Mini-Courses at Waseda University, Tokyo, March 2010

Maximal L_p -Regularity, Quasilinear Parabolic Problems, and the Two-Phase Stokes Flow with Surface Tension

Jan Prüss

Martin-Luther-Universität Halle-Wittenberg, Halle, Germany

Contents

I Functional Calculus and Maximal L_p -Regularity II Abstract Quasilinear Evolution Equations III The Two-Phase Stokes Flow with Surface Tension

Part I

References

CIPr01 Ph. Clément, J. Prüss. An operator-valued transference principle and maximal regularity on vector-valued L_p -spaces. *Evolution equations and their applications in physical and life sciences*. Lecture Notes in Pure and Appl. Math., 215, Marcel Dekker, New York (2001), 67–87.

DHP03 R. Denk, M. Hieber, J. Prüss, *R*-boundedness, Fourier multipliers, and problems of elliptic and parabolic type, AMS Memoirs 788, Providence, R.I. (2003).

DHP07 R. Denk, M. Hieber, J. Prüss, Optimal L^p - L^q -estimates for parabolic boundary value problems with inhomogeneous data. *Math. Z.* **257** (2007), no. 1, 193–224.

KaWe01 N.J. Kalton, L. Weis. The H^{∞} -calculus and sums of closed operators. *Math. Ann.* **321** (2001), 319–345.

PrSi04 J. Prüss, G. Simonett, Maximal regularity for evolution equations in weighted L_p -spaces. Archiv Math. 82, 415–431 (2004)

Wei01 L. Weis, A new approach to maximal L_p -regularity. In *Evolution Equ. and Appl. Physical Life Sci.*, volume 215 of *Lect. Notes Pure and Applied Math.*, pages 195–214, New York, 2001. Marcel Dekker.

I.1. Sectorial and *R*-Sectorial Operators

Definition. Let X_0 be a Banach space, and A a closed linear operator in X_0 . A is called pseudo-sectorial $(A \in \Psi S(X_0))$, if $(-\infty, 0) \subset \rho(A)$ and there is a constant M > 0 such that

 $|t(t+A)^{-1}| \le M$ for all t > 0.

A is called sectorial $(A \in \mathcal{S}(X_0))$ if in addition $\overline{\mathcal{D}(A)} = \overline{\mathcal{R}(A)} = X_0$.

Let Σ_{ϕ} denote the open sector with angle $\phi \in (0, \pi)$:

 $\Sigma_{\phi} = \{z \in \mathbb{C} : z \neq 0, | \arg(z)| < \phi\}.$

The spectral angle ϕ_A of A is then defined by

 $\phi_A = \inf\{\phi : \rho(-A) \supset \Sigma_{\pi-\phi}, \sup_{\lambda \in \Sigma_{\pi-\phi}} |\lambda(\lambda+A)^{-1}| < \infty\}.$ (1)

Evidently, we have

 $\phi_A \in [0,\pi)$ and $\phi_A \ge \sup\{|\arg \lambda| : \lambda \in \sigma(A)\}.$

A (pseudo-)sectorial operator A is called R-(pseudo)-sectorial, $A \in \mathcal{RS}(X_0)$ (resp. $A \in \mathcal{VRS}(X_0)$) for short, if the set

 $\{t(t+A)^{-1}:t>0\}\subset \mathcal{B}(X)$

is R-bounded. The R-angle of A is defined as

$$\phi_A^R := \inf\{\phi : \mathcal{R}\{\lambda(\lambda + A)^{-1} : \lambda \in \Sigma_{\pi - \phi}\} < \infty\}.$$
(2)
Evidently $\phi_A^R \ge \phi_A.$

Sectorial operators A allow for the Dunford calculus on sectors Σ_{ϕ} . For this purpose let

$$\mathcal{H}_0(\Sigma_{\phi}) := \{h : \Sigma_{\phi} \to \mathbb{C} \text{ holomorhic: } \sup_{z \in \Sigma_{\phi}} |(z^{-\alpha} + z^{\alpha})h(z)| < \infty\},\$$

where $\alpha \in (0, 1)$ is an exponent which may depend on h. For $h \in \mathcal{H}_0(\Sigma_{\phi})$ we define

$$h(A) := \frac{1}{2\pi i} \int_{\Gamma_{\theta}} h(z) (z - A)^{-1} dz.$$
 (3)

Here $\phi_A < \theta < \phi$ is arbitrary, thanks to Cauchy's theorem.

The map $\Psi : h \mapsto h(A)$ is an algebra-homomorphism from the algebra $\mathcal{H}_0(\Sigma_{\phi})$ to the algebra $\mathcal{B}(X_0)$.

The (pseudo)-sectorial operator A is said to admit an \mathcal{H}^{∞} -calculus if the map Ψ is bounded for some $\phi \in (\phi_A, 2\pi)$. The infimum of such $\phi > \phi_A$ is called the \mathcal{H}^{∞} -angle of A, it is denoted by ϕ_A^{∞} .

In this case the Dunford calculus extends to an algebra-homomorphism $\Psi : \mathcal{H}^{\infty}(\Sigma_{\phi}) \to \mathcal{B}(X)$, for each $\phi > \phi_A^{\infty}$, and there is a constant $c_A^{\phi} > 0$ such that

$$|h(A)|_{\mathcal{B}(X_0)} \leq c_A^{\phi} |h|_{\mathcal{H}^{\infty}(\Sigma_{\phi})}.$$

Such estimates are a powerful tool. The concept H^{∞} -calculus is due to McIntosh [McI86].

Suppose that $A \in \mathcal{H}^{\infty}(X_0)$. For $s \in \mathbb{R}$, set $h_s(z) = z^{is}$; then $h_s \in \mathcal{H}^{\infty}(\Sigma)$ hence $A^{is} := h_s(A)$ is well-defined and forms a bounded C_0 -group in X_0 , since $|A^{is}|_{\mathcal{B}(X)} \leq c_A^{\phi} |h_s|_{\mathcal{H}^{\infty}(\Sigma_{\phi})} = c_A^{\phi} e^{|s|\phi}, \quad s \in \mathbb{R}.$

Such operators are said to admit bounded imaginary powers, this class is denoted by $\mathcal{BIP}(X_0)$. The type of the group A^{is} is called power angle of A, we denote it by Θ_A . Obviously $\Theta_A \leq \phi_A^{\infty}$.

