈
H1

p (R+;X0)∩Lp(R+;D(A)) satisfying (1) with f = 0 in the Lp(R+;X0)

sense if and only if u0 ∈ Xγ := (X0, X1)1−1
p ,p

, where X1 = D(A)

equipped with the graph norm of A. In fact, this follows easily from



the well-known basic characterization of the real interpolation spaces

Xγ in terms of A:

Xγ = DA(1− 1/p, p) := {x ∈ X0 : Ae−Atx ∈ Lp(R+;X0)}.
In the sequel, we denote by | · |γ a norm on Xγ. Now we can state

Corollary. Let A ∈ MR(J;X0). Then the map u 7→ (u̇ + Au, u(0)) is

an isomorphism from H1
p (J;X0) ∩ Lp(J;X1) onto Lp(J;X0)×Xγ.

This result is very useful for quasilinear problems since it allows for the

use of the implicit function theorem.

The class 0MRp(R+;X0) does not depend on p ∈ (1,∞). This result

is due to Sobolevskii [Sob64].

Theorem. Suppose A ∈ 0MRp0
(R+;X0) for some p0 ∈ (1,∞).

Then A ∈ 0MRp(R+;X0) for all p ∈ (1,∞)



Another nice property of maximal Lp-regularity is its invariance under
perturbations.

Theorem. Suppose A ∈ MRp(R+;X0) and let B be linear operator
in X0 with D(B) ⊃ D(A) and assume there are constants α, β ≥ 0 such
that

|Bx|0 ≤ α|x|0 + β|Ax|0, x ∈ D(A).

Then there are constants β0 > 0 and ω ≥ 0 such that β < β0 implies
ω + A + B ∈MRp(R+;X0).

Note that such a perturbation result is false for the class H∞(X0)!!

As usual, in Hilbert spaces life is easy. The next theorem is an old
result due to de Simon [dSi64].

Theorem. Let 1 < p < ∞ and X0 be a Hilbert space.
Then A ∈ 0MRp(R+;X0) if and only if A is pseudo-sectorial with
spectral angle φA < π/2.



Recently, Weis [Wei01] obtained the following characterization of max-

imal Lp-regularity.

Theorem. Let X0 be a Banach space of class HT , and let A be

pseudo-sectorial with spectral angle φA < π/2.

Then A ∈ 0MRp(X) if and only if

the set {iρ(iρ + A)−1 : ρ ∈ R} is R-bounded,

i.e. if and only if A is R-sectorial with R-angle φR
A < π/2.

The result of de Simon follows from this one since in Hilbert spaces

families of operators are R-bounded if and only if they are uniformly

bounded.

The sufficiency part in the result of Weis can be obtained as a conse-

quence of the operator sum corollary to the Kalton-Weis theorem.



I.5. Time-Weighted Lp-Spaces

Let as before 1 < p < ∞ and J = R+. We now consider the time-
weighted spaces

Lp,µ(J, X0) := {u : J → X0 : t1−µu ∈ Lp(J;X0)}, 1/p < µ < 1.

The time weight allows for weak singularities at time t = 0.
We define similarly

H1
p,µ(J;X0) := {u ∈ Lp,µ(J;X0) : t1−µu̇ ∈ Lp(J;X0)}.

Then the trace space Xγ,µ of Eµ(J) := H1
p,µ(J;X0) ∩ Lp,µ(J, X1) is

given by Xγ,µ = (X0, X1)µ−1/p,p.

We are again interested in the Cauchy problem (1). The following
result has been proved in Prüss-Simonett [PrSi04].

Theorem. Let 1 < p < ∞, 1/p < µ < 1 and assume A ∈MR(J;X0).
Then the map u 7→ (u̇ + Au, u(0)) is an isomorphism
from H1

p,µ(J;X0) ∩ Lp,µ(J;X1) onto Lp,µ(J;X0)×Xγ,µ.



This result shows parabolic regularization since

Eµ(J) ↪→ E1([δ,∞)) ↪→ C0([δ,∞);Xγ),

for each δ > 0.

This is of particular importance for compactness of orbits of quasilinear

problems, as we will see below.

Moreover, in view of the Kalton-Weis theorem, the following result,

also proved in Prüss-Simonett [PrSi04], is important.

Theorem. Let 1 < p < ∞,1/p < µ < 1, E b a Banach space of class

HT , and let G = d/dt with domain 0H1
p,µ(J;E).

Then G ∈ H∞(Lp,µ(R+;E)) with φ∞G = π/2.

