Maximal L_{p}-Regularity, Quasilinear Parabolic Problems, and the Two-Phase Stokes Flow with Surface Tension

Jan Prüss

Martin-Luther-Universität Halle-Wittenberg, Halle, Germany

Contents
I Functional Calculus and Maximal L_{p}-Regularity
II Abstract Quasilinear Evolution Equations
III The Two-Phase Stokes Flow with Surface Tension

Part I

References

CIPr01 Ph. Clément, J. Prüss. An operator-valued transference principle and maximal regularity on vector-valued L_{p}-spaces. Evolution equations and their applications in physical and life sciences. Lecture Notes in Pure and Appl. Math., 215, Marcel Dekker, New York (2001), 67-87.

DHP03 R. Denk, M. Hieber, J. Prüss, \mathcal{R}-boundedness, Fourier multipliers, and problems of elliptic and parabolic type, AMS Memoirs 788, Providence, R.I. (2003).

DHP07 R. Denk, M. Hieber, J. Prüss, Optimal L^{p} - L^{q}-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257 (2007), no. 1, 193-224.

KaWe01 N.J. Kalton, L. Weis. The H^{∞}-calculus and sums of closed operators. Math. Ann. 321 (2001), 319-345.

PrSiO4 J. Prüss, G. Simonett, Maximal regularity for evolution equations in weighted L_{p}-spaces. Archiv Math. 82, 415-431 (2004)

Wei01 L. Weis, A new approach to maximal L_{p}-regularity. In Evolution Equ. and Appl. Physical Life Sci., volume 215 of Lect. Notes Pure and Applied Math., pages 195-214, New York, 2001. Marcel Dekker.

I.1. Sectorial and R-Sectorial Operators

Definition. Let X_{0} be a Banach space, and A a closed linear operator in X_{0}. A is called pseudo-sectorial $\left(A \in \Psi \mathcal{S}\left(X_{0}\right)\right.$), if $(-\infty, 0) \subset \rho(A)$ and there is a constant $M>0$ such that

$$
\left|t(t+A)^{-1}\right| \leq M \quad \text { for all } t>0
$$

A is called sectorial $\left(A \in \mathcal{S}\left(X_{0}\right)\right)$ if in addition $\overline{\mathcal{D}(A)}=\overline{\mathcal{R}(A)}=X_{0}$.

Let Σ_{ϕ} denote the open sector with angle $\phi \in(0, \pi)$:

$$
\Sigma_{\phi}=\{z \in \mathbb{C}: z \neq 0,|\arg (z)|<\phi\} .
$$

The spectral angle ϕ_{A} of A is then defined by

$$
\begin{equation*}
\phi_{A}=\inf \left\{\phi: \rho(-A) \supset \Sigma_{\pi-\phi}, \sup _{\lambda \in \Sigma_{\pi-\phi}}\left|\lambda(\lambda+A)^{-1}\right|<\infty\right\} \tag{1}
\end{equation*}
$$

Evidently, we have

$$
\phi_{A} \in[0, \pi) \text { and } \phi_{A} \geq \sup \{|\arg \lambda|: \lambda \in \sigma(A)\} .
$$

A (pseudo-)sectorial operator A is called R-(pseudo)-sectorial, $A \in \mathcal{R S}\left(X_{0}\right)$ (resp. $A \in \Psi \mathcal{R} \mathcal{S}\left(X_{0}\right)$) for short, if the set

$$
\left\{t(t+A)^{-1}: t>0\right\} \subset \mathcal{B}(X)
$$

is R-bounded. The R-angle of A is defined as

$$
\begin{equation*}
\phi_{A}^{R}:=\inf \left\{\phi: \mathcal{R}\left\{\lambda(\lambda+A)^{-1}: \lambda \in \Sigma_{\pi-\phi}\right\}<\infty\right\} \tag{2}
\end{equation*}
$$

Evidently $\phi_{A}^{R} \geq \phi_{A}$.
Sectorial operators A allow for the Dunford calculus on sectors Σ_{ϕ}. For this purpose let

$$
\mathcal{H}_{0}\left(\Sigma_{\phi}\right):=\left\{h: \Sigma_{\phi} \rightarrow \mathbb{C} \text { holomorhic: } \sup _{z \in \Sigma_{\phi}}\left|\left(z^{-\alpha}+z^{\alpha}\right) h(z)\right|<\infty\right\}
$$

where $\alpha \in(0,1)$ is an exponent which may depend on h.
For $h \in \mathcal{H}_{0}\left(\Sigma_{\phi}\right)$ we define

$$
\begin{equation*}
h(A):=\frac{1}{2 \pi i} \int_{\Gamma_{\theta}} h(z)(z-A)^{-1} d z \tag{3}
\end{equation*}
$$

Here $\phi_{A}<\theta<\phi$ is arbitrary, thanks to Cauchy's theorem.

The map $\psi: h \mapsto h(A)$ is an algebra-homomorphism from the algebra $\mathcal{H}_{0}\left(\Sigma_{\phi}\right)$ to the algebra $\mathcal{B}\left(X_{0}\right)$.

The (pseudo)-sectorial operator A is said to admit an \mathcal{H}^{∞}-calculus if the map ψ is bounded for some $\phi \in\left(\phi_{A}, 2 \pi\right)$. The infimum of such $\phi>\phi_{A}$ is called the \mathcal{H}^{∞}-angle of A, it is denoted by ϕ_{A}^{∞}.

In this case the Dunford calculus extends to an algebra-homomorphism $\psi: \mathcal{H}^{\infty}\left(\Sigma_{\phi}\right) \rightarrow \mathcal{B}(X)$, for each $\phi>\phi_{A}^{\infty}$, and there is a constant $c_{A}^{\phi}>0$ such that

$$
|h(A)|_{\mathcal{B}\left(X_{0}\right)} \leq c_{A}^{\phi}|h|_{\mathcal{H} \infty\left(\Sigma_{\phi}\right)} .
$$

Such estimates are a powerful tool. The concept H^{∞}-calculus is due to McIntosh [McI86].

Suppose that $A \in \mathcal{H}^{\infty}\left(X_{0}\right)$. For $s \in \mathbb{R}$, set $h_{s}(z)=z^{i s}$; then $h_{s} \in \mathcal{H}^{\infty}(\Sigma)$ hence $A^{i s}:=h_{s}(A)$ is well-defined and forms a bounded C_{0}-group in X_{0}, since

$$
\left|A^{i s}\right|_{\mathcal{B}(X)} \leq c_{A}^{\phi}\left|h_{s}\right|_{\mathcal{H} \infty\left(\Sigma_{\phi}\right)}=c_{A}^{\phi} e^{|s| \phi}, \quad s \in \mathbb{R} .
$$

Such operators are said to admit bounded imaginary powers, this class is denoted by $\mathcal{B I P}\left(X_{0}\right)$. The type of the group $A^{i s}$ is called power angle of A, we denote it by Θ_{A}. Obviously $\Theta_{A} \leq \phi_{A}^{\infty}$.

Clément and Prüss [CIPr01] have shown that if X_{0} is of class $\mathcal{H} \mathcal{T}$, then

$$
\mathcal{B I P}\left(X_{0}\right) \subset \mathcal{R} \mathcal{S}\left(X_{0}\right), \quad \phi_{A}^{R} \leq \Theta_{A}
$$

Here a Banach space X_{0} is said to be of class $\mathcal{H} \mathcal{T}$ if the Hilbert-transform

$$
H u(t):=\int_{\mathbb{R}} u(t-\tau) d \tau / \pi \tau, \quad t \in \mathbb{R}
$$

is bounded in $L_{2}\left(\mathbb{R} ; X_{0}\right)$. This class of Banach spaces coincides with the class of UMD-spaces.