Clément and Prüss [CIPr01] have shown that if X_0 is of class \mathcal{HT} , then $\mathcal{BIP}(X_0) \subset \mathcal{RS}(X_0), \quad \phi_A^R \leq \Theta_A.$

Here a Banach space X_0 is said to be of class \mathcal{HT} if the Hilbert-transform

$$Hu(t) := \int_{\mathbb{R}} u(t-\tau) d\tau / \pi \tau, \quad t \in \mathbb{R},$$

is bounded in $L_2(\mathbb{R}; X_0)$. This class of Banach spaces coincides with the class of UMD-spaces.

I.2. The Operator G = d/dt in $L_p(J; E)$.

Let 1 , E a Banach space, and define the derivation operator $G in <math>X_0 = L_p(\mathbb{R}; E)$ by means of

$$Gu(t) = \frac{d}{dt}u(t), \quad t \in \mathbb{R}, \quad \mathcal{D}(G) = H_p^1(\mathbb{R}; E).$$

This is a sectorial operator and its resolvent is given by

$$(\lambda + G)^{-1}u(t) = \int_0^\infty e^{-\lambda\tau}u(t-\tau)d\tau, \quad t \in \mathbb{R}, \ \operatorname{Re}\lambda > 0,$$

the spectral angle is $\Phi_G = \pi/2$. Note that G is a causal operator, it is the negative generator of the translation group. When does G admit an \mathcal{H}^{∞} -calculus?

Let $h \in \mathcal{H}_0(\Sigma_{\phi})$ for some $\phi > \pi/2$. Then

$$h(G)u = \frac{1}{2\pi i} \int_{\Gamma_{\theta}} h(z)(z-G)^{-1} u dz = k_h * u, \quad k_h(t) = \frac{1}{2\pi i} \int_{\Gamma_{\theta}} h(z) e^{zt} u dz.$$

Thus k_h is the inverse Laplace-transform of h, or $\mathcal{L}k_h(z) = h(z)$. In other words, for $h \in \mathcal{H}^{\infty}(\Sigma_{\phi})$ the operator h(G) is bounded if the function $m(\xi) = h(i\xi)$ is a Fourier-multiplier for $L_p(\mathbb{R}; E)$.

Now, such functions satisfy the Mikhlin condition, and the Mikhlin theorem is valid in $L_p(\mathbb{R}; E)$ provided E is of class \mathcal{HT} . On the other hand, the simplest nontrivial multiplier satisfying the Mikhlin condition is $m(\xi) = -i \operatorname{sgn} \xi$. But this is the symbol of the Hilbert transform!

Thus we have

Theorem. Let 1 , <math>E b a Banach space of class \mathcal{HT} and let G = d/dt be defined as above. Then $G \in \mathcal{H}^{\infty}(L_p(\mathbb{R}; E))$ with $\phi_G^{\infty} = \pi/2$. Conversely, if $G \in \mathcal{BIP}(L_p(\mathbb{R}; E))$ for some $p \in (1, \infty)$ then E is necessarily of class \mathcal{HT} .

By causality, this result is also valid in $L_p(J; E)$ where $J = \mathbb{R}_+$ or J = [0, a], with $\mathcal{D}(A) := {}_0H_p^1(J; E) := \{u \in H_p^1(J; E) : u(0) = 0\}.$

I.3. An Operator-Valued \mathcal{H}^{∞} -Calculus

A powerful tool is the following extension of the scalar \mathcal{H}^{∞} -calculus of a sectorial operator to the operator-valued case.

Theorem. Let $A \in \mathcal{H}^{\infty}(X_0)$ and $F \in \mathcal{H}^{\infty}(\Sigma_{\phi}; \mathcal{B}(X_0))$ such that

$$F(\lambda)(\mu - A)^{-1} = (\mu - A)^{-1}F(\lambda), \quad \mu \in \rho(A), \ \lambda \in \Sigma_{\phi}.$$

Suppose $\phi > \phi_A^{\infty}$ and that $F(\Sigma_{\phi})$ is *R*-bounded. Then $F(A) \in \mathcal{B}(X_0)$.

This result is known as the Kalton-Weis theorem; cf. [KaWe01]. It yields a so-called joint functional calculus.

Corollary. Suppose $A \in \mathcal{H}^{\infty}(X_0)$ and $B \in \mathcal{S}(X_0)$ are commuting, $f \in \mathcal{H}^{\infty}(\Sigma_{\phi} \times \Sigma_{\psi})$ with $\phi > \phi_A^{\infty}$, $\psi > \phi_B$, and assume $\mathcal{R}(f(\Sigma_{\phi}, B)) < \infty$. Then $f(A, B) \in \mathcal{B}(X_0)$. In particular, this assertion holds if the functional calculus for B is R-bounded. Another consequence of the Kalton-Weis theorem is a variant of the Dore-Venni theorem for operator sums.

Corollary. Suppose $A \in \mathcal{H}^{\infty}(X_0)$ and $B \in \mathcal{RS}(X_0)$ are commuting, and such that $\phi_A^{\infty} + \phi_B^R < \pi$. Then A + B with domain $\mathcal{D}(A + B) = \mathcal{D}(A) \cap \mathcal{D}(B)$ is closed, $A + B \in \mathcal{S}(X_0)$ with $\phi_{A+B} \leq \max\{\phi_A^{\infty}, \phi_B^R\}$, and

 $|Ax| + |Bx| \le C|(A+B)x|, \quad x \in \mathcal{D}(A) \cap \mathcal{D}(B).$

If in addition $B \in \mathcal{RH}^{\infty}(X_0)$ then $A + B \in \mathcal{H}^{\infty}(X_0)$ and $\phi_{A+B}^{\infty} \leq \max\{\phi_A^{\infty}, \phi_B^{R\infty}\}.$

The following corollary deals with products of sectorial operators.

Corollary. Suppose $A \in \mathcal{H}^{\infty}(X_0)$ is invertible, and $B \in \mathcal{RS}(X_0)$ are commuting, and such that $\phi_A^{\infty} + \phi_B^R < \pi$. Then AB with domain $\mathcal{D}(AB) = \{x \in \mathcal{D}(B) : Bx \in \mathcal{D}(A)\}$ is closed and sectorial, with $\phi_{AB} \leq \phi_A^{\infty} + \phi_B^R$. If in addition $B \in \mathcal{RH}^{\infty}(X_0)$, then $AB \in \mathcal{H}^{\infty}(X_0)$ and $\phi_{AB}^{\infty} \leq \phi_A^{\infty} + \phi_B^R \infty$.

I.4. Maximal L_p -Regularity

Let X_0 be a Banach space with norm $|\cdot|_0$, and let A be a linear, closed, densely defined operator in X_0 .

