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ABSTRACT. In this note we give a brief sketch of real interpo-
lations, the Lorentz spaces and their applications to the Navier-
Stokes equations.

INTRODUCTION.

This note is a brief sketch of real interpolation and the Lorentz
spaces, and its application to the Navier-Stokes equations.

There are two methods of interpolation: complex method and real
method. Both of them survive because each has its advantages to the
other. Namely, the advantage of complex interpolation is the following:

(i) Multilinear operators can be treated
(ii) The operator may depend holomorphically with respect to the
interpolation parameter.

On the other hand, the advantage of real interpolation is the following:

(i) The function spaces need not be normed.
(ii) The operators need not be linear.
(iii) One can “improve” the function space in the course of inter-
polation.

Indeed, in the proof of the Mikhlin-Hormander multiplier theorem we
use properties (i) and (iii) of real interpolation, and in the proof of the
boundedness of the Hardy-Littlewood maximal function, we use all of
them.

Section 1 to Section 5 are devoted to the sketch of real interpolation
and the Lorentz spaces. Generally I followed [1], but I avoided to
describe the whole theory and limited ourselves to the necessary part
of the theory, and some proofs are modified accordingly. Beside, all
of the aforementioned properties of real interpolation are employed in
the application to the Navier-Stokes equations, and hence I emphasized
such properties.

Section 6 is devoted to the application of the theory above to the
Navier-Stokes equations. There are two methods to the proof of the
key inequality (6.7) in Lemma 6.2. One is the cut-off method developed

by Prof. Shibata et al. This method can be applied to more general
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operators; namely, the operator need not be sectorial. This method
is employed by Hishida and Shibata [2]. Here we employ a simpler
method, which relies on the coercive estimate of the fractional power
of the Stokes operator as in [3], which is based on complex interpolation.
For related works, see the references therein.

1. QUASI-NORMED SPACES.

Let X be an abelian group. A functional || - || on X is called a quasi-
norm if there exists a C' > 1 such that the following three conditions
are satisfied:

(1.1) ||| > 0,

(1.2) lz|| = 0 if and only if z = 0,
(1.3) | =zl = ||z},

(1.4) |z +yll < (=]l + [lyl)-

If X is a vector space on R or C, we often assume the following condi-
tion, which is a generalization of (1.3):

(1.5) |lazx|| = |a|||z| for a € R or C.

Suppose that F'(u) is a quasi-norm which satisfies the triangle inequal-
ity F(u+v) < F(u)+ F(v) and the condition

(1.6) F(azx) = |a|PF(x) for a € R or C

with some p € (0,1). (An example of such a quasi-norm is |[ul? of the
Lebesgue space LP with 0 < p < 1.) Then the function ||a|| = F(x)'/?

satisfies (1.1), (1.2) and (1.5). Moreover, by Hélder’s inequality we
have

|z +y| = Fla+ )" < (F(a) + F(b))""”
< (F@'+ FO)') (14 D07 = (Jal] + o2

Namely, the functional ||z|| enjoys (1.4) with C' = 2/7=1. Conversely,
we have the following theorem.

Theorem 1.1. Choose p € (0,1) such that C = 2'/7=1 and put

F(z) :inf{ZijHp ij zx}.

Then F' is a quasi-norm on X, which enjoys the inequalities F(x) <
l|z||P < 2F(z) and the triangle inequality F(x +vy) < F(z) + F(y). If
| - || enjoys (1.5), then we have (1.6).

In view of this theorem we see that the quasi-norm defines a metric
on X, and the fundamental neighborhood system of 0 is given by the
sets {z € X | ||z|| < €} for e > 0.
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Proof of Theorem 1.1. It is easy to see (1.1). Putting N =1 and z; =
z, we see F(x) < |lz||P. Next, for z,y € X, choose {z;}}L, and {yx};,

M N
such that © = Z rj and y = Z Yr. Then we have
j=1 k=1

M N
x+y:Za:j+Zyj.
j=1 k=1

Hence, by the definition of ||z + y||, we see that

M N
Fla+y) <> llzl?+ > Iyl
j=1 k=1

Taking the infimum for the sequences {x;}}Z, and {y;};_,, we conclude
that F(z +y) < F(x) + F(y). In the same way we can see (1.1) and
(1.3). Furthermore, if || - || satisfies (1.5), we can see in the same way
that F' satisfies (1.6).