Note that for 1/p < µ < 1, the translation semigroup generated by −G

is not bounded in Lp,µ(R+;E), in contrast to the case µ = 1!
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II.1. Quasilinear Evolution Equations

Let X1 ↪→ X0 densely, J0 = [0, a0], and let 1 < p < ∞. Consider the

abstract quasilinear problem

u̇(t) + A(t, u(t))u(t) = F (t, u(t)), t ∈ J, (1)

u(0) = u0.

Here u0 ∈ Xγ := (X0, X1)1−1/p,p, A : J0 × Xγ → B(X1, X0) is contin-

uous, and F : J0 × Xγ → X0 is Caratheodory, i.e. such that F (·, u) is

measurable for each u ∈ Xγ, F (t, ·) continuous for a.a. t ∈ J0. More-

over, we assume the following Lipschitz continuity of A1 and F1.

(A1) For each R > 0 there is a constant L(R) > 0 such that

|A(t, u)v −A(t, ū)v|0 ≤ L(R)|u− ū|γ|v|1,

t ∈ J0, u, ū ∈ Xγ, |u|γ, |ū|γ ≤ R, v ∈ X1.



(F1) f(·) := F (·,0) ∈ Lp(J0;X); for each R > 0 there is a function
φR ∈ Lp(J0) such that

|F (t, u)− F (t, ū)|0 ≤ φR(t)|u− ū|γ,

for a.a. t ∈ J0, u, ū ∈ Xγ, |u|γ, |ū|γ ≤ R.

The following result is essentially due to Clément and Li [ClLi94]; see
also Prüss [Mon03].

Theorem. Suppose assumptions (A1) and (F1) are satisfied, and
assume that A0 = A(0, u0) has the property of maximal Lp-regularity.

Then there is a ∈ (0, a0] such that (1) admits a unique solution u

on J = [0, a] in the maximal regularity class u ∈ H1
p (J;X0)∩Lp(J;X1).

The solution depends continuously on u0.

Concerning continuation of the solution u, observe that u ∈ C(J;Xγ)
holds. Therefore the natural phase space for the problem is the space
Xγ, and by uniqueness of the solutions, in the autonomous case the
map u0 7→ u(t) defines a local semiflow on Xγ.



Corollary. Suppose assumptions (A1) and (F1) are satisfied, and

assume that A(t, v) has maximal Lp-regularity for each t ∈ J0, v ∈
Xγ. Then the solution u(t) of (1) has a maximal interval of existence

J(u0) = [0, t+(u0)), which is characterized by the equivalent conditions

∫

J(u0)
[|u(t)|p1 + |u̇(t)|p0]dt = ∞,

and

lim
t→t+(u0)

u(t) does not exist in Xγ.

In the autonomous case, the map u0 7→ u(t) defines a local semiflow

on the natural phase space Xγ.

We now give two abstract criteria for global existence.

Proposition. Let the assumptions of the previous Corollary hold.

Suppose that the solution u of (1) with maximal interval J(u0) satisfies



one of the following conditions.

(i) u is uniformly continuous in Xγ on J(u0);

(ii) u(J(u0)) ⊂ Xγ is relatively compact.

Then the solution u(t) of (1) exists globally on J0.

Specializing to the case A(t, v) = A(t) and F (t, v) = B(t)v+f(t), where

A : J0 → B(X1, X0) is continuous, B ∈ Lp(J0;B(Xγ, X0)), and f ∈
Lp(J0;X0), we obtain a result for the nonautonomous linear problem

u̇(t) + A(t)u(t) = B(t)u(t) + f(t), t ∈ J0, (2)

u(0) = u0,

Corollary Let A ∈ C(J0;B(X1, X0)) be such that A(t) has maximal

Lp-regularity for each t ∈ J0, and let B ∈ Lp(J0;B(Xγ, X0)).

Then (2) admits a unique solution

u ∈ H1
p (J0;X0) ∩ Lp(J0;X1),

if and only if f ∈ Lp(J0;X0) and u0 ∈ Xγ.



II.2. Weighted Lp-Spaces

We want to extend the existence result from the previous section to

the case of weighted Lp-spaces to obtain parabolic smoothing also for

quasilinear equations. So we now assume

(Aµ) For each R > 0 there is a constant L(R) > 0 such that

|A(t, u)v −A(t, ū)v|0 ≤ L(R)|u− ū|γ,µ|v|1,

t ∈ J0, u, ū ∈ Xγ,µ, |u|γ,µ, |ū|γ,µ ≤ R, v ∈ X1.