I.2. The Operator $G=d / d t$ in $L_{p}(J ; E)$.

Let $1<p<\infty, E$ a Banach space, and define the derivation operator G in $X_{0}=L_{p}(\mathbb{R} ; E)$ by means of

$$
G u(t)=\frac{d}{d t} u(t), \quad t \in \mathbb{R}, \quad \mathcal{D}(G)=H_{p}^{1}(\mathbb{R} ; E)
$$

This is a sectorial operator and its resolvent is given by

$$
(\lambda+G)^{-1} u(t)=\int_{0}^{\infty} e^{-\lambda \tau} u(t-\tau) d \tau, \quad t \in \mathbb{R}, \operatorname{Re} \lambda>0
$$

the spectral angle is $\Phi_{G}=\pi / 2$. Note that G is a causal operator, it is the negative generator of the translation group. When does G admit an \mathcal{H}^{∞}-calculus?

Let $h \in \mathcal{H}_{0}\left(\Sigma_{\phi}\right)$ for some $\phi>\pi / 2$. Then
$h(G) u=\frac{1}{2 \pi i} \int_{\Gamma_{\theta}} h(z)(z-G)^{-1} u d z=k_{h} * u, \quad k_{h}(t)=\frac{1}{2 \pi i} \int_{\Gamma_{\theta}} h(z) e^{z t} u d z$.

Thus k_{h} is the inverse Laplace-transform of h, or $\mathcal{L} k_{h}(z)=h(z)$. In other words, for $h \in \mathcal{H}^{\infty}\left(\Sigma_{\phi}\right)$ the operator $h(G)$ is bounded if the function $m(\xi)=h(i \xi)$ is a Fourier-multiplier for $L_{p}(\mathbb{R} ; E)$.

Now, such functions satisfy the Mikhlin condition, and the Mikhlin theorem is valid in $L_{p}(\mathbb{R} ; E)$ provided E is of class $\mathcal{H T}$. On the other hand, the simplest nontrivial multiplier satisfying the Mikhlin condition is $m(\xi)=-i \operatorname{sgn} \xi$. But this is the symbol of the Hilbert transform!

Thus we have

Theorem. Let $1<p<\infty, E$ b a Banach space of class $\mathcal{H} \mathcal{T}$ and let $G=d / d t$ be defined as above.
Then $G \in \mathcal{H}^{\infty}\left(L_{p}(\mathbb{R} ; E)\right)$ with $\phi_{G}^{\infty}=\pi / 2$. Conversely, if $G \in \mathcal{B I} \mathcal{P}\left(L_{p}(\mathbb{R} ; E)\right)$ for some $p \in(1, \infty)$ then E is necessarily of class $\mathcal{H} \mathcal{T}$.

By causality, this result is also valid in $L_{p}(J ; E)$ where $J=\mathbb{R}_{+}$or $J=[0, a]$, with $\mathcal{D}(A):={ }_{0} H_{p}^{1}(J ; E):=\left\{u \in H_{p}^{1}(J ; E): u(0)=0\right\}$.

I.3. An Operator-Valued \mathcal{H}^{∞}-Calculus

A powerful tool is the following extension of the scalar \mathcal{H}^{∞}-calculus of a sectorial operator to the operator-valued case.

Theorem. Let $A \in \mathcal{H}^{\infty}\left(X_{0}\right)$ and $F \in \mathcal{H}^{\infty}\left(\Sigma_{\phi} ; \mathcal{B}\left(X_{0}\right)\right)$ such that

$$
F(\lambda)(\mu-A)^{-1}=(\mu-A)^{-1} F(\lambda), \quad \mu \in \rho(A), \lambda \in \Sigma_{\phi}
$$

Suppose $\phi>\phi_{A}^{\infty}$ and that $F\left(\Sigma_{\phi}\right)$ is R-bounded. Then $F(A) \in \mathcal{B}\left(X_{0}\right)$.

This result is known as the Kalton-Weis theorem; cf. [KaWe01]. It yields a so-called joint functional calculus.

Corollary. Suppose $A \in \mathcal{H}^{\infty}\left(X_{0}\right)$ and $B \in \mathcal{S}\left(X_{0}\right)$ are commuting, $f \in \mathcal{H}^{\infty}\left(\Sigma_{\phi} \times \Sigma_{\psi}\right)$ with $\phi>\phi_{A}^{\infty}, \psi>\phi_{B}$, and assume $\mathcal{R}\left(f\left(\Sigma_{\phi}, B\right)\right)<\infty$. Then $f(A, B) \in \mathcal{B}\left(X_{0}\right)$. In particular, this assertion holds if the functional calculus for B is R-bounded.

Another consequence of the Kalton-Weis theorem is a variant of the Dore-Venni theorem for operator sums.

Corollary. Suppose $A \in \mathcal{H}^{\infty}\left(X_{0}\right)$ and $B \in \mathcal{R} \mathcal{S}\left(X_{0}\right)$ are commuting, and such that $\phi_{A}^{\infty}+\phi_{B}^{R}<\pi$.
Then $A+B$ with domain $\mathcal{D}(A+B)=\mathcal{D}(A) \cap \mathcal{D}(B)$ is closed, $A+B \in \mathcal{S}\left(X_{0}\right)$ with $\phi_{A+B} \leq \max \left\{\phi_{A}^{\infty}, \phi_{B}^{R}\right\}$, and

$$
|A x|+|B x| \leq C|(A+B) x|, \quad x \in \mathcal{D}(A) \cap \mathcal{D}(B)
$$

If in addition $B \in \mathcal{R} \mathcal{H}^{\infty}\left(X_{0}\right)$ then $A+B \in \mathcal{H}^{\infty}\left(X_{0}\right)$ and $\phi_{A+B}^{\infty} \leq \max \left\{\phi_{A}^{\infty}, \phi_{B}^{R \infty}\right\}$.

The following corollary deals with products of sectorial operators.
Corollary. Suppose $A \in \mathcal{H}^{\infty}\left(X_{0}\right)$ is invertible, and $B \in \mathcal{R} \mathcal{S}\left(X_{0}\right)$ are commuting, and such that $\phi_{A}^{\infty}+\phi_{B}^{R}<\pi$.
Then $A B$ with domain $\mathcal{D}(A B)=\{x \in \mathcal{D}(B): B x \in \mathcal{D}(A)\}$ is closed and sectorial, with $\phi_{A B} \leq \phi_{A}^{\infty}+\phi_{B}^{R}$. If in addition $B \in \mathcal{R} \mathcal{H}^{\infty}\left(X_{0}\right)$, then $A B \in \mathcal{H}^{\infty}\left(X_{0}\right)$ and $\phi_{A B}^{\infty} \leq \phi_{A}^{\infty}+\phi_{B}^{R \infty}$.

I.4. Maximal L_{p}-Regularity

Let X_{0} be a Banach space with norm $|\cdot|_{0}$, and let A be a linear, closed, densely defined operator in X_{0}.
Let $J=[0, \infty)$ or $[0, a]$ for some $a>0$ and let
$f: J \rightarrow X_{0}$ be given. Consider the inhomogeneous initial value problem

$$
\begin{align*}
& \dot{u}(t)+A u(t)=f(t) \quad t \in J \tag{1}\\
& u(0)=u_{0}
\end{align*}
$$

in $L_{p}\left(J ; X_{0}\right)$ for $p \in(1, \infty)$.
The definition of maximal L_{p}-regularity for (1) is as follows.