It remains to show that
(1.7) [2]|P < 2F(x),

which immediately yields (1.2),
N

N
Suppose that x = ij, and put M = Z |z;||”. Then, for every
j=1 j=1
Jj=1,..., N, we can choose a positive integer n; such that

S |71 ey
27 < - <20,
=77 S

Admitting the following lemma, we conclude
ol < max_2% | < 2M.
j=1,...N

Ay

Taking the infimum for zy,...,xy we obtain (1.7). O

Lemma 1.2. Suppose that x1,...,xxy € X and that ny,...,ny be
positive integers such that

N N
(1.8) 22_7” <1 cmdx:ij.
j=1 j=1

Then we have

1. P L 2" |z ||P.
(1.9) ol < max 2%z
Proof. We proceed by induction on N. The statement for N = 1 is
trivial. Suppose that the statement holds for 1,..., N — 1. Then,
for every ny, ..., ny satisfying (1.8), we can divide {1,...,n} into two
disjoint groups I, and I such that Z 2l=mi < 1.

Jjel,
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Indeed, suppose that n; < ny < ---ny, and suppose that

ni,...,n;—1 were divided. Then we put n; into I, such that the sum
Z 27" is smaller. Then we have Z ol=me 4 ol=ni < 1,
kelp k<j—1 kelpk<j—1

Proceeding in the same way we can obtain the required estimate.
Now put z(9 = ij for £ = 1,2. Then the induction hypothesis
Jjel,
imply
(1.10) |2@)|P < max 2"~ ||z
Jel

On the other hand, we have

Jz[” < P (=] + ly?]))" < CP2° max [|z1||” = 2 max ||« ||?
(=12 (=12
Say that ||z™]|| > ||2®]|. Then, substituting (1.10) into the right-hand

side we obtain ||z||? < max 2" ||z ||P < max 2"7||z;||P. This completes
Jje Jj=1,.,

the proof. O

As we have seen before, a quasi-normed abelian group X becomes
a topological group with respect to the metric defined by d(u,v) =
F(u—w). If X is a vector space on R or C and F'(u) enjoys (1.6), then
X becomes a topological vector space. A complete topological vector
space topologized in this way is called a quasi-Banach spaces.

2. REAL INTERPOLATION BETWEEN QUASI-NORMED SPACES.

Suppose that Xy and X; be quasi-normed abelian groups. Sup-
pose moreover that X, and X; are contained in a common topological
abelian group. (For topological abelian groups X and Y, the notation
X C Y means not only the inclusion relation but also the inclusion is
a continuous mapping from X to Y in the sequel.) For z € X, + X;
and t € (0,00), we put

K(x,t) = K(z,t, Xo, X1)
= i1r1f{||y||x0 +%||Z||X1 y € Xo,z€ Xy,x= y+z}.
Then it is easy to see that
(2.1) K(z,t) < K(z,5) < éK(x,t) its <t

which implies that K(x,t) is continuous with respect to ¢t € (0, 00).
Next, for # € (0,1) and ¢ € (0, 00] we put

00 dt l/q
(/ (t°K (z,1))" —) if 0 < g < oo,
0, — 0 t

supt’ K (z,t) if ¢ = oo,
>0

Ik
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and put (Xo, X1)e, = {z € Xo+ X1 | |z|lo,y < c0}. In view of (2.1).

the quasi-norm above is equivalent to H {2% K (x,20 )}j’i H . We also
24

have the following proposition.

Proposition 2.1. Suppose that Xy, and X; are complete. Then
(Xo, X1)o,4 is also complete.

Hence, if Xy and X are quasi-Banach spaces, then so is (Xo, X1)g,4-
On the other hand, if Xy and X; are normed spaces and ¢ > 1, then
(X0, X1)o,4 1s a normed space. From these facts we see that, if X, and
X; are Banach spaces and ¢ > 1, then (Xy, X;)s, is a Banach space.

Proof of Proposition 2.1. Suppose that {xj};?‘;l is a Cauchy sequence
in X = (Xo, X1)g,q- Then we can choose a subsequence { X, }o2; such
that the inequality ||z, — 2jm)||x < 1/2" holds for every k > j(n). Put

= i) forn =1,
" Tjtm) — Tj(n—1) forn > 2.