(Fµ) f(·) := F (·,0) ∈ Lp,µ(J0;X); for each R > 0 there is a function

φR ∈ Lp,µ(J0) such that

|F (t, u)− F (t, ū)|0 ≤ φR(t)|u− ū|γ,µ,

for a.a. t ∈ J0, u, ū ∈ Xγ,µ, |u|γ,µ, |ū|γ,µ ≤ R.

The following result is due to Köhne, Prüss and Wilke [KPW09].



Theorem. Suppose assumptions (Aµ) and (Fµ) are satisfied for some

µ ∈ (1/p,1), and assume that A0 = A(0, u0) has the property of maxi-

mal Lp-regularity.

Then there is a ∈ (0, a0] such that for u0 ∈ Xγ,µ, problem (1) ad-

mits a unique solution u on J = [0, a] in the maximal regularity class

u ∈ H1
p,µ(J;X0)∩Lp,µ(J;X1). The solution map u0 7→ u is continuous.

Note that conditions (Aµ) and (Fµ) become stronger for decreasing µ,

in particular these conditions imply (A1) and (F1). Therefore once we

have the solution on some time-interval [0, a], we may continue it in

the natural phase space Xγ rather than in Xγ,µ.

We use this result to obtain compactness of orbits which are bounded

in the natural phase space Xγ. For simplicity we restrict here to the

autonomous case on R+. Thus we assume



(Hµ) For each R > 0 there is a constant L(R) > 0 such that

|A(u)v −A(ū)v|0 ≤ L(R)|u− ū|γ,µ|v|1,

|F (u)− F (ū)|0 ≤ L(R)|u− ū|γ,µ,

for all u, ū ∈ Xγ,µ, |u|γ,µ, |ū|γ,µ ≤ R.

Now we can prove the following result which is also due to Köhne,

Prüss and Wilke [KPW09].

Theorem. Assume (Hµ) for some µ ∈ (1/p,1), suppose A(u) ∈
MRp(R+;X0) for each u ∈ Xγ,µ, and that the embedding Xγ ↪→ Xγ,µ

is compact. Let u be a solution of u̇ + A(u)u = F (u) on its maximal

interval of existence [0, t+) and assume that u is bounded in Xγ.

Then t+ = ∞, i.e. the solution is global, and its orbit u(R+) ⊂ Xγ

is relatively compact in Xγ. In particular the limit set ω(u) ⊂ Xγ is

nonempty.



II.3. The Generalized Principle of Linear Stability

In this section we consider the autonomous quasilinear problem

u̇(t) + A(u(t))u(t) = F (u(t)), t > 0, u(0) = u0. (3)

Here we assume

(A, F ) ∈ C1(V,B(X1, X0)×X0), (4)

where V ⊂ Xγ is open. Let E ⊂ V ∩X1 denote the set of equilibrium

solutions of (3), which means that

u ∈ E if and only if u ∈ V ∩X1, A(u)u = F (u).

Given an element u∗ ∈ E, we assume that u∗ is contained in an m-

dimensional manifold of equilibria. This means that there is an open

subset U ⊂ Rm, 0 ∈ U , and a C1-function ψ : U → X1, such that

ψ(U) ⊂ E, ψ(0) = u∗, A(ψ(ζ))ψ(ζ) = F (ψ(ζ)), ζ ∈ U. (5)

and the rank of ψ′(0) equals m.



Let A0 denote the linearization of A(u) − F (u) at u∗. We call u∗ ∈ E
normally stable if the following conditions hold.

(i) near u∗ the set E is a C1-manifold in X1, dim E = m ∈ N0,

(ii) the tangent space for E at u∗ is isomorphic to N(A0),

(iii) 0 is a semi-simple eigenvalue of A0, i.e. N(A0)⊕R(A0) = X0,

(iv) σ(A0) \ {0} ⊂ C+ = {z ∈ C : Re z > 0}.

The following result is due to Prüss, Simonett and Zacher [PSZ09].

Theorem. Let 1 < p < ∞. Suppose u∗ ∈ V ∩ X1 is an equilibrium

of (3), (A, F ) satisfy (4), and that A(u∗) has the property of maximal

Lp-regularity. Assume that u∗ is normally stable.

Then u∗ is stable in Xγ, and there exists δ > 0 such that the unique

solution u(t) of (3) with initial value u0 ∈ Xγ satisfying |u0 − u∗|γ < δ

exists on R+ and converges at an exponential rate in Xγ to some

u∞ ∈ E as t →∞.