Definition. A is said to belong to the class $\mathcal{M} \mathcal{R}_{p}\left(J ; X_{0}\right)$ - and we say that there is maximal L^{p}-regularity for (1) - if for each $f \in L_{p}\left(J ; X_{0}\right)$ there exists a unique $u \in H_{p}^{1}\left(J ; X_{0}\right) \cap L_{p}\left(J ; X_{1}\right)$ satisfying (1) in the $L_{p}(J ; X)$ sense, with $u_{0}=0$.

The closed graph theorem implies then that there exists a constant $C>0$ such that

$$
\begin{equation*}
\|u\|_{H_{p}^{1}\left(J ; X_{0}\right)}+\|A u\|_{L_{p}\left(J ; X_{0}\right)} \leq C\|f\|_{L_{p}\left(J ; X_{0}\right)} \tag{2}
\end{equation*}
$$

Theorem. Let $A \in \mathcal{M R}_{p}\left(J ; X_{0}\right)$ for some $p \in(1, \infty)$.
Then the following assertions are valid.
(i) If $J=[0, a]$ then there is $\omega \geq 0$ and $M \geq 1$ such that $\{z \in \mathbb{C}: \operatorname{Re} z \leq-\omega\} \subset \rho(A)$ and the estimate

$$
\left|z(z+A)^{-1}\right|_{\mathcal{B}\left(X_{0}\right)} \leq M, \quad \operatorname{Re} z \geq \omega
$$

is valid. In particular, $\omega+A$ is sectorial with spectral angle $<\pi / 2$.
(ii) If $J=\mathbb{R}_{+}$then $\mathbb{C}_{-}:=\{z \in \mathbb{C}: \operatorname{Re} z<0\} \subset \rho(A)$ and there is a constant $M \geq 1$ such that

$$
\left|(z+A)^{-1}\right|_{\mathcal{B}\left(X_{0}\right)} \leq \frac{M}{1+|z|}, \quad \operatorname{Re} z>0
$$

In particular, A is sectorial with spectral angle $<\pi / 2$ and $0 \in \rho(A)$.

If one requires for the solution of (1) only $u \in C\left(\mathbb{R}_{+} ; X_{0}\right)$ and $\dot{u}, A u \in$ $L_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$, we call the class of such operators $0 \mathcal{M} \mathcal{R}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$.

Corollary. Suppose $A \in 0 \mathcal{M R}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$.
Then A is pseudo-sectorial in X_{0} with spectral angle $<\pi / 2$.
Moreover, $A \in \mathcal{M} \mathcal{R}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ if and only if $A \in 0 \mathcal{M} \mathcal{R}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ and $0 \in \rho(A)$.

Thus, for a finite interval $J=[0, a]$ its length $a>0$ plays no role for maximal L_{p}-regularity, and up to a shift of A, without loss of generality, we may consider $J=[0, \infty)$ and may assume that $-A$ is the generator of an analytic semigroup of negative exponential type.

Assuming the latter, it is well-known that there exists a solution $u \in$ $H_{p}^{1}\left(\mathbb{R}_{+} ; X_{0}\right) \cap L_{p}\left(\mathbb{R}_{+} ; \mathcal{D}(A)\right)$ satisfying (1) with $f=0$ in the $L_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ sense if and only if $u_{0} \in X_{\gamma}:=\left(X_{0}, X_{1}\right)_{1-\frac{1}{p}, p}$, where $X_{1}=\mathcal{D}(A)$ equipped with the graph norm of A. In fact, this follows easily from
the well-known basic characterization of the real interpolation spaces X_{γ} in terms of A :

$$
X_{\gamma}=\mathcal{D}_{A}(1-1 / p, p):=\left\{x \in X_{0}: A e^{-A t} x \in L_{p}\left(\mathbb{R}_{+} ; X_{0}\right)\right\}
$$

In the sequel, we denote by $|\cdot|_{\gamma}$ a norm on X_{γ}. Now we can state
Corollary. Let $A \in \mathcal{M} \mathcal{R}\left(J ; X_{0}\right)$. Then the map $u \mapsto(\dot{u}+A u, u(0))$ is an isomorphism from $H_{p}^{1}\left(J ; X_{0}\right) \cap L_{p}\left(J ; X_{1}\right)$ onto $L_{p}\left(J ; X_{0}\right) \times X_{\gamma}$.

This result is very useful for quasilinear problems since it allows for the use of the implicit function theorem.

The class $0 \mathcal{M} \mathcal{R}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ does not depend on $p \in(1, \infty)$. This result is due to Sobolevskii [Sob64].

Theorem. Suppose $A \in 0 \mathcal{M} \mathcal{R}_{p_{0}}\left(\mathbb{R}_{+} ; X_{0}\right)$ for some $p_{0} \in(1, \infty)$.
Then $A \in \operatorname{MM}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ for all $p \in(1, \infty)$

Another nice property of maximal L_{p}-regularity is its invariance under perturbations.

Theorem. Suppose $A \in \mathcal{M} \mathcal{R}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ and let B be linear operator in X_{0} with $\mathcal{D}(B) \supset \mathcal{D}(A)$ and assume there are constants $\alpha, \beta \geq 0$ such that

$$
|B x|_{0} \leq \alpha|x|_{0}+\beta|A x|_{0}, \quad x \in \mathcal{D}(A)
$$

Then there are constants $\beta_{0}>0$ and $\omega \geq 0$ such that $\beta<\beta_{0}$ implies $\omega+A+B \in \mathcal{M} \mathcal{R}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$.

Note that such a perturbation result is false for the class $\mathcal{H}^{\infty}\left(X_{0}\right)!!$
As usual, in Hilbert spaces life is easy. The next theorem is an old result due to de Simon [dSi64].

Theorem. Let $1<p<\infty$ and X_{0} be a Hilbert space.
Then $A \in o \mathcal{M} \mathcal{R}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ if and only if A is pseudo-sectorial with spectral angle $\phi_{A}<\pi / 2$.

Recently, Weis [Wei01] obtained the following characterization of maximal L_{p}-regularity.

Theorem. Let X_{0} be a Banach space of class $\mathcal{H T}$, and let A be pseudo-sectorial with spectral angle $\phi_{A}<\pi / 2$.
Then $A \in 0 \mathcal{M R}_{p}(X)$ if and only if the set $\left\{i \rho(i \rho+A)^{-1}: \rho \in \mathbb{R}\right\}$ is \mathcal{R}-bounded, i.e. if and only if A is R-sectorial with R-angle $\phi_{A}^{R}<\pi / 2$.

The result of de Simon follows from this one since in Hilbert spaces families of operators are R-bounded if and only if they are uniformly bounded.

The sufficiency part in the result of Weis can be obtained as a consequence of the operator sum corollary to the Kalton-Weis theorem.