Let $J = [0, \infty)$ or [0, a] for some a > 0 and let

 $f: J \rightarrow X_0$ be given. Consider the inhomogeneous initial value problem

$$\dot{u}(t) + Au(t) = f(t)$$
 $t \in J,$ (1)
 $u(0) = u_0,$

in $L_p(J; X_0)$ for $p \in (1, \infty)$.

The definition of maximal L_p -regularity for (1) is as follows.

Definition. A is said to belong to the class $\mathcal{MR}_p(J; X_0)$ - and we say that there is maximal L^p -regularity for (1) - if for each $f \in L_p(J; X_0)$ there exists a unique $u \in H_p^1(J; X_0) \cap L_p(J; X_1)$ satisfying (1) in the $L_p(J; X)$ sense, with $u_0 = 0$. The closed graph theorem implies then that there exists a constant C > 0 such that

$$||u||_{H^{1}_{p}(J;X_{0})} + ||Au||_{L_{p}(J;X_{0})} \le C||f||_{L_{p}(J;X_{0})}.$$
(2)

Theorem. Let $A \in \mathcal{MR}_p(J; X_0)$ for some $p \in (1, \infty)$. Then the following assertions are valid. (i) If J = [0, a] then there is $\omega \ge 0$ and $M \ge 1$ such that $\{z \in \mathbb{C} : \operatorname{Re} z \le -\omega\} \subset \rho(A)$ and the estimate

$$|z(z+A)^{-1}|_{\mathcal{B}(X_0)} \le M$$
, Re $z \ge \omega$,

is valid. In particular, $\omega + A$ is sectorial with spectral angle $< \pi/2$. (ii) If $J = \mathbb{R}_+$ then $\mathbb{C}_- := \{z \in \mathbb{C} : \operatorname{Re} z < 0\} \subset \rho(A)$ and there is a constant $M \ge 1$ such that

$$|(z+A)^{-1}|_{\mathcal{B}(X_0)} \le \frac{M}{1+|z|}, \quad \operatorname{Re} z > 0.$$

In particular, A is sectorial with spectral angle $< \pi/2$ and $0 \in \rho(A)$.

If one requires for the solution of (1) only $u \in C(\mathbb{R}_+; X_0)$ and $\dot{u}, Au \in L_p(\mathbb{R}_+; X_0)$, we call the class of such operators $_0\mathcal{MR}_p(\mathbb{R}_+; X_0)$.

Corollary. Suppose $A \in {}_{0}\mathcal{MR}_{p}(\mathbb{R}_{+}; X_{0})$.

Then A is pseudo-sectorial in X_0 with spectral angle $\langle \pi/2$. Moreover, $A \in \mathcal{MR}_p(\mathbb{R}_+; X_0)$ if and only if $A \in {}_0\mathcal{MR}_p(\mathbb{R}_+; X_0)$ and $0 \in \rho(A)$.

Thus, for a finite interval J = [0, a] its length a > 0 plays no role for maximal L_p -regularity, and up to a shift of A, without loss of generality, we may consider $J = [0, \infty)$ and may assume that -A is the generator of an analytic semigroup of negative exponential type.

Assuming the latter, it is well-known that there exists a solution $u \in H_p^1(\mathbb{R}_+; X_0) \cap L_p(\mathbb{R}_+; \mathcal{D}(A))$ satisfying (1) with f = 0 in the $L_p(\mathbb{R}_+; X_0)$ sense if and only if $u_0 \in X_{\gamma} := (X_0, X_1)_{1-\frac{1}{p}, p}$, where $X_1 = \mathcal{D}(A)$ equipped with the graph norm of A. In fact, this follows easily from

the well-known basic characterization of the real interpolation spaces X_{γ} in terms of A:

 $X_{\gamma} = \mathcal{D}_A(1 - 1/p, p) := \{ x \in X_0 : Ae^{-At} x \in L_p(\mathbb{R}_+; X_0) \}.$

In the sequel, we denote by $|\cdot|_{\gamma}$ a norm on X_{γ} . Now we can state

Corollary. Let $A \in \mathcal{MR}(J; X_0)$. Then the map $u \mapsto (\dot{u} + Au, u(0))$ is an isomorphism from $H_p^1(J; X_0) \cap L_p(J; X_1)$ onto $L_p(J; X_0) \times X_{\gamma}$.

This result is very useful for quasilinear problems since it allows for the use of the implicit function theorem.

The class $_0\mathcal{MR}_p(\mathbb{R}_+; X_0)$ does not depend on $p \in (1, \infty)$. This result is due to Sobolevskii [Sob64].

Theorem. Suppose $A \in {}_{0}\mathcal{MR}_{p_{0}}(\mathbb{R}_{+}; X_{0})$ for some $p_{0} \in (1, \infty)$. Then $A \in {}_{0}\mathcal{MR}_{p}(\mathbb{R}_{+}; X_{0})$ for all $p \in (1, \infty)$ Another nice property of maximal L_p -regularity is its invariance under perturbations.

Theorem. Suppose $A \in \mathcal{MR}_p(\mathbb{R}_+; X_0)$ and let B be linear operator in X_0 with $\mathcal{D}(B) \supset \mathcal{D}(A)$ and assume there are constants $\alpha, \beta \geq 0$ such that

$$|Bx|_0 \le \alpha |x|_0 + \beta |Ax|_0, \quad x \in \mathcal{D}(A).$$

Then there are constants $\beta_0 > 0$ and $\omega \ge 0$ such that $\beta < \beta_0$ implies $\omega + A + B \in \mathcal{MR}_p(\mathbb{R}_+; X_0)$.

Note that such a perturbation result is false for the class $\mathcal{H}^{\infty}(X_0)$!!

As usual, in Hilbert spaces life is easy. The next theorem is an old result due to de Simon [dSi64].

Theorem. Let $1 and <math>X_0$ be a Hilbert space. Then $A \in {}_0\mathcal{MR}_p(\mathbb{R}_+; X_0)$ if and only if A is pseudo-sectorial with spectral angle $\phi_A < \pi/2$. Recently, Weis [Wei01] obtained the following characterization of maximal L_p -regularity.

Theorem. Let X_0 be a Banach space of class \mathcal{HT} , and let A be pseudo-sectorial with spectral angle $\phi_A < \pi/2$. Then $A \in {}_0\mathcal{MR}_p(X)$ if and only if the set $\{i\rho(i\rho + A)^{-1} : \rho \in \mathbb{R}\}$ is \mathcal{R} -bounded, i.e. if and only if A is R-sectorial with R-angle $\phi_A^R < \pi/2$.

The result of de Simon follows from this one since in Hilbert spaces families of operators are R-bounded if and only if they are uniformly bounded.

The sufficiency part in the result of Weis can be obtained as a consequence of the operator sum corollary to the Kalton-Weis theorem.

