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Preface

We show that every L"-vector field on {2 can be uniquely decomposed into two spaces with scalar
and vector potentials and the harmonic vector space via rot and div , where € is a bounded domain
in R3. This may be regarded as generalization of de Rham-Hodge decomposition for smooth k-forms
on compact Riemannian manifolds. Our result holds not only smooth but also general L"-vector
fields. Basically, construction of harmonic vector fields is established by means of the theory of
elliptic PDE system of boundary value problems due to Agmon-Douglis-Nirenberg. Since we deal
with L"-vector fields, such a general theory is not directly available. To get around this difficulty,
we make use of certain variational inequalities associated with the quadratic forms defined by rot

and div . Various kinds of boundary conditions which are compatible to rot and div and which
determine the harmonic parts are fully discussed.

As applications, we first consider the stationary problem of the Navier-Stokes equations in
multi-connected domains under the inhomogeneous boundary condition. Up to the present, it is an
open question whether there exists a solution if the given boundary data satisfies the general flux
condition. It will be clarified that if the harmonic extension of the boundary data into €2 is small
in L3(Q) compared with the viscosity constant, then there is at least one weak solution.

The second application is on the global Div-Curl lemma. The classical Div-Curl lemma is
stated in such a way that the convergence holds in the sense of distributions. Under the boundary
condition determining the harmonic vector fields in the L"-Helmholtz-Weyl decomposition in 2,
we show that the convergence holds in the whole domain €.



Introduction

In this article, we first give a survey on our new Helmholtz-Weyl decomposition of L"-vector fields
in bounded domains  in R? with the smooth boundary 0. It is known that every vector field
u € L"(Q) with 1 < r < oo can be decomposed as

(0.1) u=1v+ Vp,

with v € LZ(Q) and p € Wb (Q), where L% (£2) denotes the closure in L™-norm of the space of
C*-solenoidal vector functions with the compact support in €. More precisely, every v € L[ (Q) is
characterized as div v = 0 in the sense of distributions in {2 and «-v = 0 on 02, where v denotes the
unit outer normal to 0€2. We refer to Fujiwara-Morimoto [20], Solonnikov [44] and Simader-Sohr
[41]. Our first purpose is to show a more precise decomposition for v like

(0.2) v = h+rot w,

where h is harmonic, i.e., div h = 0, rot h = 0 in Q with h-v = 0 on 9Q, while w € W7 () is called
a vector potential of u with the boundary condition as w x v = 0 on 0f2. Such a representation of u
as in (0.1) and (0.2) may be regarded as a special case of the well-known de Rham-Hodge-Kodaira
decomposition for general smooth p-forms on compact Riemannian manifolds. Our decomposition
does not require any smoothness for u. Indeed, we can deal with all vector fields u in L"(€2). The
proof of classical de Rham-Hodge-Kodaira decomposition can be reduced to solving the elliptic
boundary problem on the compact Riemannian manifolds. For instance, the vector potential w of
u in (0.2) can be derived from the solution of the following equations

rot rot w =rot u in ),
(0.3) divw =0 in{,
wxv=0 ondf.

Since u € L"(€2), we need to deal with rot w in the sense of distributions in 2, and hence the
well-known theory due to Agmon-Douglis-Nirenberg [1] on solvability and regularity of solutions
to the boundary-value problem of the elliptic system is unavailable to (0.3). To get around such
difficulty, we make use of the following variational inequality such that
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holds for all w € WH(Q) with divw = 0 in Q, w x v = 0 on 99, where {t1,---,11} is a basis
of the finite dimensional space V., (Q) = {1 € C™(Q);r0t 9 = 0,div ¥ = 0 in Q,9 x v|sq = 0}.
Here and in what follows, we denote ' = r/(r — 1) so that 1/r+1/r" = 1. Based on the variational

inequality (0.4), we shall construct a weak solution w of (0.3) for every w € L"(£2) in terms of a




generalization to the reflexive Banach space of the Lax-Milligram theorem which holds for positive
definite quadratic forms in the Hilbert space. We also prove a similar variational inequality to (0.4)
which states
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for all w € WH(Q) with divw = 0 in Q, w - v =0 on 0%, where {¢1, -+, pn} is a basis of the

finite dimensional space Xp,-(2) = {p € C®(Q);rot p = 0,div e = 0in Q, ¢ - v|gg = 0}. This
yields an existence theorem of weak solutions to the elliptic system of the boundary value problem

rot rot w =rot u in €,
divw =0 1in €,
rot wXv=uxXv ono0df,
w-v=0 on J.

(0.6)

As a consequence, we obtain a similar decomposition theorem to (0.1) and (0.2) such as for very
u € L™(2) it holds
(0.7) u = h+rot w+ Vp,

where h € Vi (Q), w € WET(Q) with divw = 0in © and w-v = 0 on 99, and p € WI"(Q).
The spaces Xpqr(2) and Vi, (2) are called harmonic vector fields on Q with different boundary
conditions on 92 which are of finite dimension. We shall show that dimensions of X},-(©2) and
Viar (2) are closely related to topological invariance of the domain €2, which is so-called the Betti
number.

As an application of our decomposition theorem, we shall establish a new existence result on
the inhomogeneous boundary value problem of the stationary Navier-Stokes equations in multi-
connected domains € in R?. Let us assume that the boundary 99 consists of L + 1 disjoint
smooth closed surfaces I'g,I'1,---,I'r, where I'1, - - -, 'y, lie inside of I'g. We consider the stationary
Navier-Stokes equations

—pAv+v-Vo+Vp=0 in Q,
(N-S) diveo=0 1in{,
v=_,0 on 0f,

where 4 > 0 and g € H %(8(2) are the given viscosity constant and the given function on 0f2,

respectively. Since the unknown vector function v must satisfy div v = 0, for solvability of (N-S)
we need to impose on (§ the general flux condition which means

L
(G.F.) B-vdS = 0.
jZ:%/FJ‘
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The solvability of (N-S) under the inhomogeneous boundary data ( satisfying (G.F.) has been a
famous open problem proposed by Leray [33]. Unfortunately, we have not yet given a complete
answer to Leray’s problem. Indeed, to solve (N-S), we need to extend the boundary data [ on
0%} to the solenoidal vector field b in €2, i.e., div b = 0 in Q with b = 3 on 9f). Redefining a new
unknown function u = v—b, we may rewrite (N-S) to the following equations with the homogeneous
boundary condition on 0f2

—pAu+b-Vu+u-Vb+u-Vu+Vp=pAb—5b-Vb in Q,
(N-S”) divu =0 inQ,
u=0 on Jf.

The existence of solutions u of (N-S’) is closely related to the following question; for every € > 0
does there exist a solenoidal extension b. € H(Q) of 3 such that the inequality

/u-ng-udx Se/ |Vu|?da
Q Q

holds for all u € H}(Q2) with div u = 0. We call (L.I.) Leray’s inequality which yields, by taking
€ = u/2, an a priori estimate such as

(L.1)

(0.8) / Vul2dz < C/(’VbuQ—i- by |?)der
Q Q 2 2

for all possible solutions u of (N-S’). Based on (0.8), from the well-known Leray-Schauder fixed
point theorem we obtain at least one solution u in H}(2) of (N-S”) whence a solution v in H'(Q)
of (N-S).

It is known that under the restricted flux condition

(R.F.) / B-vdS =0, forall j=0,1,---,L,
5

Leray’s inequality holds. Therefore, if § € H %(3Q) satisfies (R.F.), then there is a solution v €
H!(Q) of (N-S), which is a partial answer to Leray’s problem. See, e.g., Leray [33], Fujita [16] and
Ladyzehnskaya [32]. The relation between (L.I.) and (R.F.) is well understood in terms of our new
decomposition (0.7). Indeed, it is shown that for every solenoidal extension b in €2 of 3 satisfying
(R.F.) we have p = 0 and h = 0 in (0.7) with u replaced by b, which yields an expression b = rot w.
Taking a family {6.} of cut-off functions with their support near the e-neighborhood of the boundary
09, we see that b, = rot (f.w) satisfies Leray’s inequality (L.I.). Now, a natural question arises
whether the boundary data 3 satisfying (G.F.), but not (R.F.) fulfills Leray’s inequality (L.L.).
Unfortunately, Takeshita [47] gave a negative answer to this question. He treaded the case when 2
is an annular region, i.e., Q = {x € R3; R; < |z| < Ro}, and proved that Leray’s inequality (L.I.)
holds if and only if

(0.9) / B -vdS = G- vdS = 0.
|z|=Ro |z|=R1

Takeshita’s result implies that it is impossible to solve (N-S) under the general flux condition (G.F.)
provided we rely on Leray’s inequality (L.I.).



To overcome such an obstruction given by Takeshita [47], we shall investigate possible decompo-
sition as in (0.7) of the solenoidal extension b in §2 of the boundary data (3. We shall first show that
although there are infinitely many solenoidal extensions b of (3, their harmonic part h € Vj,,-(2)
of b as in (0.7) is determined only by means of the flux B -vdS for j =0,1,---, L. Next, we

1_‘ .
shall prove that if A is small enough in the L3-norm on € in éomparison with the viscosity constant
i, then there exists a solution v of (N-S). Our theorem includes the previous existence theorem
on (N-S) under the restricted flux condition (R.F.). We also consider the relation between Leray’s
inequality (L.I.) and the restricted flux condition (R.F.). Indeed, we shall generalize Takeshita’s
results and prove that in more domains €2, Leray’s inequality (L.I.) holds if and only if 3 satisfies
the restricted flux condition (R.F.).

Our second application is to derive the global Div-Curl lemma in which the convergence holds
not only in the sense of distributions in 2 but also in the sense of integral over the whole domain
Q. Tt is well-known that if u; — u, v; — v weakly in L*(Q) and if {div u;}32, and {rot v;}32, are
both bounded in L?(f2), then it holds u; - v; — u - v in the sense of distributions in 2. It seems an
interesting question whether it does hold

(0.10) / uj - vide — / u-vdr asj— oo.
Q Q

We shall give a positive answer to this question under the additional assumption that either {u; -
v}32y or {vj x v}32, is bounded in H%((?Q) For the proof, we make use of our decompositions
(0.1)-(0.2) and (0.7). The essential difference of proofs between usual Div-Curl lemma and our
convergence like (0.10) stems from the precise investigation into the harmonic part h according to
the boundary condition h-v = 0 or h x v = 0 on 0{2. Since our decompositions are both direct
sum, for validity of (0.10) it suffices to show that

(0.11) / h; - hjdx — / h - hdx
Q Q
(0.12) /Qrot wj - rot widr — /Qrot w - rot wdz, /Qij -Vpjdr — /QVp -Vp dx,

where u; = h; +rot w; + Vp;, v; = l~zj +rot wj + Vp;, j = 1,2,---, and u = h + rot w + Vp,
v = h 4 rot @ 4 Vp are the expressions according to (0.1)-(0.2) and (0.7). The convergence (0.12)
follows from the bound of {u;-v}72, or {v; x}52; in H? (0€2) with the aid of the a priori estimates
in W22(Q) for the elliptic systems (0.3) and (0.6). The advantage of our decomposition is that
the harmonic spaces Xpq,(2) and Vj,,-(2) are of finite dimensions so that the convergence (0.11)
is an easy consequence of equivalence of weak and strong topologies in finite dimensional vector

spaces. It should be noted that the convergence (0.10) is discussed in the couple of vector functions
between L"(Q) and L™ ().

1 Helmholtz-Weyl decomposition in L”

Throughout this article, we impose the following assumption on the domain §2:



Assumption.  is a bounded domain in R? with the C°°-boundary 9.

Before stating our results, we introduce some function spaces. Let C’gf’g(Q) denote the set of all
C>-vector functions ¢ = (!, ¢?, p3) with compact support in €, such that div ¢ = 0. L’ (Q) is
the closure of C§%,(£2) with respect to the L"™-norm || - [|; (-, ) denotes the duality pairing between
L7(Q) and L (Q), where 1/r + 1/r' = 1. L"(Q) stands for the usual (vector-valued) L"-space over
Q, 1 <r < oo. Let us recall the generalized trace theorem for u - v and u x v on 9€) defined on the
spaces E}. () and EJ,,(Q2), respectively.

rot

Eyip(Q) = {u€e L"(Q);divu e L"(Q)} with the norm [Jullgy, = |ull, + [[div ul],
E () = {ue L"(Q);rot uw € L"(Q2)} with the norm |lugr, = [[ull; + [[rot ]|,

It is known that there are bounded operators v, and 7, on E7, (Q) and E,

T +(Q) with properties
that

Vi u € B (Q) — € WYTTOQ), yu=u-vgg if u e CL(Q),
7w € Bl (Q) — mou e WEVTT(0Q), mu=u x v]ag if u e CH(Q),

rot

respectively. We have the following generalized Stokes formula

(1.1) (u, Vp) + (div u,p) = {(vu, vop)sq for all u € E}, () and all p € wir’ (Q),
(1.2) (u,rot @) = (rot u, d) + (T,u, Yo0)sq for all u € E7,,(Q) and all € W' (Q),

where ~q denotes the usual trace operator from W' (Q) onto W'~/ (90Q), and (-, -)oq is the du-
ality paring between W'=Y/ (9Q)* and W=/ (9Q). Notice that L () = {u € L"(Q); div u =
0 in Q with y,u = 0}.

Let us define two spaces X"(2) and V" () for 1 < r < oo by

(1.3) X"(Q) = {uel"(Q);divue L' (Q),rot ue L' (Q),v,u=0},
(1.4) Vi) = {uel'(Q);divue L"(Q),rot ue L"(Q), n,u = 0}.

Equipped with the norms ||u||x- and |Ju|yr
(1.5) [ullxr l[ullvr = [|div ully + [[rot ull, + [Jull,

we may regard X"(€2) and V"(£2) as Banach spaces. Indeed, in Theorem 1.2 below, we shall see
that both X”(Q) and V" () are closed subspaces in W7 (£2) since it holds that

(1.6)  ||Vull, = Cllul|xr forallue X"(Q) and ||Vu|, = Cllully- forall u e V"(Q),

respectively, where C' = C(r) is a constant depending only on r. Furthermore, we define two spaces
X7(2) and VJ(Q) by

(L.7) X)) ={ve X" (Q);divu=0 inQ}, VJ(Q)={uecV"(Q);divu=0 inQ}.
Finally, we denote by X; (€) and V;' (€) the L"-spaces of harmonic vector fields on (2 as
(1.8) Xiar(Q) ={ue X (Q);rot wu=0}, V. (Q) ={ueV](Q);rot u=0}.