I.5. Time-Weighted L_{p}-Spaces

Let as before $1<p<\infty$ and $J=\mathbb{R}_{+}$. We now consider the timeweighted spaces

$$
L_{p, \mu}\left(J, X_{0}\right):=\left\{u: J \rightarrow X_{0}: t^{1-\mu} u \in L_{p}\left(J ; X_{0}\right)\right\}, \quad 1 / p<\mu<1
$$

The time weight allows for weak singularities at time $t=0$. We define similarly

$$
H_{p, \mu}^{1}\left(J ; X_{0}\right):=\left\{u \in L_{p, \mu}\left(J ; X_{0}\right): t^{1-\mu} \dot{u} \in L_{p}\left(J ; X_{0}\right)\right\}
$$

Then the trace space $X_{\gamma, \mu}$ of $\mathbb{E}_{\mu}(J):=H_{p, \mu}^{1}\left(J ; X_{0}\right) \cap L_{p, \mu}\left(J, X_{1}\right)$ is given by $X_{\gamma, \mu}=\left(X_{0}, X_{1}\right)_{\mu-1 / p, p}$.

We are again interested in the Cauchy problem (1). The following result has been proved in Prüss-Simonett [PrSiO 4$]$.

Theorem. Let $1<p<\infty, 1 / p<\mu<1$ and assume $A \in \mathcal{M} \mathcal{R}\left(J ; X_{0}\right)$.
Then the map $u \mapsto(\dot{u}+A u, u(0))$ is an isomorphism from $H_{p, \mu}^{1}\left(J ; X_{0}\right) \cap L_{p, \mu}\left(J ; X_{1}\right)$ onto $L_{p, \mu}\left(J ; X_{0}\right) \times X_{\gamma, \mu}$.

This result shows parabolic regularization since

$$
\mathbb{E}_{\mu}(J) \hookrightarrow \mathbb{E}_{1}([\delta, \infty)) \hookrightarrow C_{0}\left([\delta, \infty) ; X_{\gamma}\right)
$$

for each $\delta>0$.

This is of particular importance for compactness of orbits of quasilinear problems, as we will see below.

Moreover, in view of the Kalton-Weis theorem, the following result, also proved in Prüss-Simonett [PrSiO4], is important.

Theorem. Let $1<p<\infty, 1 / p<\mu<1, E b$ a Banach space of class $\mathcal{H T}$, and let $G=d / d t$ with domain ${ }_{0} H_{p, \mu}^{1}(J ; E)$.
Then $G \in \mathcal{H}^{\infty}\left(L_{p, \mu}\left(\mathbb{R}_{+} ; E\right)\right)$ with $\phi_{G}^{\infty}=\pi / 2$.

Note that for $1 / p<\mu<1$, the translation semigroup generated by $-G$ is not bounded in $L_{p, \mu}\left(\mathbb{R}_{+} ; E\right)$, in contrast to the case $\mu=1$!

Part II

References

Ama05 H. Amann, Quasilinear parabolic problems via maximal regularity. Adv. Differential Equation 10, 1081-1110 (2005)

CleLi9 Ph. Clément, S. Li, Abstract parabolic quasilinear equations and application to a groundwater flow problem. Adv. Math. Sci. Appl. 3, (1993)

KPW09 M. Köhne, J. Prüss, M. Wilke, On quasilinear parabolic evolution equations in weighted L_{p}-spaces. J. Evolu. Eqns (to appear 2010)

Pru03 J. Prüss, Maximal regularity for evolution equations in L_{p}-spaces.
Conf. Sem. Mat. Univ. Bari 285, 1-39 (2003)
PrSiO4 J. Prüss, G. Simonett, Maximal regularity for evolution equations in weighted L_{p}-spaces. Archiv Math. 82, 415-431 (2004)

PSZ09 J. Prüss, G. Simonett, R. Zacher, Convergence of solutions to equilibria for nonlinear parabolic problems. J. Diff. Equations 246, 3902-3931 (2009)

II.1. Quasilinear Evolution Equations

Let $X_{1} \hookrightarrow X_{0}$ densely, $J_{0}=\left[0, a_{0}\right]$, and let $1<p<\infty$. Consider the abstract quasilinear problem

$$
\begin{align*}
& \dot{u}(t)+A(t, u(t)) u(t)=F(t, u(t)), \quad t \in J \tag{1}\\
& u(0)=u_{0}
\end{align*}
$$

Here $u_{0} \in X_{\gamma}:=\left(X_{0}, X_{1}\right)_{1-1 / p, p}, A: J_{0} \times X_{\gamma} \rightarrow \mathcal{B}\left(X_{1}, X_{0}\right)$ is continuous, and $F: J_{0} \times X_{\gamma} \rightarrow X_{0}$ is Caratheodory, i.e. such that $F(\cdot, u)$ is measurable for each $u \in X_{\gamma}, F(t, \cdot)$ continuous for a.a. $t \in J_{0}$. Moreover, we assume the following Lipschitz continuity of A_{1} and F_{1}.
(A_{1}) For each $R>0$ there is a constant $L(R)>0$ such that

$$
\begin{aligned}
& |A(t, u) v-A(t, \bar{u}) v|_{0} \leq L(R)|u-\bar{u}|_{\gamma}|v|_{1} \\
& \quad t \in J_{0}, u, \bar{u} \in X_{\gamma},|u|_{\gamma},|\bar{u}|_{\gamma} \leq R, v \in X_{1}
\end{aligned}
$$

(F_{1}) $\quad f(\cdot):=F(\cdot, 0) \in L_{p}\left(J_{0} ; X\right)$; for each $R>0$ there is a function $\phi_{R} \in L_{p}\left(J_{0}\right)$ such that

$$
\begin{aligned}
& |F(t, u)-F(t, \bar{u})|_{0} \leq \phi_{R}(t)|u-\bar{u}|_{\gamma} \\
& \quad \text { for a.a. } t \in J_{0}, u, \bar{u} \in X_{\gamma},|u|_{\gamma},|\bar{u}|_{\gamma} \leq R .
\end{aligned}
$$

The following result is essentially due to Clément and Li [CILi94]; see also Prüss [Mon03].

Theorem. Suppose assumptions $\left(A_{1}\right)$ and $\left(F_{1}\right)$ are satisfied, and assume that $A_{0}=A\left(0, u_{0}\right)$ has the property of maximal L_{p}-regularity. Then there is $a \in\left(0, a_{0}\right.$] such that (1) admits a unique solution u on $J=[0, a]$ in the maximal regularity class $u \in H_{p}^{1}\left(J ; X_{0}\right) \cap L_{p}\left(J ; X_{1}\right)$. The solution depends continuously on u_{0}.

Concerning continuation of the solution u, observe that $u \in C\left(J ; X_{\gamma}\right)$ holds. Therefore the natural phase space for the problem is the space X_{γ}, and by uniqueness of the solutions, in the autonomous case the map $u_{0} \mapsto u(t)$ defines a local semiflow on X_{γ}.

Corollary. Suppose assumptions $\left(A_{1}\right)$ and $\left(F_{1}\right)$ are satisfied, and assume that $A(t, v)$ has maximal L_{p}-regularity for each $t \in J_{0}, v \in$ X_{γ}. Then the solution $u(t)$ of (1) has a maximal interval of existence $J\left(u_{0}\right)=\left[0, t_{+}\left(u_{0}\right)\right)$, which is characterized by the equivalent conditions

$$
\int_{J\left(u_{0}\right)}\left[|u(t)|_{1}^{p}+|\dot{u}(t)|_{0}^{p}\right] d t=\infty
$$

and

$$
\lim _{t \rightarrow t_{+}\left(u_{0}\right)} u(t) \quad \text { does not exist in } X_{\gamma}
$$

In the autonomous case, the map $u_{0} \mapsto u(t)$ defines a local semiflow on the natural phase space X_{γ}.