I.5. Time-Weighted L_p -Spaces

Let as before $1 and <math>J = \mathbb{R}_+$. We now consider the time-weighted spaces

 $L_{p,\mu}(J,X_0) := \{ u : J \to X_0 : t^{1-\mu} u \in L_p(J;X_0) \}, \quad 1/p < \mu < 1.$

The time weight allows for weak singularities at time t = 0. We define similarly

$$H_{p,\mu}^{1}(J;X_{0}) := \{ u \in L_{p,\mu}(J;X_{0}) : t^{1-\mu} \dot{u} \in L_{p}(J;X_{0}) \}.$$

Then the trace space $X_{\gamma,\mu}$ of $\mathbb{E}_{\mu}(J) := H^1_{p,\mu}(J;X_0) \cap L_{p,\mu}(J,X_1)$ is given by $X_{\gamma,\mu} = (X_0, X_1)_{\mu-1/p,p}$.

We are again interested in the Cauchy problem (1). The following result has been proved in Prüss-Simonett [PrSi04].

Theorem. Let $1 , <math>1/p < \mu < 1$ and assume $A \in \mathcal{MR}(J; X_0)$. Then the map $u \mapsto (\dot{u} + Au, u(0))$ is an isomorphism from $H^1_{p,\mu}(J; X_0) \cap L_{p,\mu}(J; X_1)$ onto $L_{p,\mu}(J; X_0) \times X_{\gamma,\mu}$. This result shows parabolic regularization since

$$\mathbb{E}_{\mu}(J) \hookrightarrow \mathbb{E}_{1}([\delta, \infty)) \hookrightarrow C_{0}([\delta, \infty); X_{\gamma}),$$

for each $\delta > 0$.

This is of particular importance for compactness of orbits of quasilinear problems, as we will see below.

Moreover, in view of the Kalton-Weis theorem, the following result, also proved in Prüss-Simonett [PrSi04], is important.

Theorem. Let 1 , <math>E b a Banach space of class \mathcal{HT} , and let G = d/dt with domain ${}_{0}H^{1}_{p,\mu}(J; E)$. Then $G \in \mathcal{H}^{\infty}(L_{p,\mu}(\mathbb{R}_{+}; E))$ with $\phi_{G}^{\infty} = \pi/2$.

Note that for $1/p < \mu < 1$, the translation semigroup generated by -G is not bounded in $L_{p,\mu}(\mathbb{R}_+; E)$, in contrast to the case $\mu = 1!$

Part II

References

Ama05 H. Amann, Quasilinear parabolic problems via maximal regularity. *Adv. Differential Equation* **10**, 1081–1110 (2005)

CleLi9 Ph. Clément, S. Li, Abstract parabolic quasilinear equations and application to a groundwater flow problem. *Adv. Math. Sci. Appl.* **3**, (1993)

KPW09 M. Köhne, J. Prüss, M. Wilke, On quasilinear parabolic evolution equations in weighted L_p -spaces. J. Evolu. Eqns (to appear 2010)

Pru03 J. Prüss, Maximal regularity for evolution equations in L_p -spaces. *Conf. Sem. Mat. Univ. Bari* **285**, 1–39 (2003)

PrSi04 J. Prüss, G. Simonett, Maximal regularity for evolution equations in weighted L_p -spaces. Archiv Math. 82, 415–431 (2004)

PSZ09 J. Prüss, G. Simonett, R. Zacher, Convergence of solutions to equilibria for nonlinear parabolic problems. *J. Diff. Equations* **246**, 3902–3931 (2009)

II.1. Quasilinear Evolution Equations

Let $X_1 \hookrightarrow X_0$ densely, $J_0 = [0, a_0]$, and let 1 . Consider the abstract quasilinear problem

$$\dot{u}(t) + A(t, u(t))u(t) = F(t, u(t)), \quad t \in J,$$
 (1)
 $u(0) = u_0.$

Here $u_0 \in X_{\gamma} := (X_0, X_1)_{1-1/p,p}$, $A : J_0 \times X_{\gamma} \to \mathcal{B}(X_1, X_0)$ is continuous, and $F : J_0 \times X_{\gamma} \to X_0$ is Caratheodory, i.e. such that $F(\cdot, u)$ is measurable for each $u \in X_{\gamma}$, $F(t, \cdot)$ continuous for a.a. $t \in J_0$. Moreover, we assume the following Lipschitz continuity of A_1 and F_1 .

(A₁) For each R > 0 there is a constant L(R) > 0 such that $|A(t,u)v - A(t,\bar{u})v|_0 \le L(R)|u - \bar{u}|_{\gamma}|v|_1,$ $t \in J_0, u, \bar{u} \in X_{\gamma}, |u|_{\gamma}, |\bar{u}|_{\gamma} \le R, v \in X_1.$ (*F*₁) $f(\cdot) := F(\cdot, 0) \in L_p(J_0; X)$; for each R > 0 there is a function $\phi_R \in L_p(J_0)$ such that

$$egin{aligned} |F(t,u)-F(t,ar{u})|_0&\leq \phi_R(t)|u-ar{u}|_\gamma, \ & ext{for a.a.}\ t\in J_0,\ u,ar{u}\in X_\gamma, |u|_\gamma, |ar{u}|_\gamma\leq R \end{aligned}$$

The following result is essentially due to Clément and Li [ClLi94]; see also Prüss [Mon03].

Theorem. Suppose assumptions (A_1) and (F_1) are satisfied, and assume that $A_0 = A(0, u_0)$ has the property of maximal L_p -regularity. Then there is $a \in (0, a_0]$ such that (1) admits a unique solution uon J = [0, a] in the maximal regularity class $u \in H_p^1(J; X_0) \cap L_p(J; X_1)$. The solution depends continuously on u_0 .

Concerning continuation of the solution u, observe that $u \in C(J; X_{\gamma})$ holds. Therefore the natural phase space for the problem is the space X_{γ} , and by uniqueness of the solutions, in the autonomous case the map $u_0 \mapsto u(t)$ defines a local semiflow on X_{γ} . **Corollary.** Suppose assumptions (A_1) and (F_1) are satisfied, and assume that A(t,v) has maximal L_p -regularity for each $t \in J_0$, $v \in X_\gamma$. Then the solution u(t) of (1) has a maximal interval of existence $J(u_0) = [0, t_+(u_0))$, which is characterized by the equivalent conditions

$$\int_{J(u_0)} [|u(t)|_1^p + |\dot{u}(t)|_0^p] dt = \infty,$$

and

 $\lim_{t \to t_+(u_0)} u(t) \quad \text{does not exist in } X_{\gamma}.$

In the autonomous case, the map $u_0 \mapsto u(t)$ defines a local semiflow on the natural phase space X_{γ} .