Then we have

s 1/q Ozl forn=1
JNX )

— for n > 2.
2n

k=—0oc0
Fix a positive number € > 0. Then, for every n € N and every k € Z,
we can choose wy, ;, € Xy and 2, € X; such that w,, ; + 2,1 = y, and
that

wnillxo + 27" znkllx, < 2K (yn, 29).

Then, for every k € Z, the series Zwmk and Z Zn 1 converge in X
n=1 n=1

and X, respectively. Indeed, let F'(w) be another quasi-norm on X

satisfying the triangle inequality such that F(w) < [lw|/%, < 2F(w)

with some p € (0,1]. Then, for every positive integers M, N such that

N < M, we have

M N p M
n=1 n=1 Xo n=N+1
M M M
<2 Y Flwas) €2 Y flwaslfs, <27 D7 K(yn, 25
n=N+1 n=N+1 n=N+1
x 21+p 21+P

< = .
- onp (1-— 2—p)2(N+1)p

n=N+1
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o0

Hence Zwmk converges in X,. Let up denote the limit. Then, for
n=1

every N we have

N
U — E W,k
n=1

In the same way we can see that

21+1/p © . C
< m Z K(yn,2%) < NI -

Xo n=N+1

(2.2)

N

- 2k
28) -S| 0¥ Y K< o
n=1 X1 n=N-+1

with some v, € X;. Then we have

N N N
Uk + Vp — Tj(N) = Uk + VU — Zyn = U — an,k+vk — Zzn,k
n=1 n=1 n=1
It follows from (2.2) and (2.3) that

C
||uk + v — xj(N)HXo—i—Xl < 2_N —0as N — oc.

This implies that the sequence {x;q,) }oe, converges to uy + vy in Xo +
X1, which is topologized by the quasi-norm

2/l x0+x = nf{llyllxo + 12llx, [y € Xo, 2 € Xy, v =y + 2},

It follows that u; + vy is independent of k € Z. Put x = up + vi. Then
it suffices to show that z € X and that {z;}32, converges in X. To
this end we see that

7 = 500 [l

00 1/q
<O > 2™MK(x -z, 2’“)‘1>

k=—o0

N N
U — E Wn, k Vi — E Zn,k
n=1 n=1

q\ 1/q
X1> >
o0 oo l/q
<ol Y 2™y K(yn,Q’“)Q)
oo 0o 1/a © 1/a
=l > > 29’fQK<yn,2k)Q) :0( >, llynllxq)

n=N+1

1
tor
Xo




REAL INTERPOLATION, LORENTZ SPACES, NAVIER-STOKES EQUATION 7

This implies that € X and that the subsequence {z;(,)}22, converges
to x in X. Tt follows from this and the fact that the sequence {x;}32,
is a Cauchy sequence in X that {z;}52, converges to z in X. O

3. ANOTHER INTERPOLATION AND INTERPOLATION OF
OPERATORS.

In this section we introduce another method of real interpolation for
complete quasi-normed abelian groups. For x € Xy N X; and ¢ > 0 we
put

1
o) = JGo.t, X0, %0) = ol el

Then we have

(3.1) T, t) < J(z,s) < Lifs <t
S

We introduce (X, X1)%¢ intuitively as the collection of

/000 u(t)%

for an Xy N Xj-valued function u(t) on (0, 00) such that

( /0 1 (2(0), 1)) %)Uq < oo,

In order to avoid the difficulty of the convergence of improper integrals,
we use the infinite sum in view of (3.1). For a finite sequence {z; };V:_ N

in Xy N Xy, we put H{x]}jvszH = {ZGjJ(xj,Qj)};V_ . Then, for

=—N ra
x € XoN Xy, we introduce the quasi-norm by

inf{H{xj}év__NH = Z :Ej}.

j=—N

This quasi-norm is weaker than the standard quasi-norm ||z|| x, + ||z|| x,
in XoNX;. It is natural to consider the completion of XqN X, with re-
spect to the norm corresponding to this quasi-norm. This coincides
with the space (X, X1)?¢ defined as the infinite sum of the series