We now give two abstract criteria for global existence.

Proposition. Let the assumptions of the previous Corollary hold. Suppose that the solution u of (1) with maximal interval $J\left(u_{0}\right)$ satisfies
one of the following conditions.
(i) u is uniformly continuous in X_{γ} on $J\left(u_{0}\right)$;
(ii) $u\left(J\left(u_{0}\right)\right) \subset X_{\gamma}$ is relatively compact.

Then the solution $u(t)$ of (1) exists globally on J_{0}.

Specializing to the case $A(t, v)=A(t)$ and $F(t, v)=B(t) v+f(t)$, where $A: J_{0} \rightarrow \mathcal{B}\left(X_{1}, X_{0}\right)$ is continuous, $B \in L_{p}\left(J_{0} ; \mathcal{B}\left(X_{\gamma}, X_{0}\right)\right)$, and $f \in$ $L_{p}\left(J_{0} ; X_{0}\right)$, we obtain a result for the nonautonomous linear problem

$$
\begin{align*}
& \dot{u}(t)+A(t) u(t)=B(t) u(t)+f(t), \quad t \in J_{0} \tag{2}\\
& u(0)=u_{0}
\end{align*}
$$

Corollary Let $A \in C\left(J_{0} ; \mathcal{B}\left(X_{1}, X_{0}\right)\right)$ be such that $A(t)$ has maximal L_{p}-regularity for each $t \in J_{0}$, and let $B \in L_{p}\left(J_{0} ; \mathcal{B}\left(X_{\gamma}, X_{0}\right)\right)$.
Then (2) admits a unique solution

$$
u \in H_{p}^{1}\left(J_{0} ; X_{0}\right) \cap L_{p}\left(J_{0} ; X_{1}\right)
$$

if and only if $f \in L_{p}\left(J_{0} ; X_{0}\right)$ and $u_{0} \in X_{\gamma}$.

II.2. Weighted L_{p}-Spaces

We want to extend the existence result from the previous section to the case of weighted L_{p}-spaces to obtain parabolic smoothing also for quasilinear equations. So we now assume
(A_{μ}) For each $R>0$ there is a constant $L(R)>0$ such that

$$
\begin{array}{r}
|A(t, u) v-A(t, \bar{u}) v|_{0} \leq L(R)|u-\bar{u}|_{\gamma, \mu}|v|_{1}, \\
t \in J_{0}, u, \bar{u} \in X_{\gamma, \mu},|u|_{\gamma, \mu},|\bar{u}|_{\gamma, \mu} \leq R, v \in X_{1} .
\end{array}
$$

(F_{μ}) $\quad f(\cdot):=F(\cdot, 0) \in L_{p, \mu}\left(J_{0} ; X\right)$; for each $R>0$ there is a function $\phi_{R} \in L_{p, \mu}\left(J_{0}\right)$ such that

$$
\begin{aligned}
& |F(t, u)-F(t, \bar{u})|_{0} \leq \phi_{R}(t)|u-\bar{u}|_{\gamma, \mu} \\
& \quad \text { for a.a. } t \in J_{0}, u, \bar{u} \in X_{\gamma, \mu},|u|_{\gamma, \mu},|\bar{u}|_{\gamma, \mu} \leq R .
\end{aligned}
$$

The following result is due to Köhne, Prüss and Wilke [KPW09].

Theorem. Suppose assumptions $\left(A_{\mu}\right)$ and $\left(F_{\mu}\right)$ are satisfied for some $\mu \in(1 / p, 1)$, and assume that $A_{0}=A\left(0, u_{0}\right)$ has the property of maximal L_{p}-regularity.

Then there is $a \in\left(0, a_{0}\right]$ such that for $u_{0} \in X_{\gamma, \mu}$, problem (1) admits a unique solution u on $J=[0, a]$ in the maximal regularity class $u \in H_{p, \mu}^{1}\left(J ; X_{0}\right) \cap L_{p, \mu}\left(J ; X_{1}\right)$. The solution map $u_{0} \mapsto u$ is continuous.

Note that conditions $\left(A_{\mu}\right)$ and $\left(F_{\mu}\right)$ become stronger for decreasing μ, in particular these conditions imply (A_{1}) and (F_{1}). Therefore once we have the solution on some time-interval $[0, a]$, we may continue it in the natural phase space X_{γ} rather than in $X_{\gamma, \mu}$.

We use this result to obtain compactness of orbits which are bounded in the natural phase space X_{γ}. For simplicity we restrict here to the autonomous case on \mathbb{R}_{+}. Thus we assume
(H_{μ}) For each $R>0$ there is a constant $L(R)>0$ such that

$$
\begin{aligned}
& |A(u) v-A(\bar{u}) v|_{0} \leq L(R)|u-\bar{u}|_{\gamma, \mu}|v|_{1}, \\
& |F(u)-F(\bar{u})|_{0} \leq L(R)|u-\bar{u}|_{\gamma, \mu}, \\
& \quad \text { for all } u, \bar{u} \in X_{\gamma, \mu},|u|_{\gamma, \mu},|\bar{u}|_{\gamma, \mu} \leq R .
\end{aligned}
$$

Now we can prove the following result which is also due to Köhne, Prüss and Wilke [KPW09].

Theorem. Assume $\left(H_{\mu}\right)$ for some $\mu \in(1 / p, 1)$, suppose $A(u) \in$ $\mathcal{M} \mathcal{R}_{p}\left(\mathbb{R}_{+} ; X_{0}\right)$ for each $u \in X_{\gamma, \mu}$, and that the embedding $X_{\gamma} \hookrightarrow X_{\gamma, \mu}$ is compact. Let u be a solution of $\dot{u}+A(u) u=F(u)$ on its maximal interval of existence $\left[0, t_{+}\right)$and assume that u is bounded in X_{γ}.

Then $t_{+}=\infty$, i.e. the solution is global, and its orbit $u\left(\mathbb{R}_{+}\right) \subset X_{\gamma}$ is relatively compact in X_{γ}. In particular the limit set $\omega(u) \subset X_{\gamma}$ is nonempty.

II.3. The Generalized Principle of Linear Stability

In this section we consider the autonomous quasilinear problem

$$
\begin{equation*}
\dot{u}(t)+A(u(t)) u(t)=F(u(t)), \quad t>0, \quad u(0)=u_{0} \tag{3}
\end{equation*}
$$

Here we assume

$$
\begin{equation*}
(A, F) \in C^{1}\left(V, \mathcal{B}\left(X_{1}, X_{0}\right) \times X_{0}\right) \tag{4}
\end{equation*}
$$

where $V \subset X_{\gamma}$ is open. Let $\mathcal{E} \subset V \cap X_{1}$ denote the set of equilibrium solutions of (3), which means that

$$
u \in \mathcal{E} \quad \text { if and only if } \quad u \in V \cap X_{1}, A(u) u=F(u)
$$

Given an element $u_{*} \in \mathcal{E}$, we assume that u_{*} is contained in an mdimensional manifold of equilibria. This means that there is an open subset $U \subset \mathbb{R}^{m}, 0 \in U$, and a C^{1}-function $\psi: U \rightarrow X_{1}$, such that

$$
\begin{equation*}
\psi(U) \subset \mathcal{E}, \quad \psi(0)=u_{*}, \quad A(\psi(\zeta)) \psi(\zeta)=F(\psi(\zeta)), \quad \zeta \in U \tag{5}
\end{equation*}
$$

and the rank of $\psi^{\prime}(0)$ equals m.