We now give two abstract criteria for global existence.

Proposition. Let the assumptions of the previous Corollary hold. Suppose that the solution u of (1) with maximal interval $J(u_0)$ satisfies one of the following conditions.

(i) u is uniformly continuous in X_{γ} on $J(u_0)$;

(ii) $u(J(u_0)) \subset X_{\gamma}$ is relatively compact.

Then the solution u(t) of (1) exists globally on J_0 .

Specializing to the case A(t,v) = A(t) and F(t,v) = B(t)v + f(t), where $A : J_0 \rightarrow \mathcal{B}(X_1, X_0)$ is continuous, $B \in L_p(J_0; \mathcal{B}(X_\gamma, X_0))$, and $f \in L_p(J_0; X_0)$, we obtain a result for the nonautonomous linear problem

$$\dot{u}(t) + A(t)u(t) = B(t)u(t) + f(t), \quad t \in J_0,$$

$$u(0) = u_0,$$
(2)

Corollary Let $A \in C(J_0; \mathcal{B}(X_1, X_0))$ be such that A(t) has maximal L_p -regularity for each $t \in J_0$, and let $B \in L_p(J_0; \mathcal{B}(X_\gamma, X_0))$. Then (2) admits a unique solution

 $u \in H_p^1(J_0; X_0) \cap L_p(J_0; X_1),$

if and only if $f \in L_p(J_0; X_0)$ and $u_0 \in X_{\gamma}$.

II.2. Weighted L_p -Spaces

We want to extend the existence result from the previous section to the case of weighted L_p -spaces to obtain parabolic smoothing also for quasilinear equations. So we now assume

 (A_{μ}) For each R > 0 there is a constant L(R) > 0 such that

$$|A(t,u)v - A(t,\bar{u})v|_{0} \leq L(R)|u - \bar{u}|_{\gamma,\mu}|v|_{1},$$

$$t \in J_{0}, \ u, \bar{u} \in X_{\gamma,\mu}, |u|_{\gamma,\mu}, |\bar{u}|_{\gamma,\mu} \leq R, \ v \in X_{1}.$$

 (F_{μ}) $f(\cdot) := F(\cdot, 0) \in L_{p,\mu}(J_0; X)$; for each R > 0 there is a function $\phi_R \in L_{p,\mu}(J_0)$ such that

$$\begin{split} |F(t,u) - F(t,\bar{u})|_0 &\leq \phi_R(t)|u - \bar{u}|_{\gamma,\mu},\\ \text{for a.a. } t \in J_0, \ u, \bar{u} \in X_{\gamma,\mu}, |u|_{\gamma,\mu}, |\bar{u}|_{\gamma,\mu} \leq R \end{split}$$

The following result is due to Köhne, Prüss and Wilke [KPW09].

Theorem. Suppose assumptions (A_{μ}) and (F_{μ}) are satisfied for some $\mu \in (1/p, 1)$, and assume that $A_0 = A(0, u_0)$ has the property of maximal L_p -regularity.

Then there is $a \in (0, a_0]$ such that for $u_0 \in X_{\gamma,\mu}$, problem (1) admits a unique solution u on J = [0, a] in the maximal regularity class $u \in H^1_{p,\mu}(J; X_0) \cap L_{p,\mu}(J; X_1)$. The solution map $u_0 \mapsto u$ is continuous.

Note that conditions (A_{μ}) and (F_{μ}) become stronger for decreasing μ , in particular these conditions imply (A_1) and (F_1) . Therefore once we have the solution on some time-interval [0, a], we may continue it in the natural phase space X_{γ} rather than in $X_{\gamma,\mu}$.

We use this result to obtain compactness of orbits which are bounded in the natural phase space X_{γ} . For simplicity we restrict here to the autonomous case on \mathbb{R}_+ . Thus we assume (H_{μ}) For each R > 0 there is a constant L(R) > 0 such that

$$\begin{aligned} |A(u)v - A(\bar{u})v|_0 &\leq L(R)|u - \bar{u}|_{\gamma,\mu}|v|_1, \\ |F(u) - F(\bar{u})|_0 &\leq L(R)|u - \bar{u}|_{\gamma,\mu}, \\ \text{for all } u, \bar{u} \in X_{\gamma,\mu}, |u|_{\gamma,\mu}, |\bar{u}|_{\gamma,\mu} \leq R. \end{aligned}$$

Now we can prove the following result which is also due to Köhne, Prüss and Wilke [KPW09].

Theorem. Assume (H_{μ}) for some $\mu \in (1/p, 1)$, suppose $A(u) \in \mathcal{MR}_p(\mathbb{R}_+; X_0)$ for each $u \in X_{\gamma,\mu}$, and that the embedding $X_{\gamma} \hookrightarrow X_{\gamma,\mu}$ is compact. Let u be a solution of $\dot{u} + A(u)u = F(u)$ on its maximal interval of existence $[0, t_+)$ and assume that u is bounded in X_{γ} .

Then $t_+ = \infty$, i.e. the solution is global, and its orbit $u(\mathbb{R}_+) \subset X_{\gamma}$ is relatively compact in X_{γ} . In particular the limit set $\omega(u) \subset X_{\gamma}$ is nonempty.

II.3. The Generalized Principle of Linear Stability

In this section we consider the autonomous quasilinear problem

 $\dot{u}(t) + A(u(t))u(t) = F(u(t)), \quad t > 0, \quad u(0) = u_0.$ (3)

Here we assume

$$(A, F) \in C^{1}(V, \mathcal{B}(X_{1}, X_{0}) \times X_{0}),$$

$$(4)$$

where $V \subset X_{\gamma}$ is open. Let $\mathcal{E} \subset V \cap X_1$ denote the set of equilibrium solutions of (3), which means that

 $u \in \mathcal{E}$ if and only if $u \in V \cap X_1$, A(u)u = F(u).

Given an element $u_* \in \mathcal{E}$, we assume that u_* is contained in an *m*-dimensional manifold of equilibria. This means that there is an open subset $U \subset \mathbb{R}^m$, $0 \in U$, and a C^1 -function $\psi : U \to X_1$, such that

 $\psi(U) \subset \mathcal{E}, \quad \psi(0) = u_*, \quad A(\psi(\zeta))\psi(\zeta) = F(\psi(\zeta)), \quad \zeta \in U.$ (5) and the rank of $\psi'(0)$ equals m. Let A_0 denote the linearization of A(u) - F(u) at u_* . We call $u_* \in \mathcal{E}$ normally stable if the following conditions hold.