Our main result in this section now reads



Theorem 1.1 Let Q2 be as in the Assumption. Suppose that 1 < r < co.
(1) It holds that
X7, () = {heC®Q);divh=0,tot h=0in Q with h-v =0 on ON}H= Xper ()
Vi (Q) = {heC™(Q);divh=0,rot h=0in Q with h x v =0 on IQ}= Viar(Q)).
Both Xpar () and Vi, () are of finite dimensional vector spaces.

(2) For every u € L"(S2), there are p € WL (Q), w € VI(Q) and h € Xpar () such that u can
be represented as

(1.9) u=h+rot w+ Vp.
Such a triplet {p, w, h} is subordinate to the estimate

(1.10) IVl + [[wllvr + [[Allr = Cllull,

with the constant C' = C(r) independent of u. The above decomposition (1.9) is unique. In fact, if
u has another expression 3
u=h-+rot w+ Vp

for p e WhHT(Q), w € VI (Q) and he Xhar(2), then we have

(1.11) h=h, rotw=rotw, Vp=Vp.

(3) For every u € L"(Q), there are p € WOI’T(Q), w € X2(Q) and h € Vi () such that u can
be represented as
(1.12) u = h+rot w+ Vp.

Such a triplet {p, w, h} is subordinate to the estimate
(1.13) Vel + [lwlx- + [|2[lr = Cllullr

with the constant C = C(r) independent of u. The above decomposition (1.12) is unique. In fact,
if u has another expression 3
u=h-+rot w4+ Vp

forpe WOI’T(Q), W e XI(Q) and h € Vi (Q), then we have
(1.14) h=h, rotw=rotw, Vp=Vp.

An immediate consequence of the above theorem is

Corollary 1.1 Let Q be as in the Assumption.
(1) By the unique decomposition (1.9) and (1.12) we have two kinds of direct sums

(1.15) L") = Xpe(Q)@rot VI(Q) @&V WH(Q),
(1.16) L'(Q) = Vier() @rot X2(Q) @V W, (Q)

for 1 <r < oo.



(2) Let Sy, R, and Q, be projection operators associated to both (1.9) and (1.12) from L"(Q)
onto Xpar (), rot V2 (Q) and V W (Q), and from L"(Q) onto Vie, (), rot X7(Q) and V Wol’r(Q),
respectively, i.e.,

(1.17) Sru=h, Ru=rotw, Qru=Vp.

Then we have
(1.18) |Srullr = Cllully,  |Reully = Cllully,  |Qrullr = Cllull,

for all w € L™(Q), where C = C(r) is the constant depending only on 1 < r < oco. Moreover, there

holds
SE =S, Si=5y,
(1.19) R’=R,, R'=Ry
Q%:Qr" in:QT”

where S}, R} and Q) denote the adjoint operators on L (Q) of Sy, R, and Q,, respectively.
Remark 1.1 (1) It is known that
(1.20) L'(Q)=L()aeVW(Q), 1<r<oo, (directsum).

See Fujiwara-Morimoto [20], Solonnikov [44] and Simader-Sohr [41]. Our decomposition (1.15)
gives a more precise direct sum of L () such as

(1.21) L2(2) = Xpor () @rot V) (Q), 1<r <oo. (direct sum)

On the other hand, our new decomposition (1.16) imposes on p the homogeneous boundary
condition on 9. Compared with L] () in (1.21), any boundary condition on 92 cannot be
prescribed on the vector filed v = h + rot w in (1.12). If u € WH(Q), then we have u x v = v X v
on 0.

(2) Let us characterize € by topological invariance which is called a Betti number. To be more
precise, we make the following definition.

Definition 1.1 Let  be as in the Assumption and let N and L be two positive integers.
(i) We say that €2 has the first Betti number N if there are N C*°-surfaces X1, - - -, ¥y transversal
to 02 such that ¥; N X; = ¢ for ¢ # j, and such that

N
(1.22) Q=Q\X isasimply connected domain, where 3 = U ;.
j=1

(ii) We say that Q has the second Betti number L if the boundary 02 has L + 1 connected

components I'g, I'1, - - -, ', of C°°-closed surfaces such that I'1,---,I'f lie inside of I'g with I'; N\I"; =
¢ for i # j, and such that
L
(1.23) 0= J1;.
j=0



Foias-Temam [15] showed that if Q has the first Betti number N as in Definition 1.1 (i), then it
holds
(1.24) dim. Xpqr(2) = N.

They [15] also gave an orthogonal decomposition of L2 () such as
L2(Q) = X40r(Q) @ H (Q)  (orthogonal sum in L2(€2)),

where
Hq(Q) E{uGLi(Q);/ u-vdS=0 foralj=1---,N}.
L;
Yoshida-Giga [53] investigated the operator rot with its domain D(rot) = {u € Hi(Q);rot u €
H1(2)} and showed that H;(f2) = rot V,2(Q2). Furthermore, they [53] gave another type of orthog-
onal L2-decomposition of vector fields u € D(rot). From our decomposition (1.21) with r = 2, it
follows also that Hy(Q2) = rot V2(9).

(3) In the case when € is a star-shaped domain, Griesinger [23] gave a similar decomposition
in L"(Q) for 1 < r < co. In her case, it holds N = 0. Since she took the smaller space Wol’r(ﬂ)
than our space V" (), it seems to be an open question whether, in the same way as in (1.15), the
annihilator rot Wy (Q)* of rot Wy (Q) in L™ () coincides with ¥ W™ ().

(4) If © has the second Betti number L as in Definition 1.1 (ii), then we shall show in Subsection
2.3 that

(1.25) dim.V} () = L.
Moreover, it holds
(1.26) {rot w;w € W»"(Q) N X2(Q)}
= {veWw!'(Q); dive=0in Q/F v-vdS=0foralj=0,1,---,L} .
j

(5) If Q has the first and the second Betti numbers N and L as in Definition 1.1, then von
Wahl [50] gave also a representation formula like (1.9) and (1.12) by means of the potential theory.
Our theorem does not need any restriction on the topological type of €2, which seems to be an
advantage for the use of L"-variational inequalities (0.4) and (0.5). In the more general case when
Q2 is an n-dimensional C'*°-manifold with the boundary, Schwarz [40] established an orthogonal
decomposition of p-forms in L?(Q) and in W*7 () for s = 1 and 2 < r < co. However, his method
depends on the theory of pseudo-differential operators, which is different from our L"-variational
approach based on the theory of Agmon-Douglis-Nirenberg.

As an application of our decomposition, we have the following gradient and higher order esti-
mates of vector fields via div and rot .

Theorem 1.2 Let 2 be as in the Assumption. Suppose that 1 < r < oo.
(1) (prescribed y,u) Let dim.Xpq,(2) = N and let {p1,- -+, on} be a basis of Xpqr(2).
(i) It holds X"(Q2) C WL (Q) with the estimate

N
(1.27) IValls + [lull < CIldiv ully + [lrot ull, + Y [(u, 7)) for allu € X7(9),
j=1

10



where C = C(Q,r).
(ii) Let s > 1. Suppose that u € L" () with divu € W 17(Q), rot u € W*=17(Q) and
Yu € WY (9Q). Then we have w € W5 (Q) with the estimate

(1.28) [[wl[ws.r (o)
N
< C(||div ullws—10y + lrot wllws—rri) + [oullys/mr oo + 1w ;))),
j=1
where C = C(Q, 7).
(2) (prescribed T,u) Let dim. Vi, () = L and let {11, -} be a basis of Vi ().
(i) It holds V" (2) € WL (Q) with the estimate
L
(1.29) IVl + Jullr < (I ull + lrot ull + Y [(uv;)])  for all u € V7 (),
j=1
where C = C(Q,r).
(ii) Let s > 1. Suppose that u € L" () with divu € W= L7(Q), rot u € W*=1(Q) and
ou € WM (9Q). Then we have u € W5 (Q) with the estimate

(1.30) ][ ys.r ()
L
S O(ldiv ullws-1r o) + [[rot ullws-1r) + [ Toullysy/mr o) + Y (7)),
j=1
where C = C(Q, 7).
Remark 1.2 von Wahl [51] treated the homogeneous gradient bound such as
[Val, = C(ldiv ull, + [lrot u]|,)

for u € Wb (Q) with y,u = 0 and 7,u = 0. He proved that such a homogeneous estimate holds if
and only if N = 0, i.e., 2 is simply connected in the case v,u = 0, and if and only if L = 0, i.e.,
Q) has only one connected component of the boundary 02 in the case 7,u = 0, respectively. Our
variational inequalities (0.4) and (0.5) make it possible to prove (1.27) and (1.29) for an arbitrary
bounded domain . So, von Wahl’s estimate [51] may be regarded as a special case of ours since
our Assumption on © does not require any topological type such as (1.23) or (1.22). His method
is based on the representation formula for u € W (Q) via div u and rot u which is different from
ours. Similar estimate to (1.28) with Z;VZI |(u, ;)| replaced by |lul|, was obtained by Temam[48,
Proposition 1.4, Appendix I] for s > 1, » = 2 and by Bourguignon-Brezis [9, Lemma 5| for s > 2,
1 <7 < o0, respectively. See also Duvaut-Lions [12, Theorem 6.1, Chapter 7.

2 [L’"-variational inequality

2.1 Variational inequalities in X" (€2) and V" (2)

In what follows, we shall denote by C' the constants which may change from line to line. If we
need to specify the constants, we shall denote by C(x,---,*) the constants depending only on the
quantities appearing in the parenthesis.

11



Let us first introduce auxiliary function spaces X (€2), X"(Q), V() and V"(Q) defined by

(2.1) XQ)={peC®);p-v|pa =0}, X"(Q)={ueW"(Q);u-v|sgq =0},
(2.2) V() = {yp € C°(Q);h x v|gg =0}, V'(Q) = {ue W (Q);u x v|gg = 0}

for 1 < r < oo, respectively. Obviously, it holds that X"(Q) ¢ X"(Q) and V" () C V"(Q), but in
Lemma 2.2 below, we will see that

(2.3) X"(Q)=X"(Q), V'(Q)=V"(Q), 1<r<oo,

where X" () and V" (Q) are the spaces defined by (1.3) and (1.4), respectively. It should be noted
that for every u € X"(Q) and u € V" (), we have u|sgo € W1/ (8Q). On the other hand, for
u € X"(Q) and u € V"(Q2), we have only that y,u = 0 and 7,u = 0 in the sense of functionals on
W1/ (9Q), respectively.

The purpose of this subsection is to show the following variational inequalities.

Lemma 2.1 Let Q be as in the Assumption.
(1) For the boundary condition u X v =0 on 02, we have the following properties (i) and (ii).
(1) For every 1 < r < oo, there is a constant C = C(r) such that

(2.4) IVull, + Jull, < C sup L8V + (W ¥)]
veviy NVl + [l

holds for all u € V"(S).
(ii) Let uw € VI(Q) for some 1 < q < co. If u satisfies

o) p [TV + @]

A 2 Wy

for some 1 <r < oo, then we have u € V’"(Q), and the estimate (2.4) holds.
(2) For the boundary condition u-v =0 on 02, we have the following properties (iii) and (iv).
(iii) For every 1 < r < oo, there is a constant C = C(r) such that

(2.6) IVul, + Jul, £ C sup [V VO + (W 9)]
sex VOl + ol

holds for all u € X"(Q)
(iv) Let u € X9(Q2) for some 1 < g < co. If u satisfies
|(Vu, V) + (u, 9)]

(2.7) s .
sex) IVl +lol

for some 1 < r < oo, then we have u € X”(Q), and the estimate (2.6) holds.

Based on Lemma 2.1, we shall first show (1.6) which guarantees (2.3). Recall the spaces X" (2)
and V7" (Q) defined by (1.3) and (1.4), respectively. Both X" () and V"(Q2) are Banach spaces
with norms || - ||x+ and || - ||y~ as in (1.5). It follows from Duvaut-Lions [12, Lemmata 4.2 and 6.1,
Chapter 7] that X(€) and V() are dense in X"(Q) and V" (Q), respectively.
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Lemma 2.2 Let Q2 be as in the Assumptiop and let 1 < r < oo.
(1) (in case v,u =0) It holds X" (2) = X" () with the estimate

(2.8) IVull, + ||u)lr £ Cllul|xr  for all u € X™().
(2) (in case T,u = 0) It holds V" (Q) = V"(Q) with the estimate
(2.9) IVull, + |lu)lr £ Cllullvr  for all u € V().

Proof. (1) Since X(Q) is dense in X"(Q), it suffices to show (2.8) for u € X(Q). We make use of
the following identity

(2.10) (Vu, Vo) = (rot u,rot ¢) + (div u,div ¢) — / u- (¢ Vv+ ¢ xrot v)dS
o0N

for all u, ¢ € X (Q), where dS denotes the surface element of 02. Notice that the unit outer normal
v to 0N can be extended as a smooth vector field in some neighborhood of 9€2. Indeed, since
u-v =0 on 02, we have by integration by parts

(Vu, Vo)
= (u,—A9) +/ u-(v-Ve)dS

o0

= (u,rot rot ¢ — V(div ¢)) + / u-(v-Ve)dS
o0

(2.11) = (rot u,rot ¢) + (div u,div ¢) +/

u X U - rot ¢dS+/ u- (—vdiv ¢ +v-Vo)dS
o0

o0N

= (rot u,rot ¢) + (div u,div ¢) —|—/ u-(vxrot g +v-Ve)dS
o0

= (rot u,rot ¢) + (div u,div ¢) +/ u-(V(p-v)—¢-Vv—¢xrot v)dS.
o0

Since ¢ - v = 0 on 0f2, we see that V(¢ - v) is parallel to v on 92, which yields v - V(¢ -v) =0 on
0. Hence, the third term of the right hand side of (2.11) vanishes, and the identity (2.10) follows.
Now we have by (2.10) that

|(Vu, V)| = ([[rot ully + [[div wll) [Vl + Cllull ooy 19l L a0)
for all ¢ € X(Q). By the trace theorem, for every ¢ > 0 there is a constant C. = C.(r) such that
[ullzr o0y = ellVullr + Cellullr,
which yields
(2.12) [(Vu, V)| = C(([rot ully + [|div ullr + &l Vully + Cellullr) IV Sl + [[4]l)

for all ¢ € X(Q2) with C = C(r). Taking e sufficiently small in (2.12), we obtain the desired
estimate (2.8) from (2.6) in Lemma 2.1.
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(2) The proof is quite similar to that of (1). Since V(Q) is dense in V' (€), it suffices to prove
(2.9) for u € V(). Compared with (2.10), we make use of the following identity

(2.13) (Vu, Vo) = (rot u,rot ¢) + (div u, div 1) +/ u- (¢ - Vv —pdiv v)dS
[2/9]
for all u,v € V(Q). Indeed, since u x v = 0 on €, in the same manner as in (2.11) we have
(Vu, Vi)
(2.14) = (rot u,rot ¢) + (div u,div ¢) + / u- (—vdivyp +v-Vy)dS
o0

= (rot u,rot ¢) + (div u,div ¢) + / u - (rot (¢ x v) + 1 - Vv —div v)dS.
o0N

Since u X ¥ = 0 on 0, we see that u - rot is a tangential derivation on 0€2. Since ¥ x v = 0 on
092, it holds u-rot (¢ x v) = 0 on 0. Hence the third term of (2.14) vanishes, which yields (2.13).
Now we have by (2.13) that

|(Vu, Vi) = ([Irot wlly + |div wl[) Vel + Cllull oo 191l L o0)

for all ¢ € V(). It is easy to see that the proof is quite parallel to that of the above (1) since we
have (2.4) in Lemma 2.1. This proves Lemma 2.2.

