
Pattern formations in fluids and
computer assisted analysis

Takaaki Nishida ∗

Abstract. Pattern formations from the equilibrium state in fluid motions may be treated
by the bifurcation theories. Bifurcation theorems can be applied to explain Taylor vor-
tices of Taylor problems and hexagonal cells of heat convection problems as the first
bifurcation. Computer assisted analysis becomes necessary to see global bifurcation
structures. In this lecture examples of computer assisted proofs and analysis are ex-
plained for some heat convection problems.

1 Examples of pattern formations in fluids

1.1

Bénard observed that fluid in a plane heated from below develops a regular pattern of
convection cells, above a certain threshold of temperature. The cell pattern is roughly
classified into the roll-type, rectangle-type and hexagon-type. Rayleigh first analyzed
the pattern formation theoretically.

Taylor showed theoretically that fluid in the gap between two rotating cylinders on the
same axis develops axisymmetric toroidal vortices, above a certain threshold in angular
velocity of the cylinders.

Kármán studied that a flow of fluid past a rigid body develops swirling vortices, above
a certain threshold in velocity of the flow.

1.2

We focus our attention on the heat convection problems. Let us consider the general
equation of motion of compressible fluid with viscosity and thermal conductivity in terms
of Bénard’s experiment. For any difference ∆T between the temperature of the lower
and upper boundaries, we have the (trivial) heat conduction solutions which correspond
to the motionless state of the fluid. It is expected that, above a certain threshold of
∆T , the heat conduction solutions get unstable and nontrivial solutions appear which
may be stable and correspond to the cell patterns mentioned above. The main tool for
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mathematical analysis is the bifurcation theory. However the general equation of the
fluid is so complicated that the above scenario has not yet been justified.

We introduce a simplified equation called the Oberbeck-Boussinesq equation, which
is believed to approximate the original equation. (Note that the approximation is not
justified mathematically.) The dimensionless Oberbeck-Boussinesq equation is given as
follows: 

1

Pr

(∂~u
∂t

+ ~u · ∇~u
)

+ ∇p = ∆~u− ρ(T )∇z,

∇ · ~u = 0,

∂T

∂t
+ ~u · ∇T = ∆T,

(1.1)

where ~u(t, x, y, z), p(t, x, y, z), T (t, x, y, z) are unknown velocity, pressure, temperature,

ρ(T ) := G−RaT

is density assumed to depends only on gravity and buoyancy (the Oberbeck-Boussinesq
approximation), Pr is the Prandtl number, Ra is the Rayleigh number and G is the
gravity constant. We consider (1.1) in the horizontal strip {x ∈ R, y ∈ R, z ∈ (0, 1)}
with the boundary condition T (0) = 1, T (1) = 0. This normalization reflects Ra. The
parameter Ra is a bifurcation parameter of our problem. The (trivial) solutions which
correspond to the equilibrium state, or the heat conductive state are given for all Pr > 0
and Ra > 0 by

Ue = (~ue, Te, pe) =

(
0, 1 − z, G(1 − z) −Ra

(1

2
− z +

z2

2

)
+ pa

)
,

where pa is the pressure of the atmosphere.

Our purpose is to investigate the bifurcation from Ue. Let us consider solutions of
(1.1) of the form Ue + (~u, θ, p). We study the evolution of (~u, θ, p) in order to find the
critical Rayleigh number at which the stability of Ue changes from stable to unstable.
The equation of (~u, θ, p), ~u = (u, v, w) is given by

1

Pr

(∂~u
∂t

+ ~u · ∇~u
)

+ ∇p = ∆~u+ Raθ∇z,

∂θ

∂t
+ ~u · ∇θ = ∆θ + w,

∇ · ~u = 0.

(1.2)

For simplicity we impose the periodic boundary conditions with respect to x and y,
namely we consider (1.2) in {x ∈ [0, 2π/a], y ∈ [0, 2π/b], z ∈ (0, 1)} with the periodicity
in x, y. There are several types of boundary conditions with respect to z.

1. The stress free boundary conditions:

∂u

∂z

∣∣∣
z=0,1

= 0,
∂v

∂z

∣∣∣
z=0,1

= 0, w|z=0,1 = 0, θ|z=0,1 = 0.
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2. The stress free boundary condition on the upper boundary and the fixed boundary
condition on the lower boundary:

For z = 1 it is the same as 1. u|z=0 = 0, v|z=0 = 0, w|z=0 = 0, θ|z=0 = 0.

3. The free surface η(t, x, y) on the upper boundary and the fixed boundary condition
on the lower boundary:

η is determined by the surface tension effects. For z = 0, it is the same as 2.

2. and 3. are more natural than 1. The problem (1.2) with 1. is called the “Rayleigh-
Benard problem” and (1.2) with 3. the “Benard-Marangoni problem”.

1.3

Now we review the results of the case 1, which was studied by Rayleigh in 1916. In order
to obtain simple eigen values, we suppose the following even or odd properties:

u(x, y, z) = −u(−x, y, z) = u(x,−y, z), v(x, y, z) = v(−x, y, z) = −v(x,−y, z),
w(x, y, z) = w(−x, y, z) = w(x,−y, z), θ(x, y, z) = θ(−x, y, z) = θ(x,−y, z),
p(x, y, z) = p(−x, y, z) = p(x,−y, z).