(i) near u_* the set \mathcal{E} is a C^1 -manifold in X_1 , dim $\mathcal{E} = m \in \mathbb{N}_0$,

(ii) the tangent space for \mathcal{E} at u_* is isomorphic to $N(A_0)$,

- (iii) 0 is a semi-simple eigenvalue of A_0 , i.e. $N(A_0) \oplus R(A_0) = X_0$,
- (iv) $\sigma(A_0) \setminus \{0\} \subset \mathbb{C}_+ = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}.$

The following result is due to Prüss, Simonett and Zacher [PSZ09].

Theorem. Let $1 . Suppose <math>u_* \in V \cap X_1$ is an equilibrium of (3), (A, F) satisfy (4), and that $A(u_*)$ has the property of maximal L_p -regularity. Assume that u_* is normally stable.

Then u_* is stable in X_{γ} , and there exists $\delta > 0$ such that the unique solution u(t) of (3) with initial value $u_0 \in X_{\gamma}$ satisfying $|u_0 - u_*|_{\gamma} < \delta$ exists on \mathbb{R}_+ and converges at an exponential rate in X_{γ} to some $u_{\infty} \in \mathcal{E}$ as $t \to \infty$.

In the special case m = 0 we have $\mathcal{E} = \{u_*\}$. This case is the classical principle of linear stability.

The conditions (ii) \sim (iii) cannot be relaxed as the following two-dimensional examples show.

Examples. Consider the following system in $G = \mathbb{R}^2 \setminus \{(0,0)\}$.

$$\dot{r} = -r(r-1)^3, \quad \dot{\theta} = (r-1)^k$$
 (6)

Equilibria are precisely the points on the unit sphere S_1 .

(i) Set k = 1. Then the eigenvalue zero at any point of the unit sphere $\mathcal{E} = S_1$ is not semisimple.

(ii) Set k = 2. Then the eigenvalue zero at any point of the unit sphere $\mathcal{E} = S_1$ is semisimple, but has multiplicity $2 > \dim \mathcal{E} = 1$.

In both cases the function $\Phi(r,\theta) = (r-1)^2$ is a strict Ljapunov function for the system, and the solutions will spiral towards S_1 but do not converge.

We call $u_* \in \mathcal{E}$ normally hyperbolic if

(i) near u_* the set \mathcal{E} is a C^1 -manifold in X_1 , dim $\mathcal{E} = m \in \mathbb{N}_0$, (ii) the tangent space for \mathcal{E} at u_* is given by $N(A_0)$, (iii) 0 is a semi-simple eigenvalue of A_0 , i.e. $N(A_0) \oplus R(A_0) = X_0$, (iv) $\sigma(A_0) \cap i\mathbb{R} = \{0\}, \sigma_u := \sigma(A_0) \cap \mathbb{C}_- \neq \emptyset$.

The following result is also due to Prüss, Simonett and Zacher [PSZ09].

Theorem. Let $1 . Suppose <math>u_* \in V \cap X_1$ is an equilibrium of (3), the functions (A, F) satisfy (4), and that $A(u_*)$ has the property of maximal L_p -regularity. Assume that u_* is normally hyperbolic.

Then the equilibrium u_* is unstable in X_{γ} and even in X_0 . There exists $\rho > \delta > 0$ such that the unique solution u(t) of (3) with $|u_0 - u_*| < \delta$ either satisfies dist $(u(t_0), \mathcal{E}) > \rho$ for some time $t_0 > 0$, or it exists globally and $u(t) \in B_{X_{\gamma}}(u_*, \rho)$ for all $t \ge 0$. In the latter case u(t)converges at an exponential rate to some $u_{\infty} \in \mathcal{E}$ in X_{γ} as $t \to \infty$. These local results become global if combined with a strict Ljapunv functional and compactness.

So let $\Phi : X_{\gamma} \to \mathbb{R}$ be continuous and strictly decreasing along nonconstant solutions, and consider a global solution with relatively compact orbit. Then

 $\emptyset \neq \omega(u) \subset \mathcal{E}.$

Suppose that there exists $u_* \in \omega(u)$ which is normally stable or normally hyperbolic.

The solution then comes arbitrarily close to u_* and stays in a neighbourhood of \mathcal{E} .

By the generalized principle of linear stability it converges to u_* .

Example: Consider the 2-D-system

$$\dot{r} = -r(r-1), \quad \dot{\theta} = r-1.$$

Here this argument yields convergence of all solutions.

III.1. The Two-Phase Stokes Flow with Surface Tension

The Stokes equations read

$$\begin{aligned} -\operatorname{div} T &= 0, & x \in \Omega \setminus \Gamma(t), \ t > 0, \\ \nabla \cdot u &= 0, & x \in \Omega \setminus \Gamma(t), \ t > 0, \\ \mu(\nabla u + [\nabla u]^T) - \pi I &= T, & x \in \Omega \setminus \Gamma(t), \ t > 0. \end{aligned}$$

At the interface we have the conditions

$$\begin{bmatrix} u \end{bmatrix} = 0, \quad x \in \Gamma(t), \ t > 0,$$

$$(u|\nu_{\Gamma}) = V_{\Gamma}, \quad x \in \Gamma(t), \ t > 0,$$

$$- \llbracket T \rrbracket \nu_{\Gamma} = \sigma H_{\Gamma} \nu_{\Gamma}, \quad x \in \Gamma(t), \ t > 0.$$

The initial condition reads

$$\Gamma(0)=\Gamma_0,$$

and we require no-slip at $\partial \Omega$.

Define the energy functional by means of

 $\Phi(\Gamma) := \sigma \operatorname{mes} \Gamma.$

Then

$$\partial_t \Phi(\Gamma) + 2 \|\mu^{1/2} E\|_{\Omega}^2 = 0, \tag{1}$$

hence the energy functional is a Ljapunov functional, even a strict one. We have

Theorem. Let $\mu_i, \sigma > 0$ be constants. Then

(a) The energy equality is valid for smooth solutions.
(b) The equilibria are zero velocities, constant pressures in the phase-components, the dispersed phase is a union of nonintersecting balls.
(c) The energy functional is a strict Ljapunov-functional.
(d) The critical points of the energy functional for constant phase volumes are precisely the equilibria.

III.2. Transformation to a Fixed Domain

Approximate Γ_0 by a smooth hypersurface Σ (set $\Sigma = \Gamma_*$ near an equilibrium $(0, \Gamma_*)$).