In the special case m = 0 we have E = {u∗}. This case is the classical
principle of linear stability.

The conditions (ii)∼(iii) cannot be relaxed as the following two-dimensional
examples show.

Examples. Consider the following system in G = R2 \ {(0,0)}.
ṙ = −r(r − 1)3, θ̇ = (r − 1)k (6)

Equilibria are precisely the points on the unit sphere S1.

(i) Set k = 1. Then the eigenvalue zero at any point of the unit sphere
E = S1 is not semisimple.

(ii) Set k = 2. Then the eigenvalue zero at any point of the unit
sphere E = S1 is semisimple, but has multiplicity 2 > dim E = 1.

In both cases the function Φ(r, θ) = (r−1)2 is a strict Ljapunov function
for the system, and the solutions will spiral towards S1 but do not
converge.



We call u∗ ∈ E normally hyperbolic if

(i) near u∗ the set E is a C1-manifold in X1, dim E = m ∈ N0,

(ii) the tangent space for E at u∗ is given by N(A0),

(iii) 0 is a semi-simple eigenvalue of A0, i.e. N(A0)⊕R(A0) = X0,

(iv) σ(A0) ∩ iR = {0}, σu := σ(A0) ∩ C− 6= ∅.

The following result is also due to Prüss, Simonett and Zacher [PSZ09].

Theorem. Let 1 < p < ∞. Suppose u∗ ∈ V ∩X1 is an equilibrium of

(3), the functions (A, F ) satisfy (4), and that A(u∗) has the property

of maximal Lp-regularity. Assume that u∗ is normally hyperbolic.

Then the equilibrium u∗ is unstable in Xγ and even in X0. There

exists ρ > δ > 0 such that the unique solution u(t) of (3) with |u0−u∗| <
δ either satisfies dist(u(t0), E) > ρ for some time t0 > 0, or it exists

globally and u(t) ∈ BXγ(u∗, ρ) for all t ≥ 0. In the latter case u(t)

converges at an exponential rate to some u∞ ∈ E in Xγ as t →∞.



These local results become global if combined with a strict Ljapunv

functional and compactness.

So let Φ : Xγ → R be continuous and strictly decreasing along non-

constant solutions, and consider a global solution with relatively com-

pact orbit. Then

∅ 6= ω(u) ⊂ E.

Suppose that there exists u∗ ∈ ω(u) which is normally stable or nor-

mally hyperbolic.

The solution then comes arbitrarily close to u∗ and stays in a neigh-

bourhood of E.
By the generalized principle of linear stability it converges to u∗.

Example: Consider the 2-D-system

ṙ = −r(r − 1), θ̇ = r − 1.

Here this argument yields convergence of all solutions.



III.1. The Two-Phase Stokes Flow
with Surface Tension

The Stokes equations read

−div T = 0, x ∈ Ω \ Γ(t), t > 0,

∇ · u = 0, x ∈ Ω \ Γ(t), t > 0,

µ(∇u + [∇u]T )− πI = T, x ∈ Ω \ Γ(t), t > 0.

At the interface we have the conditions

[[u]] = 0, x ∈ Γ(t), t > 0,

(u|νΓ) = VΓ, x ∈ Γ(t), t > 0,

−[[T ]] νΓ = σHΓνΓ, x ∈ Γ(t), t > 0.

The initial condition reads

Γ(0) = Γ0,

and we require no-slip at ∂Ω.



Define the energy functional by means of

Φ(Γ) := σ mesΓ.

Then

∂tΦ(Γ) + 2‖µ1/2E‖2Ω = 0, (1)

hence the energy functional is a Ljapunov functional, even a strict

one. We have

Theorem.Let µi, σ > 0 be constants. Then

(a) The energy equality is valid for smooth solutions.

(b) The equilibria are zero velocities, constant pressures in the phase-

components, the dispersed phase is a union of nonintersecting balls.

(c) The energy functional is a strict Ljapunov-functional.

(d) The critical points of the energy functional for constant

phase volumes are precisely the equilibria.