We look for solutions which can be expanded into Fourier series:

u(t, x, y, z) =
∑
l,m,n

ulmn(t) sin(alx) cos(bmy) cos(nπz),

v(t, x, y, z) =
∑
l,m,n

vlmn(t) cos(alx) sin(bmy) cos(nπz),

w(t, x, y, z) =
∑
l,m,n

wlmn(t) cos(alx) cos(bmy) sin(nπz),

θ(t, x, y, z) =
∑
l,m,n

θlmn(t) cos(alx) cos(bmy) sin(nπz),

p(t, x, y, z) =
∑
l,m,n

plmn(t) cos(alx) cos(bmy) cos(nπz).

(1.3)

We call the lmn-element of (1.3) “(l,m, n)-mode”. The linearized equation of (1.2)
around the trivial solution 0 is given by

∂~u

∂t
+ Pr∇p = Pr∆~u+ PrRaθ∇z,

∂θ

∂t
= ∆θ + w,

∇ · ~u = 0.

(1.4)

We rewrite (1.4) as M∂U
∂t

= −LU , where

U :=


u
v
w
θ
p

 , M :=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 ,
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L :=


−Pr∆ 0 0 0 −Pr

∂
∂x

0 −Pr∆ 0 0 −Pr
∂
∂y

0 0 −Pr∆ −PrRa −Pr
∂
∂z

0 0 −1 −∆ 0
−Pr

∂
∂x

−Pr
∂
∂y

−Pr
∂
∂z

0 0

 .
Inserting (1.3) into the linearized equation, we have the ODE for each fixed l,m, n

MU ′
lmn(t) = −LlmnUlmn(t),(1.5)

where

Ulmn(t) :=


ulmn(t)
vlmn(t)
wlmn(t)
θlmn(t)
plmn(t)

 , Llmn :=


PrA

2
lmn 0 0 0 −Pral

0 PrA
2
lmn 0 0 −Prbm

0 0 PrA
2
lmn −PrRa −Prπn

0 0 −1 A2
lmn 0

−Pral −Prbm −Prπn 0 0


with A2

lmn := (al)2 + (bm)2 + (πn)2. We remark that (1.5) is not a usual first order
differential equation (M is degenerate). We can get solutions of (1.5) of the form

Ulmn(t) = etλlmnUlmn(0),

if λlmn and Ulmn(0) satisfy the following eigen value problem:{
λlmnM + Llmn

}
Ulmn(0) = 0.(1.6)

Therefore we obtain solutions of (1.4) with exponential evolution in time. The linear
stability of the trivial solution 0 of (1.2), which means the linear stability of Ue, is
determined by the sign of λlmn. (1.6) yields the real eigen values for any Pr,Ra > 0

λ0
lmn = −PrA

2
lmn,

λ±lmn = −1

2
(1 + Pr)A

2
lmn ± 1

2

√
(1 + Pr)2A4

lmn + 4Pr
{(al)2 + (bm)2}Ra − A6

lmn

A2
lmn

.

λ0
lmn,λ−lmn are always negative and λ+

lmn changes its sign from negative into positive at

Ra =
{(al)2 + (bm)2 + (πn)2}3

(al)2 + (bm)2
.

For each fixed aspect a, b all the modes has negative eigenvalues, if Ra satisfies

Ra < Rac(a, b) := inf
l,m,n

{(al)2 + (bm)2 + (πn)2}3

(al)2 + (bm)2
.

If Ra < Rac(a, b), the trivial solution 0 of (1.2), and therefore the heat conductive
solution Ue, are linear stable. Hence Ue is locally nonlinear stable. Joseph proved with
the energy method and a variational technique that, if Ra < Rac(a, b), Ue is globally
nonlinear stable. If Ra > Rac(a, b), the trivial solution 0 of (1.2), and therefore Ue

are linearly unstable. In this case it is expected that the original nonlinear problem has
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another (non-trivial) stable solution. We prove this by bifurcation theories. We conclude
this section with the following remark:

(1) inf
a,b

Rac(a, b) = 6.75 × π4.

(2) Rac(
1

2
√

2
,
√

3a) = 6.75 × π4 for (l,m, n) = (2, 0, 1) and (1, 1, 1).

(3) If a =
1

2
√

2
and b =

√
3a, the linear stability of Ue changes from stable into

unstable at Ra = 6.75 × π4 from the (2, 0, 1)-mode and (1, 1, 1)-mode.

2 Bifurcation theories

2.1

We want to find non-trivial solutions of an equation F (u, γ) = 0 depending on a param-
eter γ, which is the stationary problem of ∂u

∂t
+ F (u, γ) = 0. We may or may not have

the non-trivial solutions, according to γ. The useful tool for this argument is bifurcation
theorems. Now we state the simple stationary bifurcation theorem.