Z x; such that

j=—o0

(3.2) ”ﬁ%}ﬁ}KM::H{ﬁ{KxﬁQQ}z}x

where the convergence is considered with respect to the quasi-norm

j=—o0

< 00

0a

(3.3) ||513||(X0,X1)9,q = inf { H{xj}ii—oou
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There i 1s another method. Let (Xj, X1)%? denote the mﬁmte sum of the

series Z x; satisfying (3.2), where the infinite sum Zm’j converges

Jj=—00 Jj=0
-1

in Xy and the sum Z z; converges in X;. We equip (X, X;)"? with
j=—o00
the quasi-norm defined by (3.3). Then (Xg, X;)%? is identical with
(Xo, X1)%4 for ¢ € (0,00). However, the space X, N X is not dense in
(X0, X1)%°, and (Xp, X1)?> coincides with the closure of Xy N X in
(Xo, Xl)e,oo'
Then we have the following theorem.

Theorem 3.1. Let X, and X; be complete quasi-normed abelian
groups. Then, for every 68 € (0,1) and every q € (0,00], the space
(Xo, X1)%4 coincides with the space (Xo, X1)a4, and their quasi-norms
are equivalent.

Proof. We first show the inclusion relation (Xo, X1)%¢ C (Xo, X1)g.q-

Suppose that = € (X, X;1)%?. Choose a sequence {z; }32_ such that
-1
x—ZxJ in Xg, = Z x; in X; and
j=0 j=—00
(2% 75,2} | < 20l e

For every h, k € Z, we put wy = Zf:h x;. Recall that there exists a

quasi-norm F' on X satisfying the triangle inequality such that F'(w) <
||lw[[P < 2F(w) holds for some p € (0,1]. We hence have

k
Xo = Z Q_JPQH‘TH(X(),XHG’OOP < CQ_kpg”‘TH(Xle)g‘qp'
j=h

This implies ||wp k| x, < 02_’69”3:”()(07)(1)97(1 . In the same way we have

lwnllx, < C2U ]| x1y00 -
Hence the completeness of Xy and X; implies the existence of

and they satisfy the equality = = yi + 2. It follows that

1
K (2,2%) < |lyllx, + z—kﬂzkﬂxl :

and hence
1/q

(3.4) lleleq < € ( 5 {2 (loehs + gellnlv )} ) <I+L

k=—o0
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where
oo 1/q 0o 1/q
n=c (3 wag) (3 2 ar)
k=—00 k=—o00

Here we have [lyx|lx, < C Z 25l%, < C Z J(z,27)P. Tt follows
Jj=k+1 Jj=k+1

that

1/q

o o qa/p
]1 S C Z 2kq0{ Z J(ZL’j,Qj)p}

k=—o00 j=k+1

If p > q, we have

o) [eS) 1/q
Il S C ( Z qug Z J(iCj,Qj)q) .

k=—00 j=k+1
0o k—1 1/q
=C ( > I 7)) 2kq9>
j=—00 k=—0o0

. 1/q
< C ( Z 2jq0<]<l'j,2j)q> < C”'IH(Xle)G’q‘

j=—o0

On the other hand, if p < ¢, we choose s so that 1 = 1/s+ p/q. Then
Holder’s inequality yields

IS IS a/sp g
I,<C Z { Z 2(k—j)sp9/2} Z (2(k+j)9/2(](xj72j)>q

k=—oc0 \j=k+1 j=—00

1/q

00 k-1 1/q
<C < > { > 2<j—k>q9/2} (2ﬂ'9J(xj,2j))q)

j=—00 (k=—0o0

0o 1/q
<C ( Z 2jq9=](xja2j)q> < O] (xp,x,)0:0-

j=—o00

Hence in both cases we have I < Cf|z[/(x,x,)pa. In the same way
we have Iy < C||z||(x, x,)0q. Substituting these inequalities into (3.4)
we conclude that ||z]lg, < Cl/z[/(x,x,)0.e. This implies the inclusion
relation (Xo, X1)%7 C (Xo, X1)p.4-

We turn to the proof of the converse inclusion relation (Xo, X1)s, C
(Xo, X1)%4. Suppose that z € (Xo, X1)a,. Then, for every j € Z, there

exists y; € X satisfying z; =  — y; € X; such that

1 .
Ny;llxo + §||Zj||xl < 2K (x,27).
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Now put w; = y;j41 — y;. Then we have w; = 2z; — z;41, and hence we
have

[w;llxy < CUlysallxo + llyillxo)
< O(K(z2,2) + K(2,2")) < CK(z,2).