By Lemma 2.2, we may identify X" () with X" () and V" (Q) with V" () for all 1 < r < oo,
respectively. Let us recall the spaces X} () and V)| () defined by (1.8). Then by Lemma 2.2
we have

Xr () = {fueW(Q)divu=0rot u=0 inQ, wu-v=0 ondN},
Vi (Q) = {ueWh(Q)divu=0totu=0 inQ, uxv=0 ondQ}.

By (2.8) and (2.9) we see that both X;  (Q) and V) () are of finite dimension. Indeed, if we

regard X; () and V)" () as subspaces in L"(2), then by (2.8) and (2.9) their unit sphere with
respect to the L™-norm is a bounded set in W1 (Q). By the Rellich theorem, it is a compact subset
in L"(€2), which implies that the dimensions of X () and V} () are finite. Let us define the
sSpace Xhar(Q) and Vhar(Q) by

(2.15) Xpar() = () Xpor(@) and Vi (= (] Viar(9),
1<r<oco 1<r<oco
respectively. Then we have
Lemma 2.3 (1) For every fized q with 1 < q < oo, it holds
X1 (Q) = Xpor (Q), VL (Q) = Vaar ().
(2) (i) (in the case v,u = 0) Let dim.Xpq,(2) = N and let {¢1,---,on} be a basis of Xpar(2).
For ever 1 <r < oo, there is a constant C = C(r) such that

N

(2.16) IVully + [lullr < C(ldiv ully + ot wlly + D 1(u, 7))
j=1
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holds for all u € X" (£2).
(ii) (in the case Tyu = 0) Let dim.Vye, () = L and let {31,---,¢¥r} be a basis of Viar (). For
ever 1 < r < oo, there is a constant C = C(r) such that

L

(2.17) IVally + [lullr < C(ldiv ully + ot wlly + ) (u, %))
j=1

holds for all uw € V().

Proof. (1) Let us first prove that for every fixed 1 < ¢ < co it holds X} (Q) = Xper(Q2). Since Q
is bounded, it suffices to show that

Xq

har

(Q) C X7, (Q) forall r with ¢ <7 < 0.

We may assume that 1 < ¢ < 3. Let us first show for r =y with 1/r; =1/¢ — 1/3. We take p so
that 1/p = 3/2¢ —1/2. Then it holds 1/p = 1/g— (1 —1/q) and 1/p' = 1/r; — 1(1—1/r}). Since
01 is a two-dimensional surface, the Sobolev embedding and the trace theorem state that

1.
1—-=,r

(218) o (WH(Q)) = W' ™09(9Q) € LP(99), o (Wlﬂ“’l(ﬂ)) —w N (09) ¢ LY (09),

where 7 is the usual trace operator defined by (1.1) and (1.2). By density argument, the identity
(2.10) holds for all u € X9(Q2) and all ¢ € X7 (Q). Hence, if u € XJ (Q), then we have by (2.18)
that

[(Vu, Vo) Cllull e o) 191l 2 (90

ol 13
w

=
<
= -
" (09)

(2.19) Clull, .-

9(00)
Ol l1¢lyrrt

for all ¢ € X(Q). Since 1/¢' = 1/ry — 1/3, we have W1 (Q) c LY (Q), which yields
(2.20) |(u,9)| < Jlullglélly < Clullglély g for all o € X(Q).

We obtain from (2.19) and (2.20) that

(Vu, V6) + (u, 6)]
sup
sorey INGly + 19l

= Cllullwra)

Hence it follows from (2.7) in Lemma 2.1 that u € X! (£2). Repeating this argument again with

har
q replaced by r1, we have

uwe X;? (Q) forrg with 1/rp=1/r; —1/3=1/q—2/3.
Again by the same procedure, we conclude within finitely many steps that

u € X}, () forall r with ¢ £ r < 0.
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We next show that for every fixed 1 < ¢ < oo it holds VI () = Vjer(€2). It should be noted
that density argument yields the identity (2.13) for all v € V4(Q) and all ¢ € V¢ (Q). Hence it
is easy to see that if u € V,L (), then similar estimates such as (2.19) and (2.20) hold for all

har

¢ € V(Q). By (2.5) together with the bootstrap argument as above we obtain u € Vi () for all
r with ¢ £ r < oc.

(2) The proof of (i) and (ii) stems from (2.8) and (2.9), respectively. So, we may only prove (i).
The proof of (ii) is quite the same. We make use of contradiction argument. Suppose that (2.16)
dose not hold. Then there is a sequence {u, }o°_; such that

N

IVum|lr + [umllr = 1, [|div up||r + [[rot wm||, + Z |[(um, ¢5)| = 1/m
j=1

for all m = 1,2,---. By the Rellich theorem, we may assume that there is u € X" () such that
Um — u  strongly in L"(£2) as m — oo.
By (2.8) we see that {u,,}5_; is a Cauchy sequence in W17 (Q). Hence
Vi, — Vu  strongly in L"(Q2) as m — oo.

Since div u,, — 0 and rot u,, — 0, we have u € X (€). Moreover, since (up,¢;) — 0 for all
j=1,---N, we have m
(u,0;) =0 forallj=1,---,N,

which yields u = 0. This contradicts ||V, |y + [[tm- =1 for allm=1,2,---. il

Let us recall the spaces X/ (€2) and V] (Q2) defined by (1.7). The following variational inequalities
on X7 () and V() play an essential role for the proof of Theorem 1.1.

Lemma 2.4 Let  be as in the Assumption and let 1 < r < oo.
(1)(in case vyw = 0) Let {¢1, -+, on} be a basis of Xpar(Q). There is a constant C' = C(r)
such that the estimate

|(rot w, rot @)|
Vel + el

N
@21) [Vl + o], < csup{ e X ()0 # o} 3 [ gp)
j=1

holds for all w € X ().
(2)(in case T,w = 0) Let {1,---,v¥r} be a basis of Vipar (). There is a constant C = C(r)

such that the estimate

|(rot w, ot )|
IVl + (|21l

L
222) [Vl + [l < csup{ e V()0 # o} 5w, y)
j=1

holds for all w € V] (Q).

Let us first introduce the following uniqueness property. For that purpose, recall the spaces X (Q)
and V() defined by (2.1) and (2.2).
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Proposition 2.1 Let Q) be as in the Assumption.
(1)(in case yv,u =0) Let u € X, () for some 1 <1 < co. If u satisfies

(2.23) (rot u,rot ) =0 for all p € X(Q) with div ¢ = 0,

then we have u € Xpq,r ().
(2) (in case T,u =0) Let u € VI () for some 1 <r < co. If u satisfies

(2.24) (rot u,rot 1) =0 for all ¢ € V(Q) with div ¢ = 0,
then we have u € Vjqr ().

Proof. (1) By (2.23), we see that u fulfills
(2.25) (rot u,rot ®) =0 for all & € X(Q).

Indeed, for every ® € X(9), we can choose a scalar function p € C°°(2) in such a way that

(2.26) Ap=div® in Q, % =0 on 0N.
Taking ¢ = ® — Vp, we have ¢ € X(Q) with div ¢ = 0. Since rot (Vp) = 0, we see that (2.23)
implies (2.25).

For the proof, it suffices to show that u € X2(£2). In such a case, since X () is dense in X2(Q),
we may take ® = u in (2.25), which yields rot v = 0. Since €2 is bounded, we may assume that
1 < r < 2. We make use of the identity (2.10) which holds also for u € X’ (Q) and ¢ € X(Q). Since
div u = 0, we have by (2.25) and (2.10) that

(VU,V(I)):—/ w-(®-Vv—& xrot v)dS forall ® € X(Q).
o0

Then it is easy to see that the same argument as in (2.19) and (2.20) with ¢ = r in the proof of
Lemma 2.3 yields the variational inequality

|(Vu, VO) + (u, D)
V@l + @]

(2.27) sup

1 < Cllullwrrq) for ri with 1/ry =1/r —1/3.
DeX(Q)

It follows from (2.7) that v € X™(Q). If 5/6 < r < 2, then we have r; = 2 and u € X?(Q2) follows.

In case 1 < r < 5/6, we repeat the above procedure again starting from u € X" () to see that

u € X"2(Q) for ro with 1/rg = 1/r; —1/3 =1/r — 2/3. Since 73 > 2, we obtain u € X?2(), too.
(2) The proof is quite similar to that of the above (1). By (2.24), we see that u fulfills

(2.28) (rot u,rot W) =0 for all ¥ € V(Q).

Indeed, for every ¥ € V(9), we choose a scalar function p € C°°(€2) in such a way that

(2.29) Ap=divV¥ inQ, p=0 on .
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Taking ¢ = ® — Vp, we have ¢ € 1>(Q) with div ¢ = 0. Since rot (Vp) = 0, we see that (2.24)
implies (2.28).

For the proof, in the same way as that of the above (1), it suffices to show that v € V"(Q) for
1 < r < 2 implies u € V2(Q). We make use of the identity (2.13) which holds also for u € V()
and ¢ € V(). Since div u = 0, we have by (2.28) and (2.13) that

(Vu, V) = / u- (- Vv —Udiv v)dS for all ¥ € V(Q).
[2}9)

Then it is easy to see that the same argument as in (2.27) yields

|(Vu, V@) + (u, )| .
sup < Ollullwrrqy  for rm with 1/r =1/r —1/3.
seviy 1Vl 112l e

It follows from (2.5) that u € V™1 (Q). If 5/6 < 7 < 2, then we have r; > 2 and u € V?2(Q) follows.
In case 1 < r < 5/6, we repeat the above procedure again starting from u € V" (£2) to see that
u € V2(Q) for rp with 1/ry = 1/r — 2/3. Since 72 > 2, we obtain u € V2(Q), too. This proves
Proposition 2.1.

Proof of Lemma 2.4.
(1) Let us first show that there is a constant C' = C(r) such that
|(rot u,rot ¢)]

(2.30) IVul. £C sup + Cllull,
weXT (Q) ||V90Hr’ + ||90||r’

holds for all v € X7(Q). Since div u = 0 and since the identity (2.10) holds for ¢ € X" (), we
have similarly to (2.12) that for every € > 0 there is a constant C such that

|(Vu, V)| < [(rot u,rot @)| 4 (]| Vullr + Cellullr) | @]y 1. (o) for all @ € X7(Q).

Hence taking e sufficiently small, we obtain from (2.6) in Lemma 2.1 that

rot u,rot ®
|Vull, £ C sup M—FCHUHT

deX(Q) H(I)HWLT'(Q)

|(rot u,rot @)]

< C sup + Cllull»

pexr' () ot @
_ ¢ sw |(rot u,rot )]
gDEXg/(Q) ||1"0t QOHT’

(2.31) = Csup{
+ Cllull,

+ Cllullr

rot u,rot ¢ _ , . i |
|(||rot¢||,)|;soeX§ (€2) with (%soj)zofor]:1,...7N}
T

Notice that by taking such p as in (2.26) for every ® € X" (€2) we may choose ¢ € X7 (Q) with
rot ¢ = rot ®. Furthermore, defining ¢ = ¢ — Z;V:l(ga, ©j)pj, we see that ¢ € X7 (Q) satisfies
rot ¢ =rot ¢ with (¢,p;) =0forall j =1,---,N. By (2.16) with r replaced by r/, it holds

V@l + [[@ll = Cllrot @l
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Hence it follows from (2.31) that

IVl
|(rot u,rot P)|

< Csup{ = —;
Vel + Al
+ Clull,

5 e X' (Q) with (¢,¢;) = 0 for j = 1,...,N}

|(rot u,rot ¢)|

[IA

+ Cllullr,

C sup
peXT () Vel + [l

which implies (2.30).
We prove (2.21) by contradiction. Suppose that (2.21) does not hold. Then there is a sequence
{wp, }5°0_; in X7 (Q) such that
(2.32) IVwm|lr + |wm|l- =1 forallm=1,2,---
(2.33) Em = Sup [(xot wm, rot ¢)|
peXT () Vel + [lell
(2.34) (Wm,pj) =0 forj=1,---,N as m — oo.