Theorem (Crandall-Rabinowitz). Let X,Y be Banach spaces and O ⊂ X is a neigh-
borhood of 0 ∈ X. Let F (u, γ) : O × (−1, 1) → Y be a twice continuously differentiable
mapping which satisfies F (0, γ) = 0 for all γ ∈ (−1, 1). Suppose that

(A1) N
(
DuF (0, 0)

)
:= {u ∈ X |DuF (0, 0)u = 0} is one-dimensional and spanned by

u0,

(A2) R
(
DuF (0, 0)

)
:= {DuF (0, 0)u |u ∈ X} has co-dimension 1, i.e. Y \R

(
DuF (0, 0)

)
is one-dimensional,

(A3) DuγF (0, 0)u0 6∈ R
(
DuF (0, 0)

)
,

where DuF , etc. stand for the Fréchet derivatives of F . Then there exist a neighborhood
W of (0, 0) contained in O×(−1, 1) and a number s0 > 0 for which we have C1-mappings

u(s) = su0 + sϕ(s) : (−s0, s0) → O, γ(s) : (−s0, s0) → (−1, 1)

with ϕ(s) ∈ X \ N
(
DuF (0, 0)

)
, ϕ(0) = 0 and γ(0) = 0 which yield the family of the

non-trivial solutions of F (u, λ) = 0 in W , namely

F−1(0) ∩W = {(0, γ) | (0, γ) ∈ W} ∪ {(u(s), γ(s) | s ∈ (−s0, s0))}.

Idea of Proof. Basic idea is to use the implicit function theorem in Banach spaces.
We introduce f(s, γ, z) : B × Z → Y , where B ⊂ R2 is a neighborhood of 0 and
Z :=

(
X \ N

(
DuF (0, 0)

))
∪ {0}, defined by

f(s, γ, z) =


1

s
F (su0 + sz, γ) for s 6= 0

DuF (0, γ)(u0 + z) for s = 0.
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Note that f is C1. Since u0 spans N
(
DuF (0, 0)

)
, we have

f(0, 0, 0) = DuF (0, 0)u0 = 0.

If the implicit function theorem is applicable to f around (0, 0, 0), we would obtain
γ(s), z(s) such that

0 ≡ f(s, γ(s), z(s)) =
1

s
F (su0 + sz(s), γ(s)),

which leads to the substantial part of our purpose, namely

F−1(0) ∩W ⊃ {(0, γ) | (0, γ) ∈ W} ∪ {(u(s), γ(s) | s ∈ (−s0, s0))}.

In fact we can check the condition for the implicit function theorem: It is enough to
show that D(γ,z)f(0, 0, 0) : R × Z → Y is homeomorphic. We observe that

D(γ,z)f(0, 0, 0)(γ, z) = DuγF (0, 0)u0γ +DuF (0, 0)z

is continuous.

If D(γ,z)f(0, 0, 0)(γ, z) = 0, we have DuγF (0, 0)u0γ = −DuF (0, 0)z ∈ R
(
DuF (0, 0)

)
.

By (A3), γ must be 0. Hence DuF (0, 0)z = 0. Since z ∈ Z \ {0} do not belong to
N

(
DuF (0, 0)

)
, z must be 0. Therefore D(γ,z)f(0, 0, 0) is one to one.

Let y be an arbitrary element of Y . We want to solve D(γ,z)f(0, 0, 0)(γ, z) = y. It
follows from (A2) and (A3) that

Y = {DuγF (0, 0)u0t | t ∈ R} ⊕R
(
DuF (0, 0)

)
.

Hence we have γ∗ ∈ R and y1 ∈ R(DuF (0, 0)) such that y = γ∗y0 + y1 with y0 =
DuγF (0, 0)u0. Since y1 belongs to R

(
DuF (0, 0)

)
, we have u ∈ X such that DuF (0, 0)u =

y1. It follows from the definition of Z that

X = {tu0 | t ∈ R} ⊕ Z.

Hence we have t∗ ∈ R and z∗ ∈ Z such that u = t∗u0 + z∗. Therefore we obtain

DuF (0, 0)u = DuF (0, 0)z∗ = y1,

D(γ,z)f(0, 0, 0)(γ∗, z∗) = DuγF (0, 0)u0γ
∗ +DuF (0, 0)z∗ = γ∗y0 + y1 = y,

which means that D(γ,z)f(0, 0, 0) is onto.

We can get

F−1(0) ∩W ⊂ {(0, γ) | (0, γ) ∈ W} ∪ {(u(s), γ(s) | s ∈ (−s0, s0))}

by estimating ‖ su0 + z ‖ +|γ| for any solution (su0 + z, γ) of F = 0 in W and using the
uniqueness of the implicit function.
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2.2

We state the stability condition of bifurcated solutions. Let us consider

DuF (0, γ)u(γ) = λ(γ)u(γ), γ ∈ I,

DuF (u(s), γ(s))w(s) = µ(s)w(s), s ∈ J.

Note that the bifurcated solutions u(s) is stable, if and only if µ(s) < 0.

Theorem (Crandall-Rabinowitz). The following holds:

dλ

dγ
6= 0, lim

s→0,µ(s)6=0

−sdγ
ds

(s)dλ
dγ

(0)

µ(s)
= 1.

Suppose that λ(0) = 0 and dλ
dγ

(0) > 0. Then λ(γ) < 0 for γ < 0 and the trivial solution

is stable (λ(γ) > 0 for γ > 0 and the trivial solution is unstable). Furthermore if we
have

s
dγ

ds
(s) > 0,

then µ(s) < 0 due to Theorem and the bifurcated solutions are stable. (see the left in
Figure 1.) Similarly if we have

s
dγ

ds
(s) < 0,

then µ(s) > 0 due to Theorem and the bifurcated solutions are unstable. (see the right
in Figure 1.)