Let d(x) denote the signed distance of $x \in \mathbb{R}^n$ to Σ , and $\Pi(x)$ the projection of $x \in \mathbb{R}^n$ to Σ . Then

$$\Lambda : \Sigma \times (-a, a) \to \mathbb{R}^n$$

$$\Lambda(p, r) := p + r\nu_{\Sigma}(p), \quad \Lambda^{-1}(x) = (\Pi(x), d(x))$$

is a diffeomorphism from $\Sigma \times (-a, a)$ onto $\mathcal{R}(\Lambda) = \{x \in \mathbb{R}^n : |d(x)| < a\}$, provided

 $0 < a < \min\{r(p), 1/\kappa_j(p) : j = 1, ..., n-1, p \in \Sigma\},\$

where $\kappa_i(p)$ mean the principal curvatures of Σ at $p \in \Sigma$ and

$$\overline{B}_r(p \pm r\nu_{\Sigma}(p)) \cap \Sigma = \{p\}, \quad p \in \Sigma.$$

Use this to parametrize $\Gamma(t)$ over Σ :

 $\Gamma(t): p \mapsto p + h(t, p)\nu_{\Sigma}(p), \quad p \in \Sigma, t \ge 0.$

Extend this diffeomorphism to all of Ω :

$$\Theta(t,x) = x + \chi(d(x))h(t,\Pi(x))\nu_{\Sigma}(\Pi(x)).$$

Here χ denotes a suitable cut-off function. This way $\Omega \setminus \Gamma(t)$ is transformed to the fixed domain $\Omega \setminus \Sigma$. Then we define

$$\bar{u} = u \circ \Theta^{-1}, \quad \bar{\pi} = \pi \circ \Theta^{-1}.$$

This gives the following problem for $\bar{u}, \bar{\pi}, h$. (Drop the bars!)

$$-\mu \mathcal{A}(h)u + \mathcal{G}(h)\pi = 0 \quad \text{in } \Omega \setminus \Sigma,$$

$$(\mathcal{G}(h)|u) = 0 \quad \text{in } \Omega \setminus \Sigma,$$

$$u = 0 \text{ on } \partial\Omega,$$

$$[-\mu(\mathcal{G}(h)u + [\mathcal{G}(h)u]^T) + \pi]]\nu_{\Gamma}(h) = \sigma H_{\Gamma}(h)\nu_{\Gamma}(h) \text{ on } \Sigma,$$
 (2)

$$[u]] = 0 \quad \text{on } \Sigma,$$

$$\beta(h)\partial_t h - (u|\nu_{\Gamma}) = 0, \quad \text{on } \Sigma,$$

$$h(0) = h_0, \quad \text{on } \Sigma.$$

This is the direct mapping approach also called Hanzawa transform.

Here $\mathcal{A}(h)$ and $\mathcal{G}(h)$ denote the transformed Laplacian, resp. gradient. With the curvature tensor L_{Σ} and the surface gradient ∇_{Σ} we have

$$\nu_{\Gamma}(h) = \beta(h)(\nu_{\Sigma} - \alpha(h)), \quad \alpha(h) = M(h)\nabla_{\Sigma}h, \\ M(h) = (I - hL_{\Sigma})^{-1}, \quad \beta(h) = (1 + |\alpha(h)|^2)^{-1/2},$$

and

$$V = (\partial_t \Theta | \nu_{\Gamma}) = \partial_t h(\nu_{\Gamma} | \nu_{\Sigma}) = \beta(h) \partial_t h.$$

The curvature $H_{\Gamma}(h)$ becomes

$$H_{\Gamma}(h) = \beta(h) \{ \operatorname{tr}[M(h)(L_{\Sigma} + \nabla_{\Sigma}\alpha(h))] - \beta^{2}(h)(M(h)\alpha(h)|[\nabla_{\Sigma}\alpha(h)]\alpha(h)) \}$$

= $\beta(h)h + \mathcal{C}(h)$

a differential expression involving second order derivatives of h only linearly. \mathcal{B}, \mathcal{C} depend only on $h, \nabla_{\Sigma} h$. Its linearization is given by

$$H'_{\Gamma}(0) = \operatorname{tr} L^2_{\Sigma} + \Delta_{\Sigma}.$$

Here Δ_{Σ} denotes the Laplace-Beltrami operator on Σ .

Rewrite this problem in reduced quasilinear form, employing its principal linear part.

$$-\mu\Delta u + \nabla\pi = F_u(h)u + F_\pi(h)\pi \quad \text{in } \Omega \setminus \Sigma,$$

$$\nabla \cdot u = G_d(h)u \quad \text{in } \Omega \setminus \Sigma,$$

$$u = 0 \quad \text{on } \partial\Omega,$$

$$P_{\Sigma}[[-\mu(\nabla u + \nabla u^T)]]\nu_{\Sigma} = G_{\tau}(h)u, \quad \text{on } \Sigma,$$

$$([[-\mu(\nabla u + \nabla u^T)]]\nu_{\Sigma}|\nu_{\Sigma}) + [[\pi]] = \sigma H_{\Gamma}(h) + G_{\nu}(h)u, \quad \text{on } \Sigma,$$

$$[[u]] = 0 \quad \text{on } \Sigma,$$

$$\partial_t h - (u|\nu_{\Sigma}) = (M(h)\nabla_{\Sigma}h|u) \quad \text{on } \Sigma,$$

$$h(0) = h_0, \quad \text{on } \Sigma.$$

(3)

The right hand sides in this problem consist of lower order terms and of terms of the same order appearing on the left, but carrying a factor $|\nabla_{\Sigma}h|$, which is small by construction. The operators F_j, G_j are analytic in h and $F_j(0) = G_j(0) = 0$. Observe that the problem is linear in (u, π) .

III.3. Reduction to a Quasilinear Evolution Equation

The idea is now simple. Suppose that h is known. Solve the transmission problem for the perturbed Stokes problem to obtain

 $u = \sigma \mathcal{S}(h) H_{\Gamma}(h) = (\mathcal{S}_0 + \mathcal{S}_1(h))(\mathcal{B}(h)h + \mathcal{C}(h)),$

where S_1 is analytic in h and $S_1(0) = 0$. Then inserting into the dynamic equation for the height function h we obtain the following quasilinear evolution equation for h on Σ .

$$\dot{h} + A(h)h = F(h), t > 0, \quad h(0) = h_0.$$
 (4)

Here A and F are given by

 $A(h)k = -(\nu_{\Sigma} - M(h)\nabla_{\Sigma}h|\mathcal{S}(h)\mathcal{B}(h)k), \quad F(h) = (\nu_{\Sigma} - M(h)\nabla_{\Sigma}h|\mathcal{S}(h)\mathcal{C}(h)).$ Note that *F* contains only lower order terms, and $A(0)k = -(\nu_{\Sigma}|\mathcal{S}_0\Delta_{\Sigma}k).$ For the base space X_0 we make the following choice. If we want $u(t, \cdot) \in H_p^2(\Omega \setminus \Sigma)$ at each instant, then $H_{\Gamma}(h)$ must belong to $W_p^{1-1/p}(\Sigma)$, hence $h \in W_p^{3-1/p}(\Sigma)$ since \mathcal{B} has order 2. The Neumann-to-Dirichlet operator \mathcal{S} has order -1, hence A is of order 1.