— 0 asm — oo,

By (2.32) and the Rellich theorem, we may assume that there is w € X7 () such that
Vwy, = Vw weakly in L"(Q), w,, — w strongly in L"(Q).
Hence by (2.33) w satisfies that
(rot w,rot ) =0 for all p € X7

It follows from Proposition 2.1 (1) that w € Xper(2). By (2.34) we have

(w, ;) =0 forj=1,---N,
which yields w = 0. On the other hand, we obtain from (2.30) that

[Vwm |l = Cem + Cllwp |-

Since w,, — 0 strongly in L" (), we have by (2.33) that

Vwy, — 0 strongly in L™ (),

which contradicts (2.32).
(2) The proof is quite similar to that of the above (1). Compared with (2.30), we shall show
that there is a constant C' = C(r) such that

t t
(2.35) IVull, SC sup Lot U rot V)]

+ Cllull;
YeVr' () HV¢HW + ||¢”T"

holds for all u € V7 (). Since div u = 0 and since the identity (2.13) holds for ¢ € V™ (2), we
have similarly to (2.12) that for every € > 0 there is a constant C such that

(Vu, V)| < [(rot u,rot )| + (el Vullr + Cellull ) [y gy for all ¥ € V7(Q).
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Hence taking ¢ sufficiently small, we obtain from (2.4) in Lemma 2.1 that

|(rot u,rot W)

|Vull, £ C sup + Cllul|,
VeV (Q) ”\IIHWU"(Q)
< ¢ sup |(rot u,rot W) Ol
B vevr (Q) [[rot W[,
— ¢ sw |(rot u, rot )] + Ol
vevr' () lrot ¥l
tu,rot )| - -
(2.36) — Csup {W;¢ € V' (Q) with (,1;) =0 for j =1, ,L}
Iro r!

+ Cllul;

Notice that by taking such p as in (2.29) for every ¥ e V"'(Q) we may choose ¢ € V!'(Q2) with
rot ¥ = rot ¢. Furthermore, defining ¢ = ¢ — Z] L1, )i, we see that b € VI'(Q) satisfies

rot ¢ = rot ¢ with (w,wj) =0forall j=1,---,L. By (2.17) with r replaced by r’, it holds
IVl + 5]l < Cllrot |

Hence it follows from (2.36) that

|Vl
|(rot u,rot vf))] ~ , ‘ - .
= = ——; € V() with (¢,¢;) =0for j=1,---,L
{ VY| + (9] J
+ Cllull»
< ¢ sup |(rot u,rot )] L Cllall,

sevasy IV + T

which implies (2.35).

Now, we prove (2.22) again by contradiction. Suppose that (2.22) does not hold. Then there is
a sequence {wp, }>°_; in V7 (€) such that
(2.37) Vwm|lr + |wn|l- =1 forallm=1,2,---

|(rot wp,, rot )]
(2.38) Em = sup
vevr' @) IVl + [l

(2.39) (wm,wj)—>0 for j=1,---,L as m — oc.

— 0 asm — oo,

By (2.37) and the Rellich theorem, we may assume that there is w € V() such that
Vw, = Vw weakly in L"(Q), w,;, — w strongly in L"(2).
Hence by (2.38) w satisfies that

(rot w,rot ) =0 for all ¢ € V7'
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It follows from Proposition 2.1 (2) that w € Vj,,-(©2). By (2.39) we have
(w,;) =0 forj=1,---L,
which yields w = 0. On the other hand, we obtain from (2.35) that
[Vwm |l = Cem + Cllwp |-
Since wy, — 0 strongly in L"(2), we have by (2.38) that
Vwpy, — 0 strongly in L"(),
which contradicts (2.37). This proves Lemma 2.4.
Based on Lemma 2.4, we have the following result on existence of weak solution to (0.3).

Lemma 2.5 Let 2 be as in the Assumption and let 1 < r < oo.
(1)(in case v,w = 0) For every u € L"(Q) there is a function w € X[ () such that

(2.40) (rot w,rot @) = (u,rot @)  for all o € X7 (Q)

with the estimate
(2.41) IVl + [[w]ly = Cllull,

where C'= C(r). If there is another w € X[ () satisfying (2.40), then we have rot w = rot w.
(2)(in case T,w = 0) For every u € L"(Q2) there is a function w € V() such that

(2.42) (rot w,rot ) = (u,rot )  for all ¢ € V' (Q)

with the estimate
(2.43) IVwllr + [[w]ly = Cllull;,

where C'= C(r). If there is another w € V() satisfying (2.42), then we have rot w = rot .

Proof. Since the proof of (1) and (2) is quite parallel, we may give it simultaneously. To this end,
let us introduce the spaces Y (), Y3q,(©2) and Z(2) by

Y (Q) = X2(Q),and V) (2),  Yier(Q) = Xpar (), and Vi, ()
Zr(Q) = {we X7(Q); (w,p;) =0forj=1,---,N},
T {w e VI(Q); (w, ) =0 for j=1,---, L}

with the norm [|w||z; = |[rot wl|,, where {¢1,---,¢n} and {¢1,---,4¥} are the bases of Xpq, ()
and Vjer(©2) in Lemma 2.4, respectively. By (2.21) and (2.22), we see that Z(Q2) is a closed
subspace in W17 (), and hence it is a reflexive Banach space.

We consider the map F : Z7(Q) — Z7 (Q)* defined by

(Fw, $) = (rot w,rot ¢) for w € Z2(Q) and ¢ € Z7 (),
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where (-,-) denotes the duality paring between Z” (Q)* and Z7 (). By the same argument as in
(2.31) and (2.36), it holds that

(2.44) sup Ot w0t Al - [(rot wxot )]
¢€Zg/(Q) HrOt (bHTI Pe r/(Q) HI‘Ot ’ler/

Hence Lemma 2.4 assures that the range R(F) of F is closed in Z7 (Q)*. In fact, we have
(2.45) R(F) = ZI' (Q)*.

Suppose that R(F) C Z7 (Q)*. Then there exists a g € Z (Q)** with g # 0 such that
(2.46) g(Fw) =0 forall we Z,(Q).

Since Z7'(Q) is reflexive, there is a unique ¢ € Z7 () with 91l 72 (=« = llrot @] such that

g(f) ={f,¢) forall f € Z5(Q)"
Hence, taking f = Fw in the above identity, we have by (2.46) that
0= g(Fw) = (Fw, ¢) = (rot w,rot ¢) for all w € Z7 ().

Replacing r by ' in (2.44) we obtain from Lemma 2.4 that ¢ = 0, which yields g = 0. This causes
contradiction.

For every u € L"(Q), we define f, € Z (Q)* by

(fu, @) = (u,rot ¢) for ¢ € Z};’(Q).

Obviously, we have ||quZT/(Q)* < ||lul|r. Now it follows from (2.45) that there is w € Z~(€2) such
that Fw = f,, which implies that

(rot w,rot ¢) = (u,rot ¢) for all ¢ € Z7 ().
Again by the similar argument to (2.31) and (2.36), this identity yields
(rot w,rot ¢) = (u,rot ¢) for all ¢ € Y7 (Q).

Since (w,¢j) =0 for j =1,---,N and (w,¢;) = 0 for j = 1,---, L, from (2.21) and (2.22) we
obtain (2.41) and (2.43), respectively.
Finally, suppose that w € Y. (Q) satisfies (2.40) and (2.42). Then we have

(rot (w — ), rot 1) =0 for all ¥ € Y (Q).

From Proposition 2.1, we conclude that w — @ € Yq,(€2). This proves Lemma 2.5.

To show that X; (2) C C*(2) and V} (2) C C*(Q) for all 1 < r < oo, we need to consider
the following two elliptic systems of generalized boundary value problem in the sense of Agmon-
Douglis-Nirenberg [1].
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Lemma 2.6 (1) Let s > 2 be an integer and let 1 < r < oco. Suppose that f = (f1, %, f3) €
Ws=27(Q), ¢ € W= (9Q), & = (&1, &2, &%) € W1/ (9Q). Then the boundary value prob-
lem

—Au=f inQ,
(2.47) divu=¢ on 09,

uxv==o ondN

takes the form of the uniformly elliptic operator with the complementing boundary conditions in the
sense of Agmon-Douglis-Nirenberg [1, Theorem 10.5], and hence it holds

(2.48) lullwsr@) = CUlfllws—2r@) + 1 @llws-1-1/mr 0y + 1 @lws-1/mra0) + lullr),

where C' = C(Q, s,7).
(2) Let s > 2 be an integer and let 1 < r < co. Suppose that f = (f1, f2, f3) € Ws=27(Q), ¢ €
Ws=1/rr(9Q), U= (U1, 02 ¥3) ¢ Ws—1-1/77(9Q). Then the boundary value problem

—Au=f inQQ,
(2.49) u-v=1 on 0L,
rotuxv =Y on 0.

takes the form of the uniformly elliptic operator with the complementing boundary conditions in the
sense of Agmon-Douglis-Nirenberg [1, Theorem 10.5], and hence it holds

(2.50) lullwsr@) = CUIflws—2r@) + ¥ lys1-1/mr@0) + 1P llws1/mr a0y + lullr),
where C' = C(Q, s,7).
An immediate consequence of Lemma 2.6 is the following W#*"-bounds via operators rot and div .

Lemma 2.7 Let s> 2 and let 1 < r < oo.
(1) (in case y,u). Suppose that u € L™(Q) with divu € W17(Q), rot u € W*=17(Q) and
You € WY (9Q). Then we have w € W5 (Q) with the estimate

(2.51)  lullwsr@) = CUldIv ullys-1rq) + lrot ullyws-1r@) + [wullys—1/rraq) + lullr),

where C = C(Q, s,7).
(2) (in case T,u) Suppose that u € L7 () with divu € W L(Q), rot u € W L(Q) and
o € W (9Q). Then we have u € W' (Q) with the estimate

(2.52)  lullwsr@) = C([div ullys—1r @) + [[rot ullws—1r0) + [Toullys-1/rr @0y + [lullr),
where C' = C(Q, s,7).

Proof. (1) In (2.49) we may take f = —Au = rot rot u — V(div u), ¥ = rot u X v and ¥ = ~y,u.
Indeed, we have
[fllws=2r@) = C(lrot ullys—rr() + |[div ulws-1r()),

and the trace theorem yields

I lyys1-1/mraa) S Clirot ullyys—1-1/rr @) S Clirot ullys-10(),
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from which and (2.50) we obtain (2.51).
(2) In (2.47) we may take f = —Awu = rot rot u — V(div u), ¢ = div w and ® = 7,u. Since

[llws—1-1/mr a0y = A1V ullypor1/mr gy = Clldiv ullws-1.0(a),

we see that (2.48) implies (2.52). This proves Lemma 2.7.

2.2 L"-Helmholtz-Weyl decomposition; Proof of Theorems 1.1 and 1.2
Proof of Theorem 1.1: (1) Let u € X7 (Q) for some 1 < r < oco. By Lemma 2.2 (1), we have

har

u € WH(Q), which yields u € W'=V/"(9Q) with v,u = u - v|sgg = 0. Then it follows from

(2.51) that w € W*"(Q) for all s > 2, which implies that v € C°°(2). Similarly, the fact that

Vi () € C=(Q) follows from Lemma 2.2 (2) and (2.52).
(2) Let u € L™(2). The scalar potential p € W17 (Q) is taken is such a way that
(2.53) (Vp,Vn) = (u,Vn) for all € WL (Q)

with the estimate
(2.54) HVPHT é CH“HTa

where C'= C(r). Such a scalar function p as (2.53) is unique up to an additive constant. This was
proved by Simader-Sohr [41], [42].

The vector potential w € V) (§2) in (1.9) can be derived from Lemma 2.5 (2). For u € L"(Q)
we take w such that (2.42) and (2.43) are fulfilled. Note that rot w € L] (). To see this, we
may verify that ~,(rot w) = 0. Since the usual trace operator 7o : W' (Q) — W=/ (9Q) is
surjective, by the generalized Stokes formula (1.1), it suffices to show that

(rot w,Vq) =0 for all g € W' Q).

Since rot (Vg) = 0 and since 7,w = 0, by (1.2) we have this identity.
Let us define h = u — Vp — rot w. Then we see

(2.55) (h,Vn) = 0 forall ne C§°(Q),
(2.56) (h,rot ¢) = 0 forall ¢ € CF°(Q).

We take ¢ = ¢ — Vg with ¢ € C*°(Q) satisfying Aq = div ¢ in ©, ¢ = 0 on 0. Since ¢ € V()
with rot ¢ = rot ¢, we have by (1.1), (1.2), (2.42) and (2.53) that

(h,Vn) = (u — Vp,Vn) — (rot w, Vn) =0,
(h,rot ¢) = (u — ot w,rot ) — (Vp,rot ¢) = (p,div (rot ¢)) — (yop, Y (rot ¢))aq = 0,

which yields (2.55) and (2.56). This implies that div A = 0 and rot A = 0 in the sense of distribu-
tions in €. Since v,h = v, (u — Vp) — v, (rot w) = 0, we obtain h € Xpa-(2). Let {¢1, -+, N} be
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an orthogonal basis in Xpq,(2). Then similarly to (2.55) and (2.56) we see that (h,¢;) = (u, ¢;)
forall j =1,---, N, from which it follows that

N

(257) h= e
j=1

Finally, we obtain the following representation of wu:

N

u= Z(u, ©;)p; +rot w+ Vp,
j=1

which yields (1.9). The estimate (1.10) is a consequence of (2.54), (2.43) and (2.57).
We next show the uniqueness such as (1.11). Suppose that u has another expression

uw=h+rot @+ Vp,
with i € Xpar(Q), @ € V/(Q) and p € W (Q). Similarly to (2.55) and (2.56), we see easily that
(h=h,p)) =0, j=1,--,N,
which implies & = h. Hence we have
rot (w—w)=—-V(p—p).
Since 7, (rot 1) = 0 for all 1) € V(Q), we obtain from (1.1) that
(rot (w —w),rot ¢) = (=V(p — p),rot ) = (p — p,div (rot 1)) — (y0(p — p), Y (rot ¥))on =0

for all 1 € V(Q). Then it follows from Proposition 2.1 (2) that w — @ € Vje,(€2), which means
rot w = rot w. As a result, we get Vp = Vp.

(3) Let w € L"(2). Compared with (2.53), the scalar potential p € W&’T(Q) is taken is as the
weak solution of the Dirichlet problem for A in £, i.e.,

(2.58) (Vp,Vn) = (u, V) for all n € Wo™ (Q)

with the estimate
(2.59) 1Vl £ Cllul,

where C' = C(r). Such a scalar function p as (2.58) is unique and moreover, p is subject to the
estimate (2.59). Since 2 is a bounded domain, this was proved for all 1 < r < oo by Simader-Sohr
[41], [42]. It should be noted that

(2.60) 7,(Vp) =0

Indeed, since yop = 0, we see by (1.1) and (1.2) that

(1,(Vp),100)aa = (Vp,rot ¢) = (yop, T (rot ¢))oq = 0
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for all ¢ € W' (Q). Since the trace operator vy : W' (Q) — W17 (9Q) is surjective, the
above identity implies (2.60).