In the same way we have |w,|x, < C2/K(x,27). It follows that
J(w;,27) < CK(x,27) with an absolute constant C', and hence

00 1/q
(3.5) [Hw;}it ol = (Z {QQjJ(wjﬂj)}q)

j=—o00

0o 1/q
<c ( 3 {29jK(x,2j)}q> = Cllelo

j=—o00
Next, in view of the equality
N
Z Wj = YN+1 —Y-M = ZN+1 — Z-M
j=—M
and the inequality
27 ||yl xy < 277 K (2,2) < Cllallg o < Cllllg,, »
we obtain
lyillxo < Cllzllg, 27" — 0 as j — oo,
which implies that

lim yyy1 =0, lim 2y =2 in X,.
N—oo N—o0
In the same way we can show

lim y_p =2, lim z_j =0in X;.
M —o00 N——o0

From these facts and the estimate (3.5) we have ||z||x, x,)0.0 < C||||0,q,
and hence the inclusion relation (Xg, X1)s, C (Xo, X1)% holds. O

This theorem yields the following corollary.

Corollary 3.2. Suppose that X, and X, are complete, and let E;
denote the closure of XoN Xy in X; for j = 0,1. If F; is a closed
subgroup of X; containing E; for j = 0,1, then (Fy, F1)g, coincides
with (Xo, X1)e4. In particular, we have

(E07 El)@,q = (E07X1>9,q = (X07 El)@,q == (X07 Xl)@,q-

Proof. The inclusion relation (Ey, E1)g, C (Fo, F1)og, C (Xo, X1)o,
and the equality of the quasi-norms are clear. On the other hand,
it follows from the definition of (Xj, X;)%? the inclusion relation
(X0, X1)oq = (Xo,X1)"" C Ey+ E;. Hence we have the equality
(Eo, Er)gq = (Xo,X1)p4, which implies the conclusion (Fo, Fi)p, =
(Xo, X1)og- O
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At the end of this section we consider the situation that an operator
is defined from a pair of quasi-normed abelian groups to another pair,
and show that the operator maps an interpolation space of the first
pair to the corresponding interpolation space of the second pair.

Let Xy, X1, Yy and Y; be quasi-normed abelian groups, and let T" be
a mapping from Xy + X; to Yy + Y] satistying the following:

(i) For j = 0,1, the mapping 7" maps X; to Y}, and there ex-
ist nonnegative constants Ay and A; such that the estimates
|Tz|ly, < Ajl|z|x, hold for z € X.
(ii) For every x = xg + =1 such that x; € X, there exists y; €
Y; such that Tz = yo + y1 and that the estimates ||y;[ly, <
AjHij”Xj hold.
A typical example is the case that Y; are function spaces such that
|f(z)] < |g(x)| for every @ implies || f||y, < [|g]ly;, and that the operator
T satisfies the inequality

[(T{fo + £i})(x) = (Tfo)(@)| < [(TF)(z)]

for every x. A typical example is the maximal function. Another
example, which will be employed for the Navier-Stokes equation, is the
norm || f(¢)||x of an X-valued function of t.

Then we have the following theorem.

Theorem 3.3. Suppose that 0 < 6 < 1 and that 0 < g < o0.

Then, under these assumptions, the operator T is bounded from X =
(X07X1)9,q toY = (%,1/1)97(1 with

1Ty < Ag~" Al x.
Proof. We first put S = A;/Ag, and let ¢ be an arbitrary positive
number.

Suppose that x € X. Then, for every ¢t > 0, we can choose y(t) € X,
such that z(t) = = — y(t) € X; and that

(3.6) ly@)lx, + %||Z(t)||xl < (L +e)K(x,1).