γ! γ!

X!X!

!! !! !! !!
0! 0!

stable! stable!unstable! unstable!

Figure 1.

3 Applications of bifurcation theorems

3.1

We apply the simple stationary bifurcation theorem to (1.2) with the stress free boundary
conditions. Fix Pr and set γ := Ra −Rac with Rac = 6.75×π4. The stationary problem
of (1.2) is rewritten as

F (U, γ) = 0,

where U = (u, v, w, θ, p) is of the Fourier series (1.3) and F : X × R → Y with

X = H2
a,b := {(u, v, w, θ, p) |

∑
l,m,n

{((al)2 + (bm)2 + (πn)2)2(u2
lmn + v2

lmn + w2
lmn + θ2

lmn)

+((al)2 + (bm)2 + (πn)2)p2
lmn <∞},

Y = L2
a,b := {(u, v, w, θ, p) |

∑
l,m,n

(u2
lmn + v2

lmn + w2
lmn + θ2

lmn + p2
lmn) <∞}.
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We already know about the zero eigenvalue of the eigenvalue problem

DUF (0, 0)U = λU

through the study of (1.6), where DuF (0, 0) = L. Let (l0,m0, n0)-mode be an eigenfunc-
tion of the eigenvalue λ = 0 at γ = 0. Then the family of such (l0,m0, n0)-modes spans
N (DUF (0, 0)). We can directly check the conditions (A1)-(A3) of the simple stationary
bifurcation theorem.

Let us take a = π/(2
√

2) and b =
√

3a, in oder to see pattern formation clearly after
bifurcations. In this case, the eigenvalue λ = 0 has a two dimensional eigenspace at
γ = 0, namely it is spanned by (l0,m0, n0)-modes with

(l0,m0, n0) = (2, 0, 1), (1, 1, 1).

The (2, 0, 1)-mode is called the “roll-type”. The temperature, for instance, has the
expression

θ = θ201 cos(2ax) sin(πz).

The (1, 1, 1)-mode is called the “rectangle-type”. The temperature, for instance, has the
expression

θ = θ111 cos(ax) cos(
√

3ay) sin(πz).

A special combination of the (2, 0, 1)-mode and (1, 1, 1)-mode is called the “hexagon-
type”, which is also an eigenfunction of λ = 0. The temperature, for instance, has the
expression

θ = θhex{2 cos(ax) cos(
√

3ay) + cos(2ax)} sin(πz).

The isothermal lines of the eigenfunctions of the rectangle and hexagonal-type on the
horizontal plane z = 1/2 are the follwoing:

rectangle eigenfunction contour

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

hexagonal eigenfunction contour

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

Figure 2.
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3.2

The eigenspace has 2-dimension and the simple stationary bifurcation theorem is not
directly applicable. We need to restrict the function space H2

a,
√

3a
of the solutions to a

subspace, in order to make the eigenspace 1-dimensional there.

First we restrict the function space to the subspace of the roll-type H2
roll ⊂⊂ H2

a,
√

3a
, in

which the rectangle-type and hexagon-type are excluded. The temperature, for example,
has the expression

θ =
∑

n

∑
l=even

θl,0,n cos (alx) sin (nπz).

The simple stationary bifurcation theorem is applicable in H2
roll, which yields the bifur-

cated solutions of the roll-type in the direction γ > 0. The following figures show the
contour lines of the stream function and the isothermal lines of the temperature for a
bifurcated solution of the roll-type with Pr = 10 and γ = Rac:

Figure 3.

The bifurcated solutions of the rectangle-type are obtained in the subspace H2
rec ⊂⊂

H2
a,
√

3a
, in which the roll-type and hexagon-type are excluded. The temperature, for

example, has the expression

θ =
∑

n=odd

∑
l,m=odd

θlmn cos (alx) cos (
√

3amy) sin (nπz)

+
∑

n=even

∑
l,m=even

θlmn cos (alx) cos (
√

3amy) sin (nπz).

The simple stationary bifurcation theorem is applicable in H2
rec, which yields the bifur-

cated solutions of the rectangle-type in the direction γ > 0. The following figures show
the contour lines of the temperature on the middle plane and the absolute value of ve-
locity on the upper surface for a bifurcated solution of the rectacgle-type with Pr = 10
and γ = 0.5Rac:
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Figure 4.

The bifurcated solutions of hexagonal-type are obtained in the subspace H2
hexa ⊂⊂

H2
a,
√

3a
, in which the roll-type and rectangle-type are excluded. Each element of H2

hexa

has the rotation-invariance of 2π/3 and the temperature, for example, has the expression

θ =
∑

n=odd

∑
l+m=even

θlmn{cos (alx) cos (
√

3amy) + cos (a
l − 3m

2
x) cos (

√
3a
l +m

2
y)

+ cos (a
l + 3m

2
x) cos (

√
3a
l −m

2
y)} sin (nπz).

The simple stationary bifurcation theorem is applicable in H2
hexa, which yields the bi-

furcated solutions of the hexagon-type in the direction γ > 0. The following figures
show the contour lines for a bifurcated solution of the hexagon-type with Pr = 10 and
γ = Rac:
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Figure 5.