III.2. Transformation to a Fixed Domain

Approximate Γ0 by a smooth hypersurface Σ (set Σ = Γ∗ near an
equilibrium (0,Γ∗)).
Let d(x) denote the signed distance of x ∈ Rn to Σ, and Π(x) the
projection of x ∈ Rn to Σ. Then

Λ : Σ× (−a, a) → Rn

Λ(p, r) := p + rνΣ(p), Λ−1(x) = (Π(x), d(x))

is a diffeomorphism from Σ×(−a, a) onto R(Λ) = {x ∈ Rn : |d(x)| < a},
provided

0 < a < min{r(p),1/κj(p) : j = 1, . . . , n− 1, p ∈ Σ},
where κj(p) mean the principal curvatures of Σ at p ∈ Σ and

B̄r(p± rνΣ(p)) ∩Σ = {p}, p ∈ Σ.

Use this to parametrize Γ(t) over Σ:

Γ(t) : p 7→ p + h(t, p)νΣ(p), p ∈ Σ, t ≥ 0.



Extend this diffeomorphism to all of Ω:

Θ(t, x) = x + χ(d(x))h(t,Π(x))νΣ(Π(x)).

Here χ denotes a suitable cut-off function. This way Ω \ Γ(t) is

transformed to the fixed domain Ω \Σ. Then we define

ū = u ◦Θ−1, π̄ = π ◦Θ−1.

This gives the following problem for ū, π̄, h. (Drop the bars!)

−µA(h)u + G(h)π = 0 in Ω \Σ,

(G(h)|u) = 0 in Ω \Σ,

u = 0 on ∂Ω,

[[−µ(G(h)u + [G(h)u]T ) + π]]νΓ(h) = σHΓ(h)νΓ(h) on Σ, (2)

[[u]] = 0 on Σ,

β(h)∂th− (u|νΓ) = 0, on Σ,

h(0) = h0, on Σ.

This is the direct mapping approach also called Hanzawa transform.



Here A(h) and G(h) denote the transformed Laplacian, resp. gradient.

With the curvature tensor LΣ and the surface gradient ∇Σ we have

νΓ(h) = β(h)(νΣ − α(h)), α(h) = M(h)∇Σh,

M(h) = (I − hLΣ)−1, β(h) = (1 + |α(h)|2)−1/2,

and

V = (∂tΘ|νΓ) = ∂th(νΓ|νΣ) = β(h)∂th.

The curvature HΓ(h) becomes

HΓ(h) = β(h){tr[M(h)(LΣ +∇Σα(h))]− β2(h)(M(h)α(h)|[∇Σα(h)]α(h))},
= B(h)h + C(h)

a differential expression involving second order derivatives of h only

linearly. B, C depend only on h,∇Σh. Its linearization is given by

H ′
Γ(0) = tr L2

Σ + ∆Σ.

Here ∆Σ denotes the Laplace-Beltrami operator on Σ.



Rewrite this problem in reduced quasilinear form, employing its princi-

pal linear part.

−µ∆u +∇π = Fu(h)u + Fπ(h)π in Ω \Σ,

∇ · u = Gd(h)u in Ω \Σ,

u = 0 on ∂Ω,

PΣ[[−µ(∇u +∇uT )]]νΣ = Gτ(h)u, on Σ, (3)

([[−µ(∇u +∇uT )]]νΣ|νΣ) + [[π]] = σHΓ(h) + Gν(h)u, on Σ,

[[u]] = 0 on Σ,

∂th− (u|νΣ) = (M(h)∇Σh|u) on Σ,

h(0) = h0, on Σ.

The right hand sides in this problem consist of lower order terms

and of terms of the same order appearing on the left, but carrying a

factor |∇Σh|, which is small by construction. The operators Fj, Gj are

analytic in h and Fj(0) = Gj(0) = 0. Observe that the problem is

linear in (u, π).



III.3. Reduction to a Quasilinear Evolution Equation

The idea is now simple. Suppose that h is known. Solve the transmis-

sion problem for the perturbed Stokes problem to obtain

u = σS(h)HΓ(h) = (S0 + S1(h))(B(h)h + C(h)),

where S1 is analytic in h and S1(0) = 0. Then inserting into the

dynamic equation for the height function h we obtain the following

quasilinear evolution equation for h on Σ.

ḣ + A(h)h = F (h), t > 0, h(0) = h0. (4)

Here A and F are given by

A(h)k = −(νΣ−M(h)∇Σh|S(h)B(h)k), F (h) = (νΣ−M(h)∇Σh|S(h)C(h)).

Note that F contains only lower order terms, and A(0)k = −(νΣ|S0∆Σk).



For the base space X0 we make the following choice. If we want u(t, ·) ∈
H2

p (Ω \ Σ) at each instant, then HΓ(h) must belong to W
1−1/p
p (Σ),

hence h ∈ W
3−1/p
p (Σ) since B has order 2. The Neumann-to-Dirichlet

operator S has order -1, hence A is of order 1.