Then, from the assumption we can take u(t) € Yy and v(t) € Y] such
that Tx = u(t) + v(t),

lu@lye < 1Ty@)llv, < Aolly(®)lxo
lo@®llvs < T2y < Aullz(8)]lx,-
Then (3.6) yields

1 A
K(Tz,5t) < [[u®)llv, + g 0@l < Aolly®)llx, + S—;IIZ(t)lel

gm(mwmﬁéwwm)ga+@%wa
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It follows that
1Tz,

o0 1/q
<o ([T@R@O)T ) = 1Al el
0

Since € > 0 is arbitrary, we obtain the conclusion. Il

4. DUALITY.

In this section we assume that X, and X; are Banach spaces, and
we characterize the dual spaces of the real interpolation spaces. Let X}
denote the dual space of X; for j = 0,1. We start with a preliminary
lemma.

Lemma 4.1. The mapping X — (XoNX1)' is injective if and only if
XoN Xy is dense in X,.

Proof. 1f the closure of Xy N X is E C# X, then there exists £ € X||
such that £ # 0 and that g = 0. Hence the mapping X — (XoN X;)’
is not injective.

On the other hand, if X, N X is dense in X, then every £ € (Xo N
X1)" is bounded on Xy, and is uniquely extended to a bounded linear
functional n € X{. Then 7 is the only element in X mapped to £&. O

Lemma 4.1 implies that, if Xy N X; is dense both in X, and in X,
then we have X + X| C (XoN X;)". The main result of this section is
the following theorem.

Theorem 4.2. Suppose that Xoq N X, is dense both in Xq and in X.
Then we have ((Xo,Xl)qu)/ = (X0, X1)o,g/(q—1) for q € [1,00), and

((XO>X1)9,00—)/ = (X(/)aX{)H,l-
As we see in Section 5, we have (L3, L?)
/
plies ((L2/3, L2)1/2’1> = L. On the other hand, since L'*(]0,1]) C
L?3([0,1]) and (L=([0,1]))" = {0}, it follows that (L¥3([0,1]))" =
{0}. This implies ((L2/3([0, 1])),, (L2([o, 1]))’) e {0}. Hence we
1/2,00

see that the assumption that Xy and X; are Banach spaces is essential.
In fact, we essentially use the Hahn-Banach theorem in the proof.

a1 = L', which im-

Proof of Theorem 4.2. We first show

(4.1) (X8, XDosg/ta-1) € ((Xo, X1)og)
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for ¢ € [1,00). To this end we first show that, for every £ € X + X}

and every t > 0, we have the inequality

|<CL’,§>‘ / /
4.2 su < K(&t, X, X5).
( ) a:GXoEXl J(xa]-/taX&Xl) - <€ 0 1>

Suppose that £ = n + ¢ such that n € X and that ¢ € X]. Then, for
every r € Xy N X; we have

(2, 6)| < [{z,m)] + (=, Q)] < llzllxollnllxg + =l 1< x
< J(x,t, Xo, X1)[Inllx; + J (2, t, Xo, X1)t||C]| x:-

Taking the infimum of the right-hand side, we obtain
[{,€)] < J(x,t, Xo, X0)K (& 1/t, X, X7),

which implies (4.2).
Now we prove (4.1) for ¢ < oo. To this end we assume that ¢ €
(X6, X1)o.g/e-1) € X+ X and that {z;}}L_,, is a finite sequence in
N
XoNX;. Put z = Z xj. Then (4.2) yields

j=—M

N
< D 22,2, Xo, X0)2 VK (6,277, Xg, X))

Hence Holder’s inequality implies that

N

1/q
(. €)] < ( Z (20jj($j=2j)Xo,X1))q>

j=—M
0 1-1/q
e

j=—00

It follows that |(z,&)| < ||z[leqll€llo.e/a—1)- Since Xo N Xi is dense in
(X0, X1)g,4, we obtain (4.1). In the same way we can show

(X[I)7 Xi)@,l C ((XO; Xl)@,oof)/-

Observe that Xy and X; need not be Banach spaces in this part.
We next show that

(4.3) (X8 XDosg/ta—1) O (X0, X1)og)
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for ¢ € [1,00). To this end we show that, for every £ € (XoN X;)" and
every t > 0, we have the inequality