All of these three types of bifurcated solutions come out of the zero solution at γ = 0 in
the direction γ > 0 and they belong to their own subspaces. Furthermore, each bifurcated
solution is stable in each subspace for the time evolution of the original system. But
the stability in the original function space H2

a,
√

3a
is not known, namely it is not clear

which type is stable for the time evolution of the original system. The stability of these
solutions in the original function space can be determined by the center manifold theory
in a neighborhood of the bifurcation point. Now the main problem is to obtain global
bifurcation diagrams and to see the global structure of the solution space. At least we
want to know how to extend the bifurcation curves, how to analyze the stability of the
solution on the extended branches and how to investigate another bifurcation on them
such as a secondary bifurcation arising from a bifurcated solution, etc.

4 Computer assisted analysis

4.1

We consider the same system as that of the previous section and trace the stationary
solutions on the bifurcation branches for large γ = Ra−Rac > 0. Inserting Fourier series
(1.3) into (1.2) and removing time dependency, we have the infinite numbers of second
order algebraic equations of the unknowns

{ulmn, vlmn, wlmn, θlmn, plmn}.
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We approximate the system of equations by Galerkin’s method, namely we approximately
solve finite numbers of equations of unknowns

{ulmn, vlmn, wlmn, θlmn, plmn | l +m+ n ≤ N},(4.1)

where the approximate solutions tend to an exact one asN → ∞. Let V be the unknowns
of (4.1). We write the finite numbers of equations in the form

G(V, γ) = 0.

We solve this equation with a fixed Pr and γ by Newton’s method

Vk+1 = Vk −DVG(Vk, γ)
−1G(Vk, λ), k = 0, 1, 2, · · · ,

where DVG is the Fréchet derivative of G and V0 is appropriately chosen in a neighbor-
hood of an exact solution V . We numerically obtain a solution V with a fixed N by
computers. Note that Newton’s method works, only if V0 is close to an exact solutions,
regardless of its uniqueness or stability.

The following figures show the cross section y = constant of the contour lines of
the stream function and isothermal lines for a numerical solution of the roll-type with
Pr = 10 and γ = 9Rac:

Figure 6.

The stability of the solution follows from the eigenvalues of the evolution system of the
linearized system around the obtained solution itself. If all eigenvalues have negative
real parts, then it is stable as the time evolution. If one of them has positive real part,
then it is not stble. The above solution of the roll-type turns out to be stable.

The following figures show the isothermal lines of the temperature at the middle
horizontal plane and the contour lines of the square of the velocity u2 + v2 on the
upper horizontal plane for a numerical solution of the rectangle-type with Pr = 10 and
γ = 0.5Rac:
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Figure 7.

The solution of rectangle-type is stable for 0 < γ < 0.42Rac, but it loses the stability at
about γ ' 0.43Rac and here a secondary bifurcation occurs to a solutions of the mixed
type of hexagon and rectangle such as Figure 9. Thus the solution of the rectangle-type
of Figure 7 is already unstable.

The following figures show the contour lines and isothermal lines for a numerical
solution of the hexagon-type with Pr = 10 and γ = Rac:
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Figure 8.

The solutions of the hexagon-type are unstable just after the bifurcation for 0 < γ <
0.83Rac. However after the bifurcation branch of the hexagon-type and that of the mixed
type intersects at about γ ' 0.84Rac, it becomes stable for 0.85Rac < γ. The hexagon
of Figure 8 is already stable.

The following figures show the contour lines and isothermal lines for a numerical
solution of the mixed type with Pr = 10 and γ = 0.5Rac:
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Figure 9.
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The solution in Figure 9 is just after the secondary bifurcation to the mixed type from
the rectangle-type. It is stable for 0.44Rac < γ < 0.83Rac and the shape of the mixed
type tends to that of the hexagon-type as γ increases. After the intersection with the
hexagonal bifurcation branch, it becomes unstable and the shape becomes elongated in
y-direction.

The following figure shows a rough diagram of the bifurcations: The horizontal axis
means the trivial solution (the heat conduction state). The upper line serves the bifur-
cation curve of the roll-type and the lowest line serves that of the rectangle-type, which
appear at γ = 0. They are orthogonal to each other. The line between them serves
that of the hexagon-type. The secondary bifurcation branch from the branch of the
rectange-type serves that of the mixed type. It intersects with that of the hexagon-type.
The hexagon-type becomes stable after this intersection. The roll-type is stable for all
0 < γ ≤ 2Rac. The justification of this bifurcation diagram is a problem in the future,
namely the proof of the bifurcation curves, the secondary bifurcations, the intersections
of those curves, those stability and so on. We will treat the roll-type solution later as a
computer assisted proof.

γ!
0!

Figure 10.

4.2

Now we deal with (1.2) under the stress free upper boundary and fixed bottom boundary
(the case 2 in 1.2). We will consider the bifurcation problems under the assumption of
periodicity and also usual even- or odd-ness of functions for all unkowns in the horizontal
direction:

u(x, y, z) = −u(−x, y, z) = u(x,−y, z),
v(x, y, z) = v(−x, y, z) = −v(x,−y, z),
w(x, y, z) = w(−x, y, z) = w(x,−y, z),
θ(x, y, z) = θ(−x, y, z) = θ(x,−y, z),
p(x, y, z) = p(−x, y, z) = p(x,−y, z).
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Then the first component of the velocity and the temperature, for instance, have the
expansions

u(x, y, z) =
∑
l,m

ulm(z) sin (alx) cos (bmy),

θ(x, y, z) =
∑
l,m

θlm(z) cos (alx) cos (bmy).