Let A_{0} denote the linearization of $A(u)-F(u)$ at u_{*}. We call $u_{*} \in \mathcal{E}$ normally stable if the following conditions hold.
(i) near u_{*} the set \mathcal{E} is a C^{1}-manifold in $X_{1}, \operatorname{dim} \mathcal{E}=m \in \mathbb{N}_{0}$,
(ii) the tangent space for \mathcal{E} at u_{*} is isomorphic to $N\left(A_{0}\right)$,
(iii) 0 is a semi-simple eigenvalue of A_{0}, i.e. $N\left(A_{0}\right) \oplus R\left(A_{0}\right)=X_{0}$,
(iv) $\sigma\left(A_{0}\right) \backslash\{0\} \subset \mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$.

The following result is due to Prüss, Simonett and Zacher [PSZ09].

Theorem. Let $1<p<\infty$. Suppose $u_{*} \in V \cap X_{1}$ is an equilibrium of (3), (A, F) satisfy (4), and that $A\left(u_{*}\right)$ has the property of maximal L_{p}-regularity. Assume that u_{*} is normally stable.

Then u_{*} is stable in X_{γ}, and there exists $\delta>0$ such that the unique solution $u(t)$ of (3) with initial value $u_{0} \in X_{\gamma}$ satisfying $\left|u_{0}-u_{*}\right|_{\gamma}<\delta$ exists on \mathbb{R}_{+}and converges at an exponential rate in X_{γ} to some $u_{\infty} \in \mathcal{E}$ as $t \rightarrow \infty$.

In the special case $m=0$ we have $\mathcal{E}=\left\{u_{*}\right\}$. This case is the classical principle of linear stability.

The conditions (ii) $\sim($ iii $)$ cannot be relaxed as the following two-dimensional examples show.

Examples. Consider the following system in $G=\mathbb{R}^{2} \backslash\{(0,0)\}$.

$$
\begin{equation*}
\dot{r}=-r(r-1)^{3}, \quad \dot{\theta}=(r-1)^{k} \tag{6}
\end{equation*}
$$

Equilibria are precisely the points on the unit sphere S_{1}.
(i) Set $k=1$. Then the eigenvalue zero at any point of the unit sphere $\mathcal{E}=S_{1}$ is not semisimple.
(ii) Set $k=2$. Then the eigenvalue zero at any point of the unit sphere $\mathcal{E}=S_{1}$ is semisimple, but has multiplicity $2>\operatorname{dim} \mathcal{E}=1$.

In both cases the function $\Phi(r, \theta)=(r-1)^{2}$ is a strict Ljapunov function for the system, and the solutions will spiral towards S_{1} but do not converge.
(i) near u_{*} the set \mathcal{E} is a C^{1}-manifold in $X_{1}, \operatorname{dim} \mathcal{E}=m \in \mathbb{N}_{0}$,
(ii) the tangent space for \mathcal{E} at u_{*} is given by $N\left(A_{0}\right)$,
(iii) 0 is a semi-simple eigenvalue of A_{0}, i.e. $N\left(A_{0}\right) \oplus R\left(A_{0}\right)=X_{0}$,
(iv) $\quad \sigma\left(A_{0}\right) \cap i \mathbb{R}=\{0\}, \sigma_{u}:=\sigma\left(A_{0}\right) \cap \mathbb{C}_{-} \neq \emptyset$.

The following result is also due to Prüss, Simonett and Zacher [PSZ09].

Theorem. Let $1<p<\infty$. Suppose $u_{*} \in V \cap X_{1}$ is an equilibrium of (3), the functions (A, F) satisfy (4), and that $A\left(u_{*}\right)$ has the property of maximal L_{p}-regularity. Assume that u_{*} is normally hyperbolic.

Then the equilibrium u_{*} is unstable in X_{γ} and even in X_{0}. There exists $\rho>\delta>0$ such that the unique solution $u(t)$ of (3) with $\left|u_{0}-u_{*}\right|<$ δ either satisfies $\operatorname{dist}\left(u\left(t_{0}\right), \mathcal{E}\right)>\rho$ for some time $t_{0}>0$, or it exists globally and $u(t) \in B_{X_{\gamma}}\left(u_{*}, \rho\right)$ for all $t \geq 0$. In the latter case $u(t)$ converges at an exponential rate to some $u_{\infty} \in \mathcal{E}$ in X_{γ} as $t \rightarrow \infty$.

These local results become global if combined with a strict Ljapunv functional and compactness.

So let $\Phi: X_{\gamma} \rightarrow \mathbb{R}$ be continuous and strictly decreasing along nonconstant solutions, and consider a global solution with relatively compact orbit. Then

$$
\emptyset \neq \omega(u) \subset \mathcal{E}
$$

Suppose that there exists $u_{*} \in \omega(u)$ which is normally stable or normally hyperbolic.
The solution then comes arbitrarily close to u_{*} and stays in a neighbourhood of \mathcal{E}.
By the generalized principle of linear stability it converges to u_{*}.

Example: Consider the 2-D-system

$$
\dot{r}=-r(r-1), \quad \dot{\theta}=r-1
$$

Here this argument yields convergence of all solutions.

III.1. The Two-Phase Stokes Flow with Surface Tension

The Stokes equations read

$$
\begin{aligned}
-\operatorname{div} T & =0, & & x \in \Omega \backslash \Gamma(t), t>0 \\
\nabla \cdot u & =0, & & x \in \Omega \backslash \Gamma(t), t>0 \\
\mu\left(\nabla u+[\nabla u]^{T}\right)-\pi I & =T, & & x \in \Omega \backslash \Gamma(t), t>0
\end{aligned}
$$

At the interface we have the conditions

$$
\begin{aligned}
\llbracket u \rrbracket & =0, \quad x \in \Gamma(t), t>0, \\
\left(u \mid \nu_{\Gamma}\right) & =V_{\Gamma}, \quad x \in \Gamma(t), t>0, \\
-\llbracket T \rrbracket \nu_{\Gamma} & =\sigma H_{\Gamma} \nu_{\Gamma}, \quad x \in \Gamma(t), t>0 .
\end{aligned}
$$

The initial condition reads

$$
\Gamma(0)=\Gamma_{0}
$$

and we require no-slip at $\partial \Omega$.

Define the energy functional by means of

$$
\Phi(\Gamma):=\sigma \text { mes } \Gamma
$$

Then

$$
\begin{equation*}
\partial_{t} \Phi(\Gamma)+2\left\|\mu^{1 / 2} E\right\|_{\Omega}^{2}=0 \tag{1}
\end{equation*}
$$

hence the energy functional is a Ljapunov functional, even a strict one. We have

Theorem. Let $\mu_{i}, \sigma>0$ be constants. Then
(a) The energy equality is valid for smooth solutions.
(b) The equilibria are zero velocities, constant pressures in the phasecomponents, the dispersed phase is a union of nonintersecting balls.
(c) The energy functional is a strict Ljapunov-functional.
(d) The critical points of the energy functional for constant phase volumes are precisely the equilibria.