The vector potential w € X7 (€) in (1.12) can be derived from Lemma 2.5 (1). For u € L"(Q)
we take w € X7 () such that (2.40) and (2.41) are fulfilled. Let us define h = v — Vp — rot w.
Then, similarly to the proof of the above (1) we see that h satisfies (2.55) and (2.56). Indeed, the
identity (2.55) is a consequence of (2.58). As for the proof of (2.56), for every ¢ € C§°(Q2), we
take ¢ = ¢ — Vg, where ¢ € C™(€Q) is a solution of Ag = div ¢ in Q, d¢/dv = 0 on IQ. Since
¢ € X7 (Q) with rot ¢ = rot ¢, from (2.40) we obtain (2.56). To see h € Viqr(Q), by (2.60) we may
show that

(2.61) T, (u — rot w) = 0.

Since rot (u — rot w) = rot (h + Vp) = 0 in the sense of distributions in 2, we have by (2.40) and
(1.2) that -
(Ty(u —rot w), yo¢)aq = (u — rot w,rot ¢) = (u — rot w,rot ¢) =0

for all ¢ € W' (Q), where ¢ € X];(Q) is defined as ¢ = ¢ — Vq with ¢ € W2 (Q) such that
Ag=01inQ, 9q/0v = ¢-v on IN. This implies 7, (u — rot w) = 0.

Let {¢1,---,%r} be an orthogonal basis in V},,-(€2). By (1.1) and (1.2) we can easily verify that
(u, ;) = (h,v;) for j =1,---, L, which yields

L
u= Z(u,wj)wj + rot w+ Vp.

7j=1
This implies (1.12). The estimate (1.13) is a consequence of (2.59), (2.41) and the representation
L
of h = ijl(u, w])@/}J
Finally we show the uniqueness such as (1.14). Suppose that u has another expression
w = h+rot @+ Vp,
with & € Vior(Q), @ € X2(Q) and p € Wol’T(Q). Similarly to (2.55) and (2.56), we see easily that
(h—ilﬂp]):(), jzla"')L7
which implies h = h. Hence we have
rot (w—w)=—-V(p—p).
Since yop = Yop = 0, we obtain from (1.1) that
(rot (w — W), 0t ) = (=V(p — p), 10t ) = —(0(p — H), Vv (rot ¥))an =0

for all ¢ € X(Q). Then it follows from Proposition 2.1 (1) that w — @ € Xpar(2), which means
rot w = rot w. Consequently, we get Vp = Vp. This proves Theorem 1.1.

Proof of Corollary 1.1: The direct sums (1.15) and (1.16) are consequences of the representation
formulas (1.9) and (1.12) with uniqueness properties as (1.11) and (1.14), respectively. Hence the
operators S,, R, and @, are well-defined by (1.17). Their continuity in L"({2) stems from the
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estimates (1.10) and (1.13). The properties S2 = S,, R? = R, and Q? = Q, are guaranteed by the
uniqueness (1.11) and (1.14).
Suppose that u € L"(Q) and @ € L™ (Q) are decomposed as

u = h+rot w+ Vp,

where h € X0, (Q) (or Viar (), w € VI (Q)(or X7(2)), p € WLT(Q) or (WOI’T(Q)),

@ = h + rot w + Vp,

where 1 € Xpar () (or Viar(9)), @ € VI (Q)(or X7 (Q)), p € WH'(Q) or (W2 ().

By (1.17) we have

Syu=h, Ryu=rotw, Qyu=Vp,
Sr/’lj, = il, RT./’EL = I‘Ot 1])7 QT‘/{L = V[j

In the same way as in (2.55) and (2.56) it is easy to show that

(STU’7 fL) = (u, Sr’a) = (h7 il)7
(Ryu,u) = (u, Rp) = (rot w,rot 0),

(Qru, @) = (u, @ra) = (Vp, VD),
from which we conclude that

Si=Sy, Ri=Rs, Qf=Qu
This completes the proof of Corollary 1.1.

Proof of Theorem 1.2; W5P-bounds via rot and div . Let us first show that both (2.51) and
(2.52) in Lemma 2.7 hold also for s = 1.

Lemma 2.8 Let 1 <1 < o0.
(1) (in case y,u). Suppose that w € L"(2) with divu € L"(Q2), rot w € L"() and vu €
W=1/rm(0Q). Then we have u € W (Q) with the estimate

(2.62) IVully + llull- = Cldiv ully + [frot ull; + Iy ullyr-r/rr@a) + lullr),

where C' = C(Q,r).
(2) (in case T,u) Suppose that w € L"(2) with divu € L"(2), rot w € L"(Q) and myu €
W= (9Q). Then we have u € WL () with the estimate

(2.63) IVully +[lull; = CUldiv ull; + [[rot ully + [Tullyr-i/rr o) + llullr),

where C = C(Q, 7).

Proof. We shall reduce (2.62) and (2.63) to the homogeneous condition on 9 such as (2.8) and
(2.9), respectively.
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(1) To show (2.62), we consider the Neumann problem

(2.64) Ip

9 =Y on 0f).

v

Since div u € L"(Q) with u - v = y,u € W'=1/77(9Q), there exist a uniquely solution p € W27 (Q),
up to an additive constant, of (2.64) with

{ Ap =divu in €,

(2.65) IV2plly + 1Vpllr < Clldiv ully + Iroullyr-1mro0)):

where C = C(£,r). Taking v = u—Vp, we have by (2.64) and (2.65) that v € L"(Q2) with div v = 0,
rot v =rot u € L"(2) and v,v = 0. Hence, applying (2.8) to v, we see from (2.65) that

(2.66) IVollr + ol = C(llrot wlly + [[ull- + [ Vpllr)
s CO(ldiv ullr + [lrot wllr + Ivwullwr-vre o) + lullr),

where C' = C(Q,r). Since u = v+ Vp, from (2.65) and (2.66) we obtain (2.62).
(2) We shall next show (2.63). Let us consider the boundary value problem

—Aw =rot u in €,
(2.67) w-v=0 on 0,
rot w X v=m7,u on 0f.

Under our assumption, there exists a unique solution w € W27 (Q) of (2.67), up to modulo the
space Xpq(€2), such that

(2.68) [V (rot w); + [[rot wll, < C([[rot ully + [|mully1-1/mro0));

where C' = C(Q,r).

For a moment, let us assume the existence of w € W27 (Q) satisfying (2.67) and (2.68). Then
taking v = u — rot w, we have by (2.67) and (2.68) that div v = div u € L"(2), rot v = rot u —
rot rot w € L"(Q) and 1,v = myu — 7-(rot w) = u X v —rot w x v = 0. Applying (2.9) to v, we see
from (2.68) that

Vol + (o]l C(lldiv o[l + [rot vlj, + [|v]])

C(lldiv wlly + [lrot ullr + 7oullyr-1/nra0) + [lullr),

IVANIVAN

(2.69)

where C'= C(£2, 7). Since u = v + rot w, from (2.68) and (2.69) we obtain (2.63).

Let us now construct the solution w € W27 (Q) of (2.67) and (2.68). We first reduce (2.67) to
the problem with the homogeneous boundary condition on 0f2. Since T,u = u X v € Wl_l/”(aQ),
there extension w € W27 (Q) such that

(2.70) w=0, rotwxv=uxv ondd.

Indeed, it follows from Triebel [49] that there exists @ € W27 (Q) such that

(2.71) w =0, ZZ}:UXV on 0f2
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with
(2.72) [@llw2r @) S Cllmullwi-1mroa):
where C' = C(Q,r). Since w = 0 on 012, it holds

- ow
(2.73) rot W X v = Py <3v> on 0f),

where P,y is the projection onto the direction of the tangent space of 9, i.e., Paanf = f— (f-v)f
for f = (fl,fQ, f3) = Wl_l/’"”((‘)ﬂ). Hence we have by (2.71) and (2.73) that

O
rot W X v = Piap <8w> = Pian(u xv)
v

= uxv—(uxv-vv

= wuxv onJf,

which implies (2.70). Defining w’ = w — w, we see from (2.70) that the equation (2.67) can be
reduced to the following problem for w’.

—Aw' =g=rot u+ Aw in Q,
(2.74) w-v=0 ondQ,
rot w' x v =0 on 99.

Since rot u € L"(2), it follows from (2.72) that g € L"(£2). On the other hand, we have

Xr Q) = {heW? (Q);-Ah=0 inQ, h-v=0,rot hxv=0ondN}
(2'75) = Xhar(Q)

for all 1 < r < co. Let us assume for a moment (2.75). By (2.70) and the Stokes formula such as
(1.1) and (1.2), we have

(9,h) = (rot u,h)+ (—rot rot w + Vdiv w, h)
= (v X u,h)pn — (V X rot W, h)gq + (div W, h - V)an
=0
for all b € Xpe-(2). Hence by the Fredholm alternative, there exists a solution w’ € W2"(€) of

(2.74) which is unique up to modulo Xp4,(€2). From (2.72) and Lemma 2.6 (2) with s = 2, we see
that such w’ is subject to the estimate

Cllgll-
C(lfrot ully + lwllw2r(q))

[ lw2.r (@)
(2.76)

A HIA A

C([[rot ully + [Imullyr-1/rr@0))-

Since w = w’ 4+ W, the desired estimate (2.68) is a consequence of (2.72) and (2.76).
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It remains to show (2.75). The inclusion Xpq,(2) C X7 () is obvious. Let h € XJ_ (Q) for

1 <r < oo. Then Lemma 2.6 (2) yields h € C*°(2). Hence by the Stokes formula as in (1.1) and
(1.2), we have

0= (—=Ah,h) = (rot rot h —Vdiv h,h)

[rot A|3 + ||div A3 —I—/ (v xrot h-h — (div h)h - v)dS
o0

(2.77)

= |lrot A3 + [|div All3,

which yields that rot A = 0 and div A = 0 in Q. Hence we have h € X},4,(€2). This proves Lemma
2.8.

Completion of the proof of Theorem 1.2. The estimates (1.27) and (1.29) are consequences of
(2.16) and (2.17) in Lemma 2.3, respectively. Hence it suffices to show (1.28) and (1.30). The proof
of (1.28) follows from (2.51) and (2.62), while the proof (1.30) follows from (2.52) and (2.63). Let
us first prove (1.28). We make use of a contradiction argument. Suppose that (1.28) does not hold.
Then there is a sequence {um, }oo_; in W*"(Q) such that

(2.78) |wmllwsr@) =1,
N

(279) |V wm[lwe-10(0) + 10t i [lwre-1r() + Iotmllws-vmr o) + D 1(tm, 95)]
j=1

1
m7

holds for all m = 1,2,---. Since W*"(Q) is compactly embedded into L"(2), we may assume that
{um}>°_, is a strong convergence sequence in L"(€2). Hence from (2.51) and (2.62), we see that
there is u € W*"(§2) such that

(2.80) Uy — u  in WT(Q) as m — oo.
On the other hand, from (2.79) it follows that
U € Xper(2) with  (u,9;) =0 forj=1,--- N,

which implies that v = 0 in . This contradicts (2.78) and (2.80), and we obtain (1.28).
On account of (2.52) and (2.63), it is easy to see that the same argument as above holds also
for the proof of (1.30). So we may omit it.

2.3 Characterization of the harmonic vector fields X},.(2) and V},,.(Q)

In this subsection, we construct the bases {1, -, on} and {¢1,---,¢r} of the harmonic vector
spaces Xpqr () and Vi (), respectively, provided the domain 2 satisfies the conditions (1.23)
and (1.22) in Definition 1.1. We also characterize the range of the operator rot such as (1.26).
The characterization of Xp,,(€2) is due to Foias-Temam [15] and Temam [48, Appendix I](see also
Martensen [36]). On the other hand, our characterization of Vj,,(€2) seems to be new.
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Theorem 2.1 Let Q) be a bounded domain in R® with the first and the second Betti numbers N
and L as in Definition 1.1, respectively. Let Xpar(2) and Vie,(2) be as in Theorem 1.1(1).

(1)(in case v,h = 0) There exist N functions p1,---,pn in C®(Q) such that

Ap; =0 in ),
Opi
(2.81) 5 =0 on 09,
Pi .
fayj]]_07 [pz]]:(szj fOT’Z,j:L"',N,

where [f]; denotes the jump of the value f on X; defined by
[f]; = f|zj+ _f|2j—

with Zj and Ej_ denoting two sides of ¥;, and where v; is the unit outward normal to X; with its
direction from Ej_ to Zj. Moreover, for such py,---,pn, the set {¢1, -+, N} of vector fields given

by
()O’LEVPZ: Z:177N

forms a basis of Xpar ().
(2) (in case T,h = 0) There exist L functions qi,---,qr, in C*(Q) such that

Agi=0 inQ,
¢ilro =0, gilr, = 0y fori,j=1,---, L.

(2.82) {
Moreover, for such qi,---,qr, the set {11,---,1r} of vector fields given by
wzzv% Z:177L

forms a basis of Viaer(£2).

Proof. (1) The proof of (1) is essentially due to Temam [48, Appendix I, Lemmata 1.1, 1.2].
Indeed, the solutions py,---,py of (2.81) can be found in the space

X, = {h e WH();[B]i = const., [B; =0 fori#j}, =1, N.

Furthermore, it is shown in [48] that {Vpy,---, Vpy} forms a basis in X7 (). Since X7,
Xhar(€2), implied by Lemma 2.3, we obtain the desired result.
(2) For the proof of (2), we need the following Proposition.

(©2) =

Proposition 2.2 Let Q be a bounded domain in R? with the first and the second Betti numbers N

and L as in Definition 1.1, respectively. For any ¢ € C*°(Q)) with rot v =0 in Q and Y x v =0

on 0 there is a single valued function q € C*° () such that

Y =Vq inQ.
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For a moment, let us assume Proposition 2.2. It is well-known that there are solutions ¢q1, - -, gn

of (2.82) in C*°(2). Obviously, it holds
div ¢ = Ag; =0, rot ¢; =rot (Vg;) =0, i=1,---,L, in Q.