The other unknown functions have similar expansions.

The system for the eigenvalue problem can be obtained as the following system of
ordinary differential equations with respect to z for each (l,m)-mode:

λulm −Pralplm = Pr{
d2

dz2
− (a2l2 + b2m2)}ulm,

λvlm − Prbmplm = Pr{
d2

dz2
− (a2l2 + b2m2)}vlm,

λwlm −Pr
d

dz
plm = Pr{

d2

dz2
− (a2l2 + b2m2)}wlm + PrRaθlm,

λθlm = { d
2

dz2
− (a2l2 + b2m2)}θlm + wlm,

alual + bmvlm +
d

dz
wlm = 0

with the boundary conditions

du

dz
=
dv

dz
= w = θ = 0 on z = 1,

u = v = w = θ = 0 on z = 0.

We solve this system by computers. In order to obtain the critical Rayleigh number
numerically, we may use the Chebyshev polynomial expansion in 0 ≤ z ≤ 1 for our
system of ordinary differential equations. Then, by the numerical computations, we
obtain the following values, at which the largest eigenvalue becomes zero:

a/π = 0.42685 · · · >
1

2
√

2
,

Rac = 1100.6 · · · > 6.75 × π4,

where the values of the right-hand side of the inequalities correspond to the case 1 in 1.2,
namely the stress free boundary conditions on both boundaries. The following figures
show the eigenfunctions θ and w of the eigenvalue λ = 0 for the critical Raleigh number
Ra = Rac = 1100.6 · · · :
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Figure 11.

The largest eigenvalue crossing the origin determines the critical Rayleigh number Rac,
which yields a stationary bifurcation. If Ra < Rac, then the heat conduction state is
linearly stable. If Ra > Rac, then the heat conduction state is linearly unstable. Joseph
proved by the energy method and variational formulation that if Ra < Rac, then the
heat conduction state is globally nonlinearly stable.

Now we study the bifurcation of stationary solutions. In order to see pattern for-
mations after the bifurcation clearly, let us take a = 0.42685 · · · and b =

√
3a. The

eigenvalue λ = 0 has a 2-dimensional eigenspace at Ra = 1100.6 · · · .
The mode (l,m) = (2, 0) corresponds to the roll-type and the eigenfunction of the

temperature is of the form
θ = θ2,0(z) cos(2ax).

The mode (l,m) = (1, 1) corresponds to the rectangle-type and the eigenfunction of
the temperature is of the form

θ = θ1,1(z) cos(ax) cos(
√

3ay).

A special combination of the roll-type and rectangle-type corresponds to the hexagon-
type and the eigenfunction of the temperature is of the form

θ = θhexa(z){2 cos(ax) cos(
√

3ay) + cos(2ax)}.

The isothermal lines of the eigenfunctions of the rectangle and hexagonal-type are the
follwoing:
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Figure 12.

The eigenspace has 2-dimension and the simple stationary bifurcation theorem is not
directly applicable. We need to restrict the function space H2

a,
√

3a
of the solutions to a

subspace, in order to make the eigenspace 1-dimensional there.

We restrict the space to the subspace of the roll-type H2
roll ⊂⊂ H2

a,
√

3a
. The tempera-

ture, for example, has the expression

θ =
∑

n

∑
l=even

θl,0,n cos(alx)Tn(2z − 1),

where Tn are the Chebyshev polynomials. We have the bifurcated solutions of the roll-
type in the direction of Ra > Rac. The following figure shows the isothermal lines of the
temperature at the cross section y = constant for a bifurcated solution of the roll-type
with Pr = 10 and Ra = 1.2Rac.

contour
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Figure 13.

Similarly we restrict the space to the subspace of the rectangle-type H2
rec ⊂⊂ H2

a,
√

3a
and

the hexagon-type H2
hexa ⊂⊂ H2

a,
√

3a
, in which the simple stationary bifurcation theorem

is applicable. The stability of these bifurcated solutions in the original function space
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H2
a,
√

3a
is not known. The stability of these solutions in the original function space

can be determined by the center manifold theory in a neighborhood of the bifurcation
point. The main problem is to obtain global bifurcation diagrams and to see the global
structure of the solution space. At least we want to know how to extend the bifurcation
curves, how to analyze the stability of the solution on the extended branches and how
to investigate another bifurcations on them, i.e., the secondary bifurcations and so on.

In order to extend the bifurcation curves of the stationary solutions, we need to
make numerical computations for the stationary problem of (1.2). We may use of the
Chebyshev polynomial expansion for the solutions in z, where the unknown u(x, y, z),
for example, is expanded as

u(x, y, z) =
∑
l,m,n

ulmn sin(alx) cos(bmy)Tn(2z − 1).