Therefore we choose

 $X_0 = W_p^{2-1/p}(\Sigma), \quad X_1 = W_p^{3-1/p}(\Sigma), \quad \text{hence } X_{\gamma,\mu} = W_p^{\mu+2-2/p}(\Sigma).$ Then the solutions will satisfy

 $h \in H^1_p(J; W^{2-1/p}_p(\Sigma)) \cap L_p(J; W^{3-1/p}_p(\Sigma)) \hookrightarrow C(J; W^{3-2/p}_p(\Sigma)),$ and

$$u \in L_p(J; H_p^2(\Omega \setminus \Sigma) \cap H_p^1(\Omega)), \quad \pi \in L_p(J; \dot{H}_p^1(\Omega \setminus \Sigma)).$$

This is in the L_p -setting natural regularity.

We choose $p > n + 1, \mu \in ((n + 1)/p, 1)$ to obtain the embedding $W_p^{\mu+2-2/p}(\Sigma) \hookrightarrow C^2(\Sigma)$. Therefore the curvatures are well-defined pointwise.

To apply the results of Section II, we have to study the Stokes problem with linear dynamic boundary condition, given by

$$\begin{split} \omega^2 u - \mu \Delta u + \nabla \pi &= f_u, \qquad x \in \Omega \setminus \Sigma, \ t > 0, \\ \nabla \cdot u &= f_d, \qquad x \in \Omega \setminus \Sigma, \ t > 0, \\ u &= 0 \qquad x \in \partial \Omega, \\ \llbracket u \rrbracket = 0, \quad x \in \Sigma, \ t > 0, \\ -\llbracket \mu (\nabla u + (\nabla u)^{\mathsf{T}}) + \pi \rrbracket \nu_{\Sigma} + \sigma \mathcal{A}_{\Sigma} h \nu_{\Sigma} &= g_u, \quad x \in \Sigma, \ t > 0, \\ \partial_t h - (u | \nu_{\Sigma}) &= g_h, \quad x \in \Sigma, \ t > 0, \\ h(0) &= h_0, \qquad x \in \Sigma. \end{split}$$

Here $\mathcal{A}_{\Sigma} = -(\operatorname{tr} L_{\Sigma}^2 + \Delta_{\Sigma})$ and $\omega \ge 0.$

For this problem we have to prove maximal L_p -regularity and normal stability. Note that this problem lives on the domain Ω with fixed interface Σ !

III.4. The Local Semiflow

We now introduce the phase manifold of the two-phase Stokes problem with surface tension. Let $\mathcal{MH}^2(\Omega)$ denote the set of all closed hypersurfaces contained in Ω . The second normal bundle $\mathcal{N}^2(\Gamma)$ is defined by

$$\mathcal{N}^2(\Gamma) = \{ (p, \nu_{\Gamma}(p), \nabla_{\Gamma}\nu_{\Gamma}(p) : p \in \Gamma \}.$$

Next we need the Haussdorff-distance for sets $A, B \subset \mathbb{R}^N$ defined by

$$d_H(A,B) = \max\{\sup_{a \in A} \operatorname{dist}(a,B), \sup_{b \in B} \operatorname{dist}(b,A)\}.$$

We define a metric on $\mathcal{MH}^2(\Omega)$ by

$$d(\Gamma_1,\Gamma_2) = d_H(\mathcal{N}^2(\Gamma_1),\mathcal{N}^2(\Gamma_2)), \quad \Gamma_1,\Gamma_2 \in \mathcal{MH}^2(\Omega).$$

This way $\mathcal{MH}^2(\Omega)$ becomes a Banach manifold; the charts are given by parameterizations over a given hypersurface Σ , and the tangent space consists of the normal vector fields on Σ . As above, let $d_{\Sigma}(x)$ denote the signed distance for Σ . We may then define the level function φ_{Σ} by means of

$$\varphi_{\Sigma}(x) = \phi(d_{\Sigma}(x)), \quad x \in \mathbb{R}^n,$$

where

$$\phi(s) = s(1 - \chi(s/a)) + \chi(s/a) \operatorname{sgn} s, \quad s \in \mathbb{R}.$$

Then $\Sigma = \varphi_{\Sigma}^{-1}(0)$, and $\nabla_{\Sigma}\varphi(p) = \nu_{\Sigma}(p)$, for each $p \in \Sigma$.

If we consider the subset $\mathcal{MH}^2(\Omega, r)$ consisting of all closed hypersurfaces $\Gamma \in \mathcal{MH}^2(\Omega)$ such that $\Gamma \subset \Omega$ satisfies the ball condition with fixed radius r > 0 then the map $\Phi : \mathcal{MH}^2(\Omega, r) \to C^2(\overline{\Omega})$ defined by $\Phi(\Gamma) = \varphi_{\Gamma}$ is an isomorphism of the metric space $\mathcal{MH}^2(\Omega, r)$ onto $\Phi(\mathcal{MH}^2(\Omega, r)) \subset C^2(\overline{\Omega})$.

Let s - (n - 1)/p > 2; for $\Gamma \in \mathcal{MH}^2(\Omega, r)$, we define $\Gamma \in W_p^s(G, r)$ if $\varphi_{\Gamma} \in W_p^s(\Omega)$. A subset $A \subset W_p^s(\Omega, r)$ is said to be (relatively) compact, if $\Phi(A) \subset W_p^s(\Omega)$ is (relatively) compact.

Applying the theory from Lecture II we proved

Theorem 1. The two-phase Stokes problem with surface tension has a unique local-in-time L_p -solution, in the sense that the transformed problem has a solution in the class described in Section III.3. These solutions generate a local semiflow in the phase manifold \mathcal{PM} .

Theorem 2. The equilibria are stable in \mathcal{PM} . Solutions starting near an equilibrium in \mathcal{PM} converge in \mathcal{PM} to another equilibrium as $t \to \infty$.

Theorem 3. Suppose $\Gamma(t)$ is a solution which satisfies (i) the uniform ball condition (ii) $\|\Gamma(t)\|_{W_p^{3-2/p}} \leq C$ on its life time. Then this solution exists globally and converges in \mathcal{PM} to an equilibrium.