Since ¢; = const.(i = 1,---, L) on each 'y, 'y, -+, 'z, we see that ¢; = Vg is parallel to v on 952,
which yields ¢; x v = 0 on 9. This shows that ¢; € Vje,(Q) for all i = 1,---, L. Furthermore,
{1,---,%r} is linearly independent. In fact, if 25:1 Npj(z) = 0 for all z € Q for constants
A1, -+, Az in R, then we see that ZZ-Lzl A\igi(x) = const. for all x € Q. Letting = run over I'g, 'y, - -
and I'y, we see from (2.82) that \y = Ag =--- = A, =0.

We next show that V() is spanned by {41, ---,¢¥r}. Let h € V34,-(2). Then by Proposition
2.2 we see that h = V¢ with some ¢ € C*®(Q). Since Vg x v = h x v = 0 on 9%, Vq is parallel to
v on 0f2, which means that

gq=c¢ only;, +=01,---,L

with some constants cg, c1, - - -, cr,. Without loss of generality, we may assume that cg = 0. Defining
~ L
q=q— E :1'21 c;q;, we have

Ag=div h — ZZL:lciAqi =0 1in €,
G=0 on 09,

which yields ¢§ = 0, and hence h = Vg = 25:1 cithi. Since h € Vjo,r(£2) is arbitrary, we see that
{11, ,9r} forms a basis of V. (92).
Now, it remains to prove Proposition 2.2.

Proof of Proposition 2.2. Let us fix some point zo € . For every point z € Q) we denote by

lzo—z the piecewise smooth curve connected from xg to z. For ¢p € C°°(2) with rot ¢ = 0 in
and 1 x v = 0 on 012, the scalar potential ¢(z) can be defined as the line integral of 1 along the

curve ly,—z;
dla)= [ weds
lzg—»:v

Since € is simply connected and since rot 1) = 0, we see that the line integral on the above right
hand side is determined independently of choice of the curve I, .. So, ¢(x) is well defined on €.
To see that g(z) is a smooth single-valued function defined on €, we may show that ¢(x) does not
have any jump at each point z € ¥; across from ¥ to Z;r. Since v x Vg =v x 1 = 0 on 9 and
since v x V gives a tangential derivation on 02, we have that

(2.83) q= const. oneachI';, ¢=0,1,---,L.

For every z € %;, we denote by 7 and z~ the points of z € Q on the sides of EZ* and X,
respectively. Taking z, € 3; N 0L, we have

(2.84) /l+ w-ds:/_ ¥ - ds

Tt T, —TT
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because 1 is a single valued smooth vector function on 2. Since Vg = 1 on each side of Ej and
¥, , we have by (2.84) that

q(z") = q(@)
(2.85) = / Vq~ds:/ w~d3:/ ¢-ds:/ Vq-ds
lzj—»z“f lzr—>z+ T, —TT T, —x T
= q(@7) —q(z).

Since . € 99, we see from (2.83) that q(z}) = q(z; ), from which it follows that
q(z") = q(a”).

Since x € ¥; is arbitrary, this implies that ¢ does not have any jump on each ¥; fori =1,---, N.
This proves Proposition 2.2. Hence the proof of Theorem 2.1 is now complete.

Finally, we characterize the range of the operator rot with the domain W57 (2) and W*"(Q)
for s = 2.

Proposition 2.3 Let Q be a bounded domain in R® with the first and the second Betti numbers N
and L as in Definition 1.1, respectively. Let 1 <r < oo and s 2 2. Then it holds

{rot w;w € X, (Q)}

(286) = {vel"(Q)xdive=0 nQ, (ypv,)r,=0 foralj=0,1,---,L},
{rot w;w e W"(2) N X, ()}
(287) = {veWws I (Q);dive=0 inQ, / v-vdS =0 forallj=0,1,---,L}.
F.

J

Proof. By the generalized Stokes formula (1.1) and (1.2), it is easy to see that the sets of the
right hand sides of (2.86) and (2.87) are included into those of the right hand sides. So, it suffices
to show the converse inclusion. Let v € L"(2) with divv = 0 in Q and (y,v,1)r, = 0 for all
j=0,1,---,L. Then it follows from Theorem 1.1 (2) that

v="h+rot w for some h € Vja, () and w € X7 ().

Taking a basis {11, -,%r} given by Theorem 2.1 (2), we have by (1.1), (2.82) and the assumption
on v that

L

(hvdjj) = (v>¢J) = (U7VQJ) = Z<7UU7Qj>Fi = <7UU’ 1>Fj =0 for all ] = 1a o '7La
i=1

which yields h = 0. Hence it holds v = rot w. This implies (2.86).
If in addition, v € W*~17(€), then w can be taken as the solution

—Aw =rot v in €,
wxv=0, divw=0 on 9.

Hence by Lemma 2.6(1), we see that w € W*"(Q) N X2(€2), which yields (2.87). This proves
Proposition 2.3.
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3 Stationary Navier-Stokes equations under the general flux con-
dition
3.1 Leray’s problem

We first explain Leray’s problem on the stationary Navier-Stokes equations in multi-connected
domains  with the first and the second Betti numbers N and L as is Definition 1.1. In  we
consider the boundary value problem for the stationary Navier-Stokes equations:

—pAv+v-Vo+Vp=0 in Q,
(N-S) dive=0 1in Q,
v=/L0 on 09,

where v = v(z) = (vi(x),v2(x),v3(z)) and p = p(x) denote the unknown velocity vector and the
unknown pressure at the point z = (x1, 2, x3) € 2, while > 0 is the given viscosity constant, and

B = (01, B2, B3) is the given boundary data on 02. We use the standard notation as Av = Z;’:l %,
j

Vp = (8%, 8%”2, %), dive = 25:1 g%_, and v - Vo = Z?Zl vj%’j. Since the solution v satisfies
div v = 0 in €, the given boundary data § on 9f2 is required to fulfill the following compatibility
condition which we call the general flux condition:

L
(G.F.) B-vdS =0,

where v denotes the unit outer normal to 0€2. Leray [33] proposed to solve the following problem.

Leray’s problem. Suppose that § € H'/2(99) satisfies the general flux condition (G.F.). Does
there exist at least one weak solution v € H(£2) of (N-S) ?

Up to now, we are not yet successful to give a complete answer to this question. However,
some partial answer has been proved by Leray [33], Fujita[16] and Ladyzehenskaya [32] under the
restricted flux condition (R.F.) on 3

(R.F.) / B-vdS=0 forall j=0,1,---,L.
F.

J

Indeed, under the restricted flux condition (R.F.) on (3, they showed that there exists at least one
weak solution v of (N-S).

If the given boundary data [ satisfies the general flux condition (G.F.), then there exists an
extension b into Q with b|sq = [ such that div b = 0. We call such b a solenoidal extension into {2
of 4. Introducing a new unknown variable u = v — b, we can reduce the original equations (N-S)
to the following ones with the homogeneous boundary condition:

—pAu~+b-Vu+u-Vb+u-Vu+ Vp=puAb—>b-Vb in Q,
(N-9) divu=0 in Q,
u=0 on 0.
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To solve (N-S’) we need to handle the linear convection term b-Vu+wu-Vb. Let us take L harmonic
functions ¢i(z), -, qr(z) in Q so that

(3.1) Agi=0 inQ, ¢jr, =0, gqjlr, =0, 4,j=1,---,L,
and set ¢;(x) = Vg;j(z), j =1,---, L. Then it holds that
Vhar (2) = Span{t1, -+, r}.
We choose {¢1,---,¢r} as the orthogonal basis of Vi, () in L%-sense;
Vhar (82) = Span.{p1,---,pr} with (¢4, ;) =65, 1,5 =1,---, L.

Then there exists a regular L x L matrix (ajk);<; <y depending only on € such that

L
k=1

holds for all z € Q.
Our main theorem on existence of weak solutions to (N-S) now reads:

Theorem 3.1 Let Q be a bounded domain in R? with the first and second Betti numbers N and L
as in Definition 1.1. Suppose that 5 € H'/?(9) satisfies the general flux condition (G.F.). If

L

(3.3) S ag ( /F ﬁ-ud5> pil| < wCit,

jk=1 5

then there exist b € HY(Q) with divb =0 in Q, b= 3 on 09, and u € Hj ,(Q) such that (N-S’) is
satisfied in the weak sense that

(3.4) u(Vu, Vo) + (b Vu+u- Vb, o)+ (u- Vu,p) = u(Vb, V) — (b- Vi, b)

holds for all ¢ € C’gf’g(Q). Here Cs5 = 37225775 4s the best constant of the Sobolev embedding
H}(Q) C Lé(Q).

Remark 3.1 (1) The regular matrix (ajx)i<; <y, in (3.2) and (3.3) can be expressed by means of

the harmonic functions {qi1,---,q¢r} in (3.1). Indeed, we have
1 .

————Ej, 1=k=j,
(3.5) ajp =4 VA-AT

0 jH1<E<I,
where Ejj, denotes the (j, k)-cofactor of

Cc11 .- Clj

Ej=| + ..t |, 1sk=j=L,
Ci1 ... GCj5
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Aj=detE;, 1<j<1L,
with
dqy,

cin= | —*dS, jk=1,2,---L.
J Fj (9y

Then the hypothesis (3.3) of the Theorem can be rewritten as
L L i
SN o Zaij/ B-vdS | V|| < pC;t
k=1 i=k j=1 Ly 5

(2) Galdi [21, VIII, Theorem 4.1] proved the existence of solutions to (N-S) under the stronger
condition than (3.3) such as

L
Zci / ﬁ-udS‘ < W,
i=1 X

where c1, - - -, cr are computable constants depending on 2.

Corollary 3.1 Let Q = Aryr, = {z € R} Ry < |z| < Ro} with 0 < Ry < Ry. Let Ty = {x €
R3;|z| = Ro} and T'y = {x € R% |z| = Ry}. Suppose that 3 € HY?(0Q) satisfies the general fluzx
condition (G.F.) as

B-vdS+ [ B-vdS=0.
Fo F1

If
(3.6)

I

then there exists a weak solution v € H' (AR, r,) of (N-S).

Remark 3.2 Borchers-Pilekas [7] obtained a similar result to the above Corollary. Since the
methods are different, it seems to be impossible to see the relation of inclusion to each other.

3.2 Solenoidal extension of the boundary data (3

To solve (N-S) we first take a solenoidal extension b into §2 of .

Lemma 3.1 Let Q be a bounded domain in R3 with the first and second Betti numbers N and L
as in Definition 1.1. Let (3 satisfy the general flux condition (G.F.). Then there exists b € H* ()
with div b =0 in Q and b = B on 0N) such that b is decomposed as

(3.7) b=h+rot w

with h € Vier () and w € X2(Q) N H?(Q). Moreover, h is expressed as

L
38 we)= % an( [



for all x € Q, where {aji }1<;r<r, {¢ihi<j<r and {gi << are the L x L matriz, the orthogonal
basis of Viar(Q) in the L*-sense, and L harmonic functions in 0 appearing in (3.5), (3.2) and
(3.1), respectively.

Remark 3.3 Although there are infinitely many solenoidal extensions b into €2 of 3, it follows from
(3.8) that the harmonic part h of b is uniquely determined only in terms of the flux / G- vdS

F,
through I'; for j =1,---, L. ’

Proof of Lemma 3.1. By the trace theorem, there exists f € H'(Q) such that f = 8 on 9%.
Let us consider the equation

(3.9) divg=divf inQ, ¢g=0 ondQ.

Since 3 satisfies the general flux condition (G.F.), we have

/Qdivfdxzégf-de:sz;)AjﬁoudSzo.

Hence it follows from Bogovskii [6] and Borchers-Sohr [8, Theorem 4.1] that there exists g € HZ ()
satisfying (3.9). Defining b = g — f, we see by (3.9) that b € H'(Q) with
divb=0 inQ, b= on .

By Theorem 1.1 (3) with the aid of the a priori estimate as in (2.67) and (2.68) with u replaced by
b, there exist h € Vi (), w € X2 N H%(Q) and p € HE(Q) such that

b=h+rot w+ Vp.

Since the above scalar potential p is determined by (2.58) with u replaced by b, and since div b =0
in Q, we have p = 0, which yields (3.7).

Since {1, -+, L} is an orthogonal basis of Vj,q-(Q) in the L2-sense, it follows from (3.1) and
(3.2) that the above harmonic part h of b can be expressed as

L L
h = Z(b Pj)p; = Z (b, Zaﬂﬂ/}k Z ;i (b, Var)p
j=1 Jj= Jik=1
L L
= =) ap(divha)ei+ Y ajk(/ B - vqrdS)ep;
k=1 k=1 o0
L L
- Y (z 5 uqkds> 0
k=1 1=0 /11
L L
= Z Qg <Z/ ﬁ-yéklds> ;)
k=1 1=0 /11
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which implies (3.8). This proves Lemma 3.1.

To investigate (N-S’), for every solenoidal extension b € H*(£2) into Q of /3, let us introduce the
perturbed Stokes operator Ly : Hj ,(Q) — Hj ,(Q2)* defined by

(3'10) <Lbu’ 90> = M(vuv VQO) + (b Vu+u- Vb7 30)’ U, p € H&,O’(Q)’

where (-,-) denotes the duality paring between H&?U(Q) and H&U(Q)*. We regard H&U(Q) as the
Hilbert space with the Dirichlet norm ||Vul|. Since b € H(Q) with div b = 0, we see that £; is a
bounded linear operator from H&U(Q) to H&U(Q)*. More precisely, we have

(3.11) [1Loull pay- = (1 + 2C5][b][3)[[Vull2

for all u € H(%,U(Q), where Cy = 37223775 is the best constant of the Sobolev inequality llulle <
Cs|[Vull2. Indeed, by the Holder and the Sobolev inequalities it holds

((0-Vu, 9)| = [bllsl[Vull2llelle = Cslbllsl[Vull2[Veell2
((u-Vb,0)| = [(u-Ve,b)] = [lullsVell2lblls = Csllblls[|Vull2[Vell2,

from which it follows that

[{(Lou, ©)| = (p + 2Cs|[blls) [ Vull2[[Vell2

for all u, ¢ € H&,U(Q)' This implies (3.11).
The following invertibility of £, with some solenoidal extension b into 2 of 3 plays an essential
role for solvability of (3.4). Indeed, we have

Lemma 3.2 Let Q) be a bounded doma%'n in R3 with the first and second Betti numbers N and L as
in Definition 1.1. Suppose that € Hz(Q2) satisfies the general flux condition (G.F.). If B fulfills
(3.3), then there exists b, € H'(Q)) with div b, = 0 in Q, b, = 3 on 0, and a positive constant §
such that

(L) 2 8]Vl

holds for all u € H&,O’(Q)'

Proof. Since 3 satisfies the general flux condition (G.F.), it follows from Lemma 3.1 that there are
h € Viar(Q) with its expression as in (3.8) and w € X2(Q2) N H?(Q) such that b = h + rot w fulfills

divb=0 inQ, b= on .