Then {ulmn, vlmn, wlmn, θlmn, plmn} are unknowns and satisfy the second order algebraic
equations of infinite numbers. We approximate the system of equations by Galerkin’s
method, namely we approximately solve finite numbers of equations of unknowns

{ulmn, vlmn, wlmn, θlmn, plmn | l +m < M, n ≤ N},(4.2)

where the approximate solutions tend to an exact one as M,N → ∞. Let V be the
unknowns of (4.2). We write the finite numbers of equations in the form

G(V ;Ra,Pr) = 0.

We solve this equation with a fixed Ra and Pr by Newton’s method

Vk+1 = Vk −DVG(Vk, γ)
−1G(Vk, λ), k = 0, 1, 2, · · · ,

where DVG is the Fréchet derivative of G and V0 is appropriately chosen in a neigh-
borhood of an exact solution V . We numerically obtain a solution V with a fixed M
and N by computers. Note that Newton’s method works, only if V0 is close to an exact
solutions, regardless of its uniqueness or stability. We make numerical computations by
Newton method for the solution of roll-, hexagon- and mixed-type

The following figures show the cross section y = constant of two bifurcated solutions
of the roll-type with Ra = 2Rac and Ra = 10Rac:
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Figure 14.

19



We obtain the bifurcated solutions of the roll-type with Ra up to Ra ≤ 50Rac. The
following figure shows the bifurcation curve of the roll-type for 1 ≤ r := Ra/Rac ≤ 50,
where the horizontal axis stands for the normalized Rayleigh number r = Ra/Rac and
the vertical axis stands for the coefficient u2,0,1 of the expansion of the solution:
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Figure 15.

The following figures shows the isothermal lines of two bifurcated solutions of the hexagon-
type with Ra = 1.5Rac: The fluid is sinking around the center of the hexagon in the
first one and is going up in the second one.
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Figure 16.
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We also have solutions of mixed type of rectangle and hexagon. The following figures
shows the isothermal lines of two bifurcated solutions of mixed type with Ra = 1.1Rac

and Ra = 1.6Rac:
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Figure 17.

The bifurcation curve of the mixed type begins from the first bifurcation point Ra = Rac,
at which it corresponds to the eigenfunction of the rectangle-type. The bifurcation curves
of the hexagon-type and mixed type, of which the fluid is sinking around the center, are
given by the following: The horizontal axis stands for the normalized Rayleigh number
r = Ra/Rac and the vertical axis stands for the coefficient u2,0,1 of the expansion of the
solution.
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The following figures show the isothermal lines of a solution of the mixed type and
hexagon-type with Ra = 3Rac after the intersection of the bifurcation curves:
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Figure 19.

There is another bifurcation branch of the mixed type. The following figures shows the
isothermal lines of a solution on this branch with Ra = 1.63Rac and Ra = 1.8Rac:
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Figure 20.

The bifurcation curve of this mixed type approaches to that of the hexagon-type, of
which the fluid is going up around the center. In fact we have the bifurcation curves
which cross near Ra = 2.02Rac as follows:
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Figure 21.

The following figures show the isothermal lines of a solution of this mixed type and
a solution of the hexagon-type with Ra = 3Rac (this is after the intersection of the
bifurcation curves):
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Figure 22.

5 Computer assisted proofs

5.1

We consider a constructive approximation to the solutions of the system of semilinear
partial differential equations with large Rayleigh numbers. There is a theorem which
guarantees the existence of Galerkin approximate solutions as precise as you want if
the solution is isolated. The idea has been used by Urabe in 1960’s for the system of
ordinary differential equations. Also we have a theorem which guarantees an existence
of a genuine solution in a small neighborhood of a “good” approximate solution. It is
a simplified Newton’s method for the Schauder’s fixed point theorem in the following
setting:

Let U ⊂ V ⊂ W be Banach spaces, in which the embedding U ⊂ V is compact.
Consider the semilinear equation

F(u) := Au+B(u, u) = 0,

where A : U → W is linear operator and B : V × V → W is bilinear operator such that

‖ B(u, v) ‖W≤ K ‖ u ‖V ‖ v ‖V , ‖ B(u, v) ‖V ≤ K ‖ u ‖U‖ v ‖U .
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The N -dimensional projection PN : W → WN commutes with A and satisfies the follow-
ing: For any N > 0 and all v ∈ V, u ∈ U

‖ vN − v ‖W≤ 1

N
‖ v ‖V (vN := PNv),

‖ uN − u ‖V ≤
1

N
‖ u ‖U (uN := PNu,).

Theorem. Let ū ∈ UN be a good approximate solution in the sense that

Aū+ PNB(ū, ū) = RN , ‖ RN ‖W< ε� 1,

and that for the linearized equation around this approximate solution given by

L(ū)v := Av +B(ū, v) +B(v, ū) = f (f ∈ W )

there exists K̃ <∞ independent of f such that

‖ L−1(ū)f ‖U≤ K̃ ‖ f ‖W .

If ε̃ :=‖ B(ū, ū) − PNB(ū, ū) ‖W� 1 and we can find α such that K̃(ε+ ε̃+Kα2) < α,
then there exists a genuine solution u ∈ U ∩ W of F(u) = 0, where W := {u ∈ V | ‖
u− ū ‖V< α}.

Proof. We look for a solution u to Au+B(u, u) = 0 of the form

u = ū+ v.