III. 2. Transformation to a Fixed Domain

Approximate Γ_{0} by a smooth hypersurface Σ (set $\Sigma=\Gamma_{*}$ near an equilibrium $\left(0, \Gamma_{*}\right)$).
Let $d(x)$ denote the signed distance of $x \in \mathbb{R}^{n}$ to Σ, and $\Pi(x)$ the projection of $x \in \mathbb{R}^{n}$ to Σ. Then

$$
\begin{aligned}
& \wedge: \Sigma \times(-a, a) \rightarrow \mathbb{R}^{n} \\
& \wedge(p, r):=p+r \nu_{\Sigma}(p), \quad \wedge^{-1}(x)=(\Pi(x), d(x))
\end{aligned}
$$

is a diffeomorphism from $\Sigma \times(-a, a)$ onto $\mathcal{R}(\Lambda)=\left\{x \in \mathbb{R}^{n}:|d(x)|<a\right\}$, provided

$$
0<a<\min \left\{r(p), 1 / \kappa_{j}(p): j=1, \ldots, n-1, p \in \Sigma\right\}
$$

where $\kappa_{j}(p)$ mean the principal curvatures of Σ at $p \in \Sigma$ and

$$
\bar{B}_{r}\left(p \pm r \nu_{\Sigma}(p)\right) \cap \Sigma=\{p\}, \quad p \in \Sigma
$$

Use this to parametrize $\Gamma(t)$ over Σ :

$$
\Gamma(t): p \mapsto p+h(t, p) \nu_{\Sigma}(p), \quad p \in \Sigma, t \geq 0
$$

Extend this diffeomorphism to all of Ω :

$$
\Theta(t, x)=x+\chi(d(x)) h(t, \Pi(x)) \nu_{\Sigma}(\Pi(x))
$$

Here χ denotes a suitable cut-off function. This way $\Omega \backslash \Gamma(t)$ is transformed to the fixed domain $\Omega \backslash \Sigma$. Then we define

$$
\bar{u}=u \circ \Theta^{-1}, \quad \bar{\pi}=\pi \circ \Theta^{-1}
$$

This gives the following problem for $\bar{u}, \bar{\pi}, h$. (Drop the bars!)

$$
\begin{align*}
& -\mu \mathcal{A}(h) u+\mathcal{G}(h) \pi=0 \quad \text { in } \Omega \backslash \Sigma, \\
& (\mathcal{G}(h) \mid u)=0 \quad \text { in } \Omega \backslash \Sigma, \\
& u=0 \text { on } \partial \Omega, \\
& \llbracket-\mu\left(\mathcal{G}(h) u+[\mathcal{G}(h) u]^{T}\right)+\pi \rrbracket \nu_{\Gamma}(h)=\sigma H_{\Gamma}(h) \nu_{\Gamma}(h) \text { on } \Sigma, \tag{2}\\
& \llbracket u \rrbracket=0 \quad \text { on } \Sigma, \\
& \beta(h) \partial_{t} h-\left(u \mid \nu_{\Gamma}\right)=0, \quad \text { on } \Sigma, \\
& h(0)=h_{0}, \quad \text { on } \Sigma .
\end{align*}
$$

This is the direct mapping approach also called Hanzawa transform.

Here $\mathcal{A}(h)$ and $\mathcal{G}(h)$ denote the transformed Laplacian, resp. gradient. With the curvature tensor L_{Σ} and the surface gradient ∇_{Σ} we have

$$
\begin{aligned}
\nu_{\Gamma}(h)=\beta(h)\left(\nu_{\Sigma}-\alpha(h)\right), & \alpha(h)=M(h) \nabla_{\Sigma} h, \\
M(h)=\left(I-h L_{\Sigma}\right)^{-1}, & \beta(h)=\left(1+|\alpha(h)|^{2}\right)^{-1 / 2}
\end{aligned}
$$

and

$$
V=\left(\partial_{t} \Theta \mid \nu_{\Gamma}\right)=\partial_{t} h\left(\nu_{\Gamma} \mid \nu_{\Sigma}\right)=\beta(h) \partial_{t} h
$$

The curvature $H_{\Gamma}(h)$ becomes

$$
\begin{aligned}
H_{\Gamma}(h) & =\beta(h)\left\{\operatorname{tr}\left[M(h)\left(L_{\Sigma}+\nabla_{\Sigma \alpha}(h)\right)\right]-\beta^{2}(h)\left(M(h) \alpha(h) \mid\left[\nabla_{\Sigma} \alpha(h)\right] \alpha(h)\right)\right\} \\
& =\mathcal{B}(h) h+\mathcal{C}(h)
\end{aligned}
$$

a differential expression involving second order derivatives of h only linearly. \mathcal{B}, \mathcal{C} depend only on $h, \nabla_{\Sigma} h$. Its linearization is given by

$$
H_{\Gamma}^{\prime}(0)=\operatorname{tr} L_{\Sigma}^{2}+\Delta_{\Sigma}
$$

Here Δ_{Σ} denotes the Laplace-Beltrami operator on Σ.

Rewrite this problem in reduced quasilinear form, employing its principal linear part.

$$
\begin{align*}
& -\mu \Delta u+\nabla \pi=F_{u}(h) u+F_{\pi}(h) \pi \quad \text { in } \Omega \backslash \Sigma, \\
& \nabla \cdot u=G_{d}(h) u \quad \text { in } \Omega \backslash \Sigma, \\
& u=0 \quad \text { on } \partial \Omega, \\
& P_{\Sigma \llbracket-\mu\left(\nabla u+\nabla u^{T}\right) \rrbracket \nu_{\Sigma}=G_{\tau}(h) u, \quad \text { on } \Sigma,}^{\left(\llbracket-\mu\left(\nabla u+\nabla u^{T}\right) \rrbracket \nu_{\Sigma} \mid \nu_{\Sigma}\right)+\llbracket \pi \rrbracket=\sigma H_{\Gamma}(h)+G_{\nu}(h) u, \quad \text { on } \Sigma,} \begin{array}{l}
\llbracket u \rrbracket=0 \text { on } \Sigma, \\
\partial_{t} h-\left(u \mid \nu_{\Sigma}\right)=\left(M(h) \nabla_{\Sigma} h \mid u\right) \quad \text { on } \Sigma, \\
h(0)=h_{0}, \quad \text { on } \Sigma .
\end{array} \tag{3}
\end{align*}
$$

The right hand sides in this problem consist of lower order terms and of terms of the same order appearing on the left, but carrying a factor $\left|\nabla_{\Sigma} h\right|$, which is small by construction. The operators F_{j}, G_{j} are analytic in h and $F_{j}(0)=G_{j}(0)=0$. Observe that the problem is linear in (u, π).

III.3. Reduction to a Quasilinear Evolution Equation

The idea is now simple. Suppose that h is known. Solve the transmission problem for the perturbed Stokes problem to obtain

$$
u=\sigma \mathcal{S}(h) H_{\Gamma}(h)=\left(\mathcal{S}_{0}+\mathcal{S}_{1}(h)\right)(\mathcal{B}(h) h+\mathcal{C}(h)),
$$

where \mathcal{S}_{1} is analytic in h and $S_{1}(0)=0$. Then inserting into the dynamic equation for the height function h we obtain the following quasilinear evolution equation for h on Σ.

$$
\begin{equation*}
\dot{h}+A(h) h=F(h), t>0, \quad h(0)=h_{0} \tag{4}
\end{equation*}
$$

Here A and F are given by

$$
A(h) k=-\left(\nu_{\Sigma}-M(h) \nabla_{\Sigma} h \mid \mathcal{S}(h) \mathcal{B}(h) k\right), \quad F(h)=\left(\nu_{\Sigma}-M(h) \nabla_{\Sigma} h \mid \mathcal{S}(h) \mathcal{C}(h)\right)
$$

Note that F contains only lower order terms, and $A(0) k=-\left(\nu_{\Sigma} \mid \mathcal{S}_{0} \Delta_{\Sigma} k\right)$.