Let us take a family {6:}.~0 of C*°-cut-off functions in {2 so that

= di < _%
(3.12) 0.(z) = 1 for d(z) = dls_t.l(m,(?Q) Se e,
0 ford(x)>2e" =,
with - )
< =,
(3.13) VO (x)] < i) for d(z) < 2e
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For every € > 0 we define b; by
b: = h +rot (.w).

Since 6. = 1 in a neighbourhood of 02, it holds that

(3.14) divb:. =0 inQ, b= ondforalle>0,
and that
(3.15) |(u- Vb, u)| = |(u- Vu,be)| < |(u- Vu, h)| + |(u - Vu,rot (fw))]

for all u € Hy ,(2). By the Holder and the Sobolev inequalities we have
(3.16) |(w- Vu, )| < [lullslVull2|Alls < Csl[Vul3]|hlls  for all u € H,(€).

Similarly to Temam [48, Chapter II, Lemma 1.8], for every v > 0 we can choose ¢ = () > 0 in
such a way that
(3.17) |(u - Vu,rot (.w))| < ~||Vul|3 for all u € H&U(Q).

For reader’s convenience, we show (3.17). Let a.(z) = rot (0:(x)w(z)). By (3.12) and (3.13) it
holds that )
supp a. = {x € Q;d(x) = dist.(x,00Q) < 2e” = },

and that - )
lac(z)] < m\w(x)\ + |Vw(z)| for x € Q with d(z) < 2e” =,
which yields
((u-Vu,ac)| = [[Vullallacull2
(3.18) < (1 Vulle (lwllo |5, + e Vol iy cae-tyy) -

Since u = 0 on 02, we have by the Hardy inequality that
(3.19) I5], = cival
’ dlle = 2

Since w € H?(Q) Cc W15(Q) € L>(Q), we have by the Holder and the Sobolev inequalities that

A

- VUl eu@y<ze ) ”“”6vaHLS({meQ;d(gnge*%})
<
(320) = Cs”V“HQ”VMHH({er;d(gg)ae—%})

Hence it follows from (3.18), (3.19) and (3.20) that

|(u-Vu,a.)| = C(@HwHooJrHVwH

(by e = 0)
Y[ Vull3

2
L3<{xen;d(x><2e*%}>) IVullz

A

for all u € H&’U(Q), which implies (3.17).

39



Hence it follows from (3.15), (3.16) and (3.17) that
(3.21) |(w- Vb, w)| < (Csllhlls +)[[Vul3 for all u € Hj,(€).
Since h is expressed as in (3.8), it follows from the assumption (3.3) that
(3.22) Inlls < &5,

Now we choose v = $(iu — C|h||3), and fix e = £(v) so that (3.17) is satisfied. Then taking
by = be(4), we obtain from (3.21) that

(Lo, u,uy = pw(Vu,Vu) + (b - Vu+u - Vb, u)
Wl Vul3 + (u - Vb, 0)

(1= Csllhlls =) Vul3

§|Vull3,  for all u € Hy ()

v

with 6 = §(u — Cs||R[|3), which yields the desired estimate from below. This proves Lemma 3.2.

3.3 Existence of solutions; Proof of Theorem 3.1

We are now in a position to show the existence of the solution u € H () of (3.4) with b, as in
Lemma 3.2. Let us take the solenoidal extension b, into {2 of 8 as in Lemma 3.2. For such b,, we
define the operator Ly, : H&U(Q) — H&U(Q)* by (3.10), and introduce f;, € H&U(Q)* by

(fo., 0) = 1V, Vip) = (bs - Vip,bi), ¢ € H o (€0).
Moreover, we consider the nonlinear mapping B : H& -(Q) — H&J(Q)* defined by
(Bu,p) = (u-Vu,p), u,p€ H&U(Q).
Then it is easy to see that (3.4) can be reformulated as
Ly, u+ Bu = fp,.

By Lemma 3.2, £, has a bounded inverse El;} : Hé’ L (Q2) — H&y »(£2), and hence the above equation

for w is equivalent to
(3.23) u+ Ly 'Bu=L;'f..

We show that ,Cb_*lB is a compact mapping from H& -(9) into itself. Indeed, suppose that {u,, }5°_,
is a bounded sequence in Hj ,(2). We take M > 0 so that sup,,_; .. [Vum|2 £ M. By the Rellich
theorem, there is a subsequence of {u,,}>°_;, which we denote by {u,}5°_; itself for notational
simplicity, such that {u;, }°°_; converges strongly in L3(Q). Let vy, = Eb:lBum. Then it holds that

(3.24) Ly, (U — vg) = Buy, — Bug, m,k=1,---.
By Lemma 3.2, we have

(3.25) (Lo, (Vi — VE), Vi — VE) = || VUm — Vugll3.
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Similarly to (3.16), we have by integration by parts that

Buy, — Bug, vy, — vk)|

K
| (U - Vg, — ug - Vg, vy, — vg)|
|((m — ug) - Vg, + ug - V(tp — ug), Uy — k)|

|((rm — ur) - Vg, v — vg) — (ug - V(U — Vk), Um — ug)|

[ — wkll3][Vumll2llom — ville + lukll6| Vom — Vog|lallum — uklls
Cs([[Vumllz + Vugll2) | Vom — Vog|l2|lum — uklls

2CsM||Vup, — Vugl2||um — ukl|s-

(3.26)

AN TIA

Hence it follows from (3.24), (3.25) and (3.26) that
vam — V'UkHZ é 25*105M||um — uk||3

Since {uy, }%°_; is a strong convergence sequence in L3(£2), the above estimate implies that {v,,}>_;
converges strongly in H& »(9). Hence Eb_*lB is a compact mapping from H&U(Q) into itself.

Now, we apply the Leray-Schauder fixed point theorem to show the existence of solutions to
(3.23). To this end, we may prove that there is a constant N > 0 such that

(3.27) [Vupllg £ N for all A € [0,1],
where u) is any solution of the equation
ux+ AL, 'Buy = AL, fy,, 0SAS L
Since uy satisfies Ly, uy + ABu = Afp, and since (Buy,uy) = 0, we have by Lemma 3.2 that

S[Vurll3 < (Lo,ur,un) = Mfo.,un)

= Mu(Vby, Vauy) — A(bs - Vuy, by)
Al Vhull2 =+ ([ 1D [ Vur]l2
([ Vbll2 + [0l Vur 2

A IIA

for all A € [0, 1]. Hence we can choose N in (3.27) so that N = 61 (u||Vby||2 + ||b«]|2). This proves
Theorem 3.1.

Proof of Corollary 3.1. Since dim.Vyq, (AR, r,) = 1 with the base

1 . RoR;
=V =(CV(—) with = -
() q(z) = CV( x]) ith C Ro Ry
o(x) =ay(z) with o= \/41%70, lellz =1

by the direct calculation, we see that the hypothesis (3.6) is equivalent to that of (3.3). This proves
the Corollary 3.1.
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3.4 Leray’s inequality

In this subsection, we consider the relation between Leray’s inequality (L.I.) in Introduction and
the restricted flux condition (R.F.). Let us first define that the boundary data 5 € H 2 (092) satisfies
Leray’s inequality in €.

Definition 3.1 Let © be a bounded domain in R? with the first and second Betti numbers N and
L as in Definition 1.1. Suppose that § € H'/2(9Q) fulfills (G.F.). We say that (3 satisfies Leray’s
inequality in € if for every e > 0 there exists b. € H'(Q) with div b. = 0 in Q and b. = 3 on 9N
such that

(L.L) [(u- Vbe,u)| £ el|Vull3  for all u € Hf ().

In what follows, we shall generalize Takeshita’s result with a simple proof. Although our result is
not altogether new, we do not need to impose any topological restriction on the boundary, while
Takeshita [47] requires that each I';, i =0,1,---, L, is diffeomorphic to the sphere.

Our result now reads:

Theorem 3.2 Let Q be a bounded domain in R3 with the first and second Betti numbers N and
L as in Definition 1.1. Suppose that 5 € HY?(0Q) and satisfies (G.F.). Assume that there is a
sphere S in Q such that 'y, ---, 'y lie inside of S and such that the others I'yiq, ---, I'r, and I'g lie
outside of S. If B satisfies Leray’s inequality in £ as in Definition 3.1, then we have

(3.28) nt-+w=0, M1t --+vw+7%=0.

As an immediate consequence of this theorem, we obtain the following necessary and sufficient
condition on Leray’s inequality.

Corollary 3.2 Let Q be a bounded domain in R? with the first and second Betti numbers N and
L as in Definition 1.1. Suppose that § € HY?(0Q) satisfies (G.F.). Assume that there exist L
spheres Sy,--+,Sr in Q such that S; contains only T'; in its inside and the rests OQ\ T'; lie in the
outside of S; for alli=1,--- L. Then (3 satiesfies Leray’s inequality in Q) as in Definition 3.1 if
and only if (R.F.) holds.

Remark 3.4 (1) Corollary 3.2 may be regarded as a generalization of Takeshita [47, Theorem 2]
since it is only assumed that each component I';, i = 1,---, L is a smooth two-dimensional closed
surface in R3.

(2) The assumption on regularity of the boundary 02 can be relaxed so that the Stokes integral
formula holds for vector fields on Q. For instance, Theorem 1.1 holds for bounded locally Lipschitz
domains . More generally, we may treat the case when € is a bounded domain in R? with locally
finite perimeter as in Ziemer [54, Theorem 5.8.2].

(3) A similar argument to make use of the sphere covering each component of the boundary
was established by Kobayashi [24] in the two-dimensional multi-connected domains. Indeed, he
proved the corresponding result to Corollary 3.2 in the plane. However, it seems difficult to apply
his method directly to our three-dimensional case.

(4) Under some hypothesis on symmetry of the multi-connected domain 2 in R2, Amick [2]
showed an existence theorem for the solution v € H'(Q) of (N-S). His method is based on a
contradiction argument. Later on, Fujita [17] proved (L.I.) for all solenoidal vector fields u with
symmetry, which yields necessarily the existence of solutions. See also Morimoto [37].
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Proof of Theorem 3.2. Suppose that the boundary data 8 € H'/2(9) satisfies Leray’s inequality
in Q in the sense of Definition 3.1. Then, for every ¢ > 0 there exists b. € H*(Q2) with div b. = 0
in Q and b, = 3 such that (L.I.) holds. By the hypothesis on 92, without loss of generality, we
may take 0 < R < R’ such that both spheres Sgp = {z € R3;|2| = R} and Sp' = {z € R?;|z| = R}

are contained in 2, I'y, - - -, 'y lie inside of Sk and such that I'yyq1,---,I' and I'g lie outside of Sgr.
L
Since Z'yi = 0, implied by (G.F.), and since div b, = 0 in Q with b. = § on 99, it holds
i=0
k
(3.29) / bg-VdS:’yEZ’Yi, / be -vdS = —7.
Sr i=1 Spr

Now we reduce our problem to that in the concentric spherical domain D = {x € R R < |z| < R}
and follow the argument given by Takeshita [47].

Let us take the mean M (b.) of b, with respect to the normalized Haar measure dg on SO(3)-
actions. That is,

M(bs) = / Tgbe dg,
50(3)
Tybe(z) = gb-(¢7'z), =€ D,ge SO3).
By (3.29) it holds

div M(b;) =0 in D,

(3.30) (be) - vdS =1, (be) - vdS = —.
Sk Sp

Furthermore, by (L.I.) we have

(3.31)

/ v-VM(b:)-vdz
D

< 5/ Vol dz for all v € C§% (D),
D

where ng’o(D) is the set of all solenoidal vector fields with compact support in D. Indeed, since

det g = 1, by changing the variable z € D +— y = g~ '2 € D, we have

/U'V(Tgbg)-vde/ T, v Vb - T, ody
D D

for all g € SO(3), which implies with the aid of the Fubini theorem that

/ (/ Tg_lv-ng-Tg_lvdy> dg
so3) \Jp

< / /Tg_lv-VbE-Tg_lvdy‘dg.
50(3) 1D
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(3.32)

/ v-V(Mb) -vdz
D

IN




Since T, 'v € C§%,(D) and since |[VT, 'v(y)|* = [Vu(gy)|* for all y € D, we have by (L.I.) and
again by changing variable y € D +— x = gy € D with det ¢~' = 1 that

-1 -1 _
/DTg v- Vb - T} vdy‘ =

/Tg_lv-VbE-Tg_lv dy
Q
(3.33) < e | VT vPdy
Q
= 5/ |VTg_1v|2dy
D

= 6/ |Vo|2dz
D
for all g € SO(n). It follows from (3.32) and (3.33) that

< 5/ </ |Vv\2dx> dg = 5/ \Vo|?dz,
s0(3) \/D D
which implies (3.31).

In the next step, we test (3.31) by an appropriate v € Cg5, (D). First, it follows from (3.30)
that M (b:) has the representation as

/ v-V(Mb,) -vdz
D

43

where r = |z|. Now, we choose a test vector function v of (3.31) as

(3.34) M (be) reD,

v(z) = (—p(r)xe, p(r)z1,0), == (x1,22,23) € D

with p € C§°((R, R')). It is easy to see that v € C§% (D) with the property that v(z) -z = 0 for all

x € D. Since 5
g ' ‘

M(b :—(& —3——), k=123
(be) 43 "R ror J

Oz
and since v(z) -z = 0 for all z € D, it holds that
3 0 ~y v-x\2
: cy = 2 — 2 _g(2 =
v-VM(b:) - v j;l v; P, M (be) vk gy <|v 3 ( . ) )
_ gl 2
(3.35) = 13 |
in D. Hence it follows from (3.31) and (3.35) that
[ Jof 2

for all € > 0. Since v and the left hand side of (3.36) are independent of € and since Vv # 0, by
letting e — 0 we conclude from (3.36) that

v =0.
This proves Theorem 3.2.
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4 Global Div-Curl lemma

4.1 Global convergence

Let Q be an open set in R3. It is well-known that if u; — u, v; = v weakly in L?(Q) and if
{div u;}32, and {rot v;}22, are bounded in L*(Q), then it holds that u; - v; — u-v in the sense of
distributions in . This is the original Div-Curl lemma. For instance, we refer to Tartar [47]. The
purpose of this section is to deal with a similar lemma to bounded domains where the convergence
uj - v; — u - v holds in the sense that

(4.37) / uj - vdr — / u-vdr asj— oo.
Q Q

Our result may be regarded as a global version of the Div-Curl lemma, which includes the previous
one. To obtain such a global version, we need to pay an attention to the behaviour of {uj};";l
and {v;}72; on the boundary 99 of Q. Indeed, an additional bound of {u; - v[sn}32, or that of

{v; x I/|3Q};-)i1 in H %(8(2) on the boundary 0f) plays an essential role for our convergence, where
v denotes the unit outward normal to 9€2. We shall establish a global convergence in the whole
domain Q in L"(Q) and L (Q).