Then v should satisfy the equation

v = −L(ū)−1{(Aū+ PNB(ū, ū)) + (B(ū, ū) − PNB(ū, ū)) +B(v, v)}.(5.1)

Let us define a map G from W̃ := {v ∈ V | ‖ v ‖V< α} to W as

G(v) := −L(ū)−1{(Aū+ PNB(ū, ū)) + (B(ū, ū) − PNB(ūū)) +B(v, v)}.

It follows from the assumption that for any v ∈ W̃

‖ G(v) ‖V ≤ K̃(ε+ ε̃+Kα2) < α

and G(v) ∈ W̃ . Therefore we have a fixed point of G by Shauder’s fixed point theorem,
which yields a solution of (5.1) in W̃ .

5.2

We consider again the stationary solutions of the roll-type to (1.2) with the stress free
boundary conditions (the case 1 in 1.2). In oder to obtain such solutions for large
Rayleigh numbers, we have to exploit numerical computations. We want to justify a
numerical solution in the sense that there does exist a genuine solution close to the
numerical solution and the error between them can be controlled.
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We can use the stream function ψ instead of the velocity, since the roll-type is 2-
dimensional in space. The new equation is of the form

∂

∂t
∆ψ = PrRa∆

2ψ + Ra
∂θ

∂x
+
∂ψ

∂z

∂

∂x
∆ψ − ∂ψ

∂x

∂

∂z
∆ψ,

∂θ

∂t
= ∆θ +

∂ψ

∂x
+
∂ψ

∂z

∂θ

∂x
− ∂ψ

∂x

∂θ

∂z

with the stress free boundary conditions for z = 0, 1. The function space is H4 ⊗ H2

with the periodicity. The stationary solutions have the Fourier expansion

ψ(x, z) =
∑
l,n

ψln sin(alx) sin(nπz), θ(x, z) =
∑
l,n

θln cos(alx) sin(nπz).

First we numerically investigate the bifurcation curve of the roll-type for large Rayleigh
numbers. The following figure shows the bifurcation curve of ψ2,1 of the roll-type for
Rc ≤ Ra ≤ 50Rac:

Figure 23.

These solutions of the roll-typeare stable for Ra < 41Rc, but the eigenvalue of the
linearized system crosses the imaginary axis at about Ra ' 42Rac. Then it becomes
unstable and there occurs the Hopf bifurcation. The shape of solutions of the roll-
type are almost same before and after the stability change. The following figures show
solutions of the roll-type with Ra = 40Rac in the first couple of figures and Ra = 43Rac

in the second one:
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Figure 24.

The time periodic solution after the Hopf bifurcation can be obtained by the numerial
computations of time evolution of the system with time discretization as follows:

Figure 25.

This suggests that the periodic solution is stable, contrary to the bifurcation of periodic
solutions of Lorenz model (1963).

In order to prove the existence of stationary solutions of the roll-type far from the first
bifurcation point Ra = Rac through numerical computations, we transform our problem
to a fixed point formulation in the function space H3 ⊗H1 with the inverse operators of
∆2 and ∆ with the stress free boundary conditions as follows:

ψ = − 1

PrRa

{∆−2(Ra
∂θ

∂x
+
∂ψ

∂z

∂

∂x
∆ψ − ∂ψ

∂x

∂

∂z
∆ψ)},

θ = −∆−1(
∂ψ

∂x
+
∂ψ

∂z

∂θ

∂x
− ∂ψ

∂x

∂θ

∂z
).

The nonlinear operators in the right hand side are compact in the space H3 ⊗H1. We
write the above equation with

F0(ψ, θ) = (ψ, θ).

We look for a solution as a fixed point of F0. The solution is sought in the form

(ψ, θ) = (ψ̄N , θ̄N) + (w(1), w(2)),
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where (ψ̄N , θ̄N) is a numerically computed “good” solution. Then the equation of w =
(w(1), w(2)) can be written as

G(w) = w.

If we find a bounded closed convex set W̃ such that G(W̃) ⊂ W̃ for fixed Ra and Pr, then
there exists a fixed point by Schauder’s fixed point theorem, which proves the existence
of a genuine stationary solution of the roll-type. The set W̃ is constructed as a small
neighborhood of the origin and the inclusion G(W̃) ⊂ W̃ is verified by numerical com-
putations as a computer assisted proof with interval arithmetics. In fact we decompose
the set by the orthogonal projection PN

W̃ = W̃N ⊕ W̃⊥
N ,

where W̃N := PNW̃ is a finite dimensional small neighborhood of the origin and W̃⊥
N is

a small neighborhood of zero in the orthogonal subspace with infinite dimension. The
finite dimensional part is estimated by a simplified Newton’s method and the infinite
dimensional part is estimated by the norm. Both estimates need the interval arith-
metic by computers for error estimates. At the present stage, the case with Rayleigh
numbers Rc < Ra ≤ 10Rc can be verified by our computer assisted proofs in the 2-
dimensional problems (Watanabe-Yamamoto-Nakao-Nishida, 2004). The 3-dimensional
problems, namely the solutions of the hexagon-type and mixed type, can be verified by
our computer assisted proofs for small Rayleigh numbers Rc < Ra < 1.2Rc, because of
the limitation of computer power (Kim-Nakao-Watanabe-Nishida, 2008).
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