For the base space X_{0} we make the following choice. If we want $u(t, \cdot) \in$ $H_{p}^{2}(\Omega \backslash \Sigma)$ at each instant, then $H_{\Gamma}(h)$ must belong to $W_{p}^{1-1 / p}(\Sigma)$, hence $h \in W_{p}^{3-1 / p}(\Sigma)$ since \mathcal{B} has order 2. The Neumann-to-Dirichlet operator \mathcal{S} has order -1 , hence A is of order 1 .

Therefore we choose
$X_{0}=W_{p}^{2-1 / p}(\Sigma), \quad X_{1}=W_{p}^{3-1 / p}(\Sigma), \quad$ hence $\quad X_{\gamma, \mu}=W_{p}^{\mu+2-2 / p}(\Sigma)$.
Then the solutions will satisfy

$$
h \in H_{p}^{1}\left(J ; W_{p}^{2-1 / p}(\Sigma)\right) \cap L_{p}\left(J ; W_{p}^{3-1 / p}(\Sigma)\right) \hookrightarrow C\left(J ; W_{p}^{3-2 / p}(\Sigma)\right)
$$

and

$$
u \in L_{p}\left(J ; H_{p}^{2}(\Omega \backslash \Sigma) \cap H_{p}^{1}(\Omega)\right), \quad \pi \in L_{p}\left(J ; \dot{H}_{p}^{1}(\Omega \backslash \Sigma)\right)
$$

This is in the L_{p}-setting natural regularity.
We choose $p>n+1, \mu \in((n+1) / p, 1)$ to obtain the embedding $W_{p}^{\mu+2-2 / p}(\Sigma) \hookrightarrow C^{2}(\Sigma)$. Therefore the curvatures are well-defined pointwise.

To apply the results of Section II, we have to study the Stokes problem with linear dynamic boundary condition, given by

$$
\begin{aligned}
\omega^{2} u-\mu \Delta u+\nabla \pi & =f_{u}, \quad x \in \Omega \backslash \Sigma, t>0, \\
\nabla \cdot u & =f_{d}, \quad x \in \Omega \backslash \Sigma, t>0, \\
u & =0 \quad x \in \partial \Omega, \\
\llbracket u \rrbracket & =0, \quad x \in \Sigma, t>0, \\
-\llbracket \mu\left(\nabla u+(\nabla u)^{\top}\right)+\pi \rrbracket \nu_{\Sigma}+\sigma \mathcal{A} \Sigma h \nu_{\Sigma} & =g_{u}, \quad x \in \Sigma, t>0, \\
\partial_{t} h-\left(u \mid \nu_{\Sigma}\right) & =g_{h}, \quad x \in \Sigma, t>0, \\
h(0) & =h_{0}, \quad x \in \Sigma .
\end{aligned}
$$

Here $\mathcal{A}_{\Sigma}=-\left(\operatorname{tr} L_{\Sigma}^{2}+\Delta_{\Sigma}\right)$ and $\omega \geq 0$.

For this problem we have to prove maximal L_{p}-regularity and normal stability. Note that this problem lives on the domain Ω with fixed interface Σ !

III.4. The Local Semiflow

We now introduce the phase manifold of the two-phase Stokes problem with surface tension. Let $\mathcal{M H}^{2}(\Omega)$ denote the set of all closed hypersurfaces contained in Ω. The second normal bundle $\mathcal{N}^{2}(\Gamma)$ is defined by

$$
\mathcal{N}^{2}(\Gamma)=\left\{\left(p, \nu_{\Gamma}(p), \nabla_{\Gamma} \nu_{\Gamma}(p): p \in \Gamma\right\} .\right.
$$

Next we need the Haussdorff-distance for sets $A, B \subset \mathbb{R}^{N}$ defined by

$$
d_{H}(A, B)=\max \left\{\sup _{a \in A} \operatorname{dist}(a, B), \sup _{b \in B} \operatorname{dist}(b, A)\right\} .
$$

We define a metric on $\mathcal{M H}^{2}(\Omega)$ by

$$
d\left(\Gamma_{1}, \Gamma_{2}\right)=d_{H}\left(\mathcal{N}^{2}\left(\Gamma_{1}\right), \mathcal{N}^{2}\left(\Gamma_{2}\right)\right), \quad \Gamma_{1}, \Gamma_{2} \in \mathcal{M} \mathcal{H}^{2}(\Omega)
$$

This way $\mathcal{M} \mathcal{H}^{2}(\Omega)$ becomes a Banach manifold; the charts are given by parameterizations over a given hypersurface Σ, and the tangent space consists of the normal vector fields on Σ.

As above, let $d_{\Sigma}(x)$ denote the signed distance for Σ. We may then define the level function φ_{Σ} by means of

$$
\varphi_{\Sigma}(x)=\phi\left(d_{\Sigma}(x)\right), \quad x \in \mathbb{R}^{n}
$$

where

$$
\phi(s)=s(1-\chi(s / a))+\chi(s / a) \operatorname{sgn} s, \quad s \in \mathbb{R}
$$

Then $\Sigma=\varphi_{\Sigma}^{-1}(0)$, and $\nabla_{\Sigma} \varphi(p)=\nu_{\Sigma}(p)$, for each $p \in \Sigma$.
If we consider the subset $\mathcal{M H}^{2}(\Omega, r)$ consisting of all closed hypersurfaces $\Gamma \in \mathcal{M H}^{2}(\Omega)$ such that $\Gamma \subset \Omega$ satisfies the ball condition with fixed radius $r>0$ then the map $\Phi: \mathcal{M H}^{2}(\Omega, r) \rightarrow C^{2}(\bar{\Omega})$ defined by $\Phi(\Gamma)=\varphi_{\Gamma}$ is an isomorphism of the metric space $\mathcal{M H}^{2}(\Omega, r)$ onto $\Phi\left(\mathcal{M H}^{2}(\Omega, r)\right) \subset C^{2}(\bar{\Omega})$.

Let $s-(n-1) / p>2$; for $\Gamma \in \mathcal{M H}^{2}(\Omega, r)$, we define $\Gamma \in W_{p}^{s}(G, r)$ if $\varphi_{\Gamma} \in W_{p}^{s}(\Omega)$. A subset $A \subset W_{p}^{s}(\Omega, r)$ is said to be (relatively) compact, if $\Phi(A) \subset W_{p}^{s}(\Omega)$ is (relatively) compact.

Applying the theory from Lecture II we proved

Theorem 1. The two-phase Stokes problem with surface tension has a unique local-in-time L_{p}-solution, in the sense that the transformed problem has a solution in the class described in Section III.3. These solutions generate a local semiflow in the phase manifold $\mathcal{P M}$.

Theorem 2. The equilibria are stable in $\mathcal{P M}$. Solutions starting near an equilibrium in $\mathcal{P} \mathcal{M}$ converge in $\mathcal{P} \mathcal{M}$ to another equilibrium as $t \rightarrow \infty$.

Theorem 3. Suppose $\Gamma(t)$ is a solution which satisfies
(i) the uniform ball condition
(ii) $\|\Gamma(t)\|_{W_{p}^{3-2 / p}} \leq C$
on its life time. Then this solution exists globally and converges in $\mathcal{P M}$ to an equilibrium.