Our result now reads:

Theorem 4.1 Let  be as in the Assumption. Let 1 <r < oo. Suppose that {u;}32, C L"(2) and
{vi}5e, C L™ (Q) satisfy

(4.38) uj —u weakly in L'(), v; —v weakly in L™ (Q)

for some uw € L™(Q) and v € L" (), respectively. Assume also that

(4.39) {div u;}32, is bounded in LI(S2) for some ¢ > max{1,3r/(3+r)}
and that
(4.40) {rot v;}52, is bounded in L*(Q) for some s > max{1,3r'/(3 +1")},

respectively. If either
(1) {wus}32, is bounded in Wi-1aa(90),
or
(i) {mv;}52, is bounded in Wi=1/55(6Q),
then it holds that

(4.41) / uj - vjdr — / u-vdr asj — 00.

Q Q
In particular, if either v,u; = 0, or myv; = 0 for all j = 1,2,--- is satisfied, then we have also
(4-41).

As an immediate consequence of our theorem, we have the following Div-Curl lemma in an arbitrary
open set in R3.

45



Corollary 4.1 (Tartar [47]) Let D be an arbitrary open set in R3. Let 1 < r < co. Suppose that
{u;}32, C L7(D) and {v;}32, C L™ (D) satisfy

(4.42) uj —u weakly in L"(D), wvj —v weakly in L" (D)

for some u € L"(D) and v € L' (D), respectively. Assume also that

(4.43) {div u;}32, and {rot v;}72, are bounded in L"(D) and L (D),
respectively. Then it holds that

(4.44) uj-vj = u-v in the sense of distributions in D.

Remark 4.1 (1) Since €2 is a bounded domain, we may assume that 3r/(3 +r) < ¢ < r and
3r'/(3+7") < s =/, and hence it holds that {u;}32, C Ej; (Q) and that {v;}32; C E (). Then
we have that {v,u;}32; C Wi-1/d.d (9Q)* and {52, C W1/ (90)*,

(2) In Theorem 4.1, it is unnecessary to assume both bounds of {v,u;}72, in W=t/ (9Q) and
{mv;}52, in W1/ (9Q). Indeed, what we need is only one of these bounds.

4.2 More regularity of vector and scalar potentials

If u has an additional regularity such as div u € L?(Q)) and rot u € LI(Q2) for some 1 < ¢ < r,
then we may choose the scalar and the vector potentials p and w in (1.9) and (1.12) in the class
W24(Q). More precisely, we have

Proposition 4.1 Let Q be as in the Assumption and let 1 < r < co. Suppose that u € L"(Q).

(1) Let us consider the decomposition (1.9).

(i) If, in addition, rot u € L1(Q)) for some 1 < q < r, then the vector potential w of u in (1.9)
can be chosen as w € W24(Q2) NV () with the estimate

(4.45) [wllw2a = C([[rot ullg + [[ullr)-

(ii) If, in addition, div u € LI(Q) with y,u € W'=1/99(9Q) for some 1 < q < 7, then the scalar
potential p of u in (1.9) can be chosen as p € W24(2) N WLT(Q) with the estimate

(4.46) Ipllw2a = C(|div ullg + lullr + [vullpi-1/ea@a)-

(2) Let us consider the decomposition (1.12).
(i) If, in addition, div u € L1(Q) for some 1 < q < r, then the scalar potential p of u in (1.12)
can be chosen as p € W24(Q) N Wol’r(ﬂ) with the estimate

(4.47) Ipllw2a = Clldiv ullg.

(ii) If, in addition, rot u € LI(Q) with 1,u € W=1/99(9Q) for some 1 < ¢ < r, then the vector
potential w of u in (1.12) can be chosen as w € W29(Q) N X7 () with the estimate.

(4.48) [wllw2a = C(l[rot ullg + [[ullr + [T ullwr-1/a.0(50))-

Here C = C(r,q) is the constant depending only on r and q.
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Proof. (1) (i) In the decomposition (1.9), the vector potential w € V(€2) is taken in such a way
that
(4.49) (rot w,rot W) = (u,rot W) for all ¥ € V' (Q)

with the estimate
(4.50) lwllwr = Cllullr,

where C' = C(r) is a constant depending only on r. See Lemma 2.5. Since divw = 0 in Q and
since rot u € L(Q), it follows from (4.49) that —Aw = rot u in the sense of distributions in €,
and we may regard w as a weak solution of the boundary value problem

—Aw =rot u in §,
(4.51) divw =0 on 01,
wxv=0 on J.

Hence it follows from Lemma 2.6 (1) and the classical theory of Agmon-Douglis-Nirenberg [1] that
the solution w of the homogeneous boundary value problem (4.51) belongs to W24(Q) and that the
estimate

(4.52) [wllw2.a = C([[rot ullg + [lwllq)

holds with a constant C' depending only on ¢. Since ||w|, = |Q]%_%Hw||r, the desired estimate
(4.45) follows from (4.50) and (4.52).
(ii) The scalar potential p € W7 (2) in (1.9) is chosen in such a way that

(4.53) (Vp, V) = (u, V) for all n € W' (Q)

with the estimate
(4.54) Ipllwrr < Cllul,.

See (2.53) and (2.54). See also Simader-Sohr [41, Theorems 1.3, 1.4]. Since div u € L9(f2) and
since 7, (Vp — u) = 0, we may regard p as a weak solution of

Ap=divu in Q, @:u-y on 0f2.
v

Since y,u € W'=1/949(9Q), the well-known a priori estimate for the inhomogeneous Neumann
problem of the Poisson equation states that p € W24(Q) with the estimate

Ipllw=a = C(ldiv ullg + [Ipllg + [ullwi-1/aaa0))-

1_1
Since ||p|lq < |2|« 7 ||p]|s, from (4.54) and the above estimate we obtain (4.46).
(2) (i) In the decomposition of (1.12), the scalar potential p is the solution of the Dirichlet
problem of the Poisson equation

(4.55) Ap=divu in§, p=0 on9JN.

More precisely, we may choose p € W&’T(Q) as in (2.58) and (2.59). Since div v € LI(Q2), we may
take p in such a way that p € W24(Q) N Wol’T(Q) with the estimate

Ipllw2e = Clldiv ullg,
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which yields (4.47).
(ii) The vector potential w € X (€2) in (1.12) is chosen in such a way that

(4.56) (rot w, ot ®) = (u,rot ®) for all & € X7 ()

with the estimate
(4.57) lwllwrr = Cllul,.

See 2.40 and (2.40). Since divw = 0 in © and since rot u € L7(2), it follows from (4.56) that
—Aw = rot u in the sense of distributions in €2, and we may regard w as a weak solution of the
boundary value problem

—Aw =rot u in €,
(4.58) rot wxv=uxv ondf,

w-v=0 on 9.

Since T,u € W1=1/9:9(99), it follows from Lemma 2.6 (1) that the solution w of the inhomogeneous
boundary value problem (4.58) belongs to W24(£) and that the estimate

[wllw=2a = C([lrot ullg + [[wllg + [ITwllpr-1/0400))

11
holds with a constant C' = C(q) depending only on ¢. Since [|wl||q < |Q]e 7 [Jw]|,, from (4.57) and
the above estimates we obtain the desired estimate (4.48). This completes the proof of Proposition
4.1.

4.3 L"-global Div-Curl lemma; Proof of Theorem 4.1

(i) Let us first consider the case when {y,u;}72, is bounded in W1=1/94(99). In such a case, we
make use of the decomposition (1.9). Let S,, R, and @, be the projection operators from L"(£2)
onto Xper(Q), rot V7 (Q) and VW (Q) defined by (1.17), respectively. Notice that the identity

(4.59) (u,v) = (Sru, Spv) + (Ryu, Ryv) + (Qru, Qo)

holds for all w € L"(Q) and all v € L (Q). Indeed, by the generalized Stokes formula (1.1) and
(1.2), we have

(Vp,h) = —=(p,div h) + (vh,v0p)oq = 0,
(rot w, h) = (w,rot h) + (T, w,yoh)ag = 0

for all p € WH(Q), w € VI(Q) and h € Xpq,(9), Similarly, we have
(rot w, Vp) = (y,(rot w),vop)ao =0 for all w e V] (Q), p € wir’ (Q).

Thus we obtain (4.59).
Now, by (4.59), we see that the convergence (4.41) can be reduced to

(4.60) (Sruj, Spvj)  —  (Spu, Spv),
(4.61) (Ryuj, Rpv;) —  (Ryu, Ryv),
(4.62) (Qruja Qr’vj) —  (Qru, Q).
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By Theorem 1.1 (1), the ranges of S, and S,s are of finite dimension, which means that both .S,
and S, are finite rank operators. Hence, we have by (4.38) that

Syu; — Syu strongly in L™(Q), Swv; — Spv  strongly in L™ (Q),

from which it follows (4.60).
Next, we apply Proposition 4.1 (1) to (4.61) and (4.62). Since §2 is bounded, we may assume

that 5 -~
r r ,
max{l,m}<q§r, max{l,w}<s§r.

By (4.39) and (4.45) with ¢ and r replaced by s and 7/, respectively, we see that R,»v; = rot w;
with w; € V' (Q) satisfies w; € W5(Q) NV (Q) with the estimate

[@jllw2s = C(lrot vills + llvjller) = M, for all j =1,2,---

with a constant M independent of j. Since 1/’ > 1/s—1/3, the embedding W2*(Q) ¢ W' (Q) is
compact, and hence we see that {w; }3”;1 has a strongly convergent subsequence in W' (). Since
(4.38) yields rot w; = Ryvj — Ruv weakly in L™ (Q), it holds, in fact, that

(4.63) Ryvj — Ruv  strongly in L' ().

Obviously by (4.38), R,uj — R,u weakly in L"(€2), and hence it follows (4.61).
Since {y,u;}32; is bounded in Wi=1/24(9Q), we see from (4.39) and (4.46) that Q,u; = Vp;
satisfies that p; € W29(Q2) with the estimate

Ipillw2e = CUIdiv ujllg + llujlle + Inuillwi-1/aape) = M forall j=1,2,.

with a constant M independent of j. Since 1/r > 1/q — 1/3, again by the compact embedding
W?24(Q) c W (Q) and by the weak convergence Vp; = Q,u; — Q,u in L"(Q), implied by (4.38),
it holds that

(4.64) Qruj — Qru  strongly in L"().

Since (4.38) yields Qv; — Qv weakly in L' (), it follows (4.62).

(ii) We next consider the case when {7,v;}72, is bounded in W1=1/55(9Q). In this case, we
make use of the decomposition (1.12). Then the argument is quite similar to the former case (i)
above. By the same notations S,, R, and @,, we denote the projection operators from L"(f2)
onto Vier(2), rot X7 (2) and VW01 () defined by (1.17), respectively. By the generalized Stokes
formula, it is easy to see that the identity (4.59) holds, and hence we may prove (4.60), (4.61) and
(4.62). Since the range of S is Vj,q,(92), it follows from Theorem 1.1 (1) that the convergence (4.60)
holds.

Since {7,v;}52; is bounded in W1=1/55(9Q), by (4.40) and (4.48) with ¢ and r replaced by s
and 7/, we find that R,.v; = rot w; with @w; € X7 () satisfies, in fact, that @; € W>3(Q) N X7 (Q)
with the estimate

[@jllw2s = C(lrot vills + lvjller + [ITovjllwr-1/s500)) = M, forall j =1,2,---
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with a constant M independent of j. By the compact embedding W2*(Q) ¢ W' (Q) and by the
weak convergence rot w; = Ryv; — Ruv in L™ (Q), implied by (4.38), it holds that

(4.65) R,wj — Ryv  strongly in L7 (Q).

Since (4.38) yields Ryuj — R,u weakly in L"(Q), it follows (4.61).
From (4.39) and (4.47) we see that Q,u; = Vp; with p; € Wol’r(Q) satisfies, in fact, that
p; € W24(Q) N W, " () with the estimate

Ipjllw2a = Clldiv ujllg = M for all j =1,2, -

with a constant M independent of j. Hence again by the compact embedding W24(Q) Cc W17 ()
and by the weak convergence Vp; = Q,u; — Q,u in L"(Q), implied by (4.38), it holds that

(4.66) Qru; — Qru  strongly in L"().
Since (4.38) yields Qv; — Qv weakly in L' (), it follows (4.62). This proves Theorem 4.1.

Proof of Corollary 4.1. We may prove that for every ¢ € C§°(D)

/ ou; - vidr — / pu - vdx.
D D

Let us take a bounded domain  C R? with the smooth boundary 9 so that supp ¢ C Q C D.
Then it suffices to prove that

(4.67) / ou; - vjdr — / ou - vdx.
Q Q
Obviously by (4.42), it holds that
(4.68) puj — pu  weakly L"(Q), wv; = v weakly L" (Q).

Since div (pu;) = @div u;j + u; - Vo, we see by (4.42) and (4.43) that {div (pu;)}32; is bounded
in L"(Q) with

(4.69) Wwlpus) =0, j=1,2,---.

Since (4.43) states that {rot v;}32, is also bounded in L™ (Q), by taking ¢ = r and s = 7 in (4.39)
and (4.40), respectively, we see that the convergence (4.67) follows from (4.68), (4.69) and Theorem
4.1 (i). This proves Corollary 4.1.
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