Therefore we choose

X0 = W
2−1/p
p (Σ), X1 = W

3−1/p
p (Σ), hence Xγ,µ = W

µ+2−2/p
p (Σ).

Then the solutions will satisfy

h ∈ H1
p (J;W

2−1/p
p (Σ)) ∩ Lp(J;W

3−1/p
p (Σ)) ↪→ C(J;W

3−2/p
p (Σ)),

and

u ∈ Lp(J;H2
p (Ω \Σ) ∩H1

p (Ω)), π ∈ Lp(J; Ḣ1
p (Ω \Σ)).

This is in the Lp-setting natural regularity.

We choose p > n + 1, µ ∈ ((n + 1)/p,1) to obtain the embedding

W
µ+2−2/p
p (Σ) ↪→ C2(Σ). Therefore the curvatures are well-defined

pointwise.



To apply the results of Section II, we have to study the Stokes problem

with linear dynamic boundary condition, given by

ω2u− µ∆u +∇π = fu, x ∈ Ω \Σ, t > 0,

∇ · u = fd, x ∈ Ω \Σ, t > 0,

u = 0 x ∈ ∂Ω,

[[u]] = 0, x ∈ Σ, t > 0,

−[[µ(∇u + (∇u)T) + π]]νΣ + σAΣhνΣ = gu, x ∈ Σ, t > 0,

∂th− (u|νΣ) = gh, x ∈ Σ, t > 0,

h(0) = h0, x ∈ Σ.

Here AΣ = −(tr L2
Σ + ∆Σ) and ω ≥ 0.

For this problem we have to prove maximal Lp-regularity and normal

stability. Note that this problem lives on the domain Ω with fixed

interface Σ!



III.4. The Local Semiflow

We now introduce the phase manifold of the two-phase Stokes prob-

lem with surface tension. Let MH2(Ω) denote the set of all closed

hypersurfaces contained in Ω. The second normal bundle N2(Γ) is

defined by

N2(Γ) = {(p, νΓ(p),∇ΓνΓ(p) : p ∈ Γ}.
Next we need the Haussdorff-distance for sets A, B ⊂ RN defined by

dH(A, B) = max{sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)}.

We define a metric on MH2(Ω) by

d(Γ1,Γ2) = dH(N2(Γ1),N2(Γ2)), Γ1,Γ2 ∈MH2(Ω).

This way MH2(Ω) becomes a Banach manifold; the charts are given

by parameterizations over a given hypersurface Σ, and the tangent

space consists of the normal vector fields on Σ.



As above, let dΣ(x) denote the signed distance for Σ. We may then

define the level function ϕΣ by means of

ϕΣ(x) = φ(dΣ(x)), x ∈ Rn,

where

φ(s) = s(1− χ(s/a)) + χ(s/a)sgn s, s ∈ R.

Then Σ = ϕ−1
Σ (0), and ∇Σϕ(p) = νΣ(p), for each p ∈ Σ.

If we consider the subset MH2(Ω, r) consisting of all closed hyper-

surfaces Γ ∈MH2(Ω) such that Γ ⊂ Ω satisfies the ball condition with

fixed radius r > 0 then the map Φ : MH2(Ω, r) → C2(Ω̄) defined by

Φ(Γ) = ϕΓ is an isomorphism of the metric space MH2(Ω, r) onto

Φ(MH2(Ω, r)) ⊂ C2(Ω̄).

Let s − (n − 1)/p > 2; for Γ ∈ MH2(Ω, r), we define Γ ∈ W s
p(G, r) if

ϕΓ ∈ W s
p(Ω). A subset A ⊂ W s

p(Ω, r) is said to be (relatively) compact,

if Φ(A) ⊂ W s
p(Ω) is (relatively) compact.



Applying the theory from Lecture II we proved

Theorem 1. The two-phase Stokes problem with surface tension has

a unique local-in-time Lp-solution, in the sense that the transformed

problem has a solution in the class described in Section III.3. These

solutions generate a local semiflow in the phase manifold PM.

Theorem 2. The equilibria are stable in PM. Solutions starting near

an equilibrium in PM converge in PM to another equilibrium as t →∞.

Theorem 3. Suppose Γ(t) is a solution which satisfies

(i) the uniform ball condition

(ii) ‖Γ(t)‖
W

3−2/p
p

≤ C

on its life time. Then this solution exists globally and converges in

PM to an equilibrium.