[(z,6)]
4.4 su > K(&,t, X{, X1).
(44 seXan: J(x,1/t, Xo, X1) — (&8 %0, 1)
Put Y = Xy & X, with the quasi-norm
1y, 2)lly = max {{|y[lx,, ¢l x, } -
Then we have Y’ = X, @ X] with the quasi-norm

1
1o, iy = lImllxg + SISy

and the space X, N X; can be identified with Z = {(z,2) | z € Xo N
Xi}. This implies that every & € (X N X;)" can be regarded as the
bounded linear functional on Z. Since Z is closed in Y, the Hahn-
Banach theorem implies the existence of a functional p € Y’ such that
plz = & and that ||p|ly = [|€]|(xonx,)- Here we note that

Il xonxay = sup {2, )]
veXonXy,z0 Max {||z| x,, t]|z| x, }
_ ()]
= sup

r€XoNX1,x#£0 J('ru 1/t7 X07 Xl) '

We next define py € X and p; € X{ by po(y) = p((y,0)) and pi(z) =
p((O, z)) Then, for every x € Xy N X;, we have

po(x) + pi(x) = p((2,2)) = &(x).
Hence & = py + p1 € X + X|. Next, for every ¢ > 0, we can choose
y € Xo and z € X; such that ||(y,0)|ly = ||(0, 2)||, = 1 and that

A(0) > s o~z A > S

It follows that ||(y, 2)||,- = 1 and
p((.0)  p((0,2)
1w O)lly 110, 2)[ly
Since € > 0 is arbitrary, we have

p((y,0)) p((0,2))
4.5) lpllyr > sup ———++ e
( VS T Oy e O, Ay
On the other hand, we have

p(y,z) > €.

B p((y,0)) p((y,0))
lpollx; = sup ———= = T
veXowz0 Yllxe  yexowzo [[(¥,0)ly

p((0,2) p((0,2)
ol = sup 20D, pl02)
oo Il sexnaso 00,2)]ly

and
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Substituting these estimates into (4.5) we obtain

1
lpollxg + S llollxy < llelly = lI€lcxonxy

e @l
zeXoNX1,x#0 J(Z’, 1/t7 X07 Xl)
This implies (4.4).
Then we show that (4.3) for ¢ € [l,00). Suppose that £ €

((Xo, Xl)g’q)/ C (XoN X7)'. Let & be an arbitrary small number. Then
we see by (4.4) that, for every j € Z there exists x; € X, N X such

that
<xj? §>
J(xj,279, Xo, X1)
Let {a;}52 ., be a sequence of positive numbers satisfying the condi-
tion {27%q;}>2_ € ¢9. Then we have

3

> K(§,2, X0, X1) — ST

. QL
279jj J. J
(J(ZE], 2_37 X07 Xl)
It follows that the sum

) 27j7 XO) Xl) S 2*9‘1@],’

o0
k]

4. = - .
(4.6) v= 2 (2,279, Xo, X1)

j=—00

converges in (Xo, X1)s,, and that

o 1/q
||xH9’q < C’{ Z (2—3'9%.)‘1} )

j=—o00
We thus obtain

[e.e]

1/q
(47) |<x7£>‘ < C{ Z (2—]'9@].)(1} "6”((X0,X1)97q), .

j=—o00

Since the summation in (4.6) is convergent in (Xo, X1)g,4, we have

N
Q05
— i ]
<.Z‘,£> Nl—r>nooj:N<J(]}j,2_],X0,X1)’§>

N
. _ip 0 . , , £
> lim Y 277002 (K€%, X0, X1) - o)
j=—N
LN gt it ) NS gt E
- Z 27 aj2] K(ga 2J7X07X1) - Z 277 aj22+|j|
j=—o00 J=—0
2 Z 27j0aj2j9K(£a 2J7X67X1) - 5H{2ijgaj};i—oouéq :

j=—o00
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It follows from this inequality and (4.7) that

> 277002 K (6,27, X0, X7)

j=—o0

o 1/q
< C{ > (z—jeaj)Q} ||5||((X o) +el[{277%0;152 ]l

j=—00
Since the choice of the sequence {o;}° of positive numbers such
that {277%a;}%2

{27 (6,29, X}, X]YE o,
H{QJGK 67 2]7 X(/)a Xl)

j_—OO
€ (7 is arbitrary, we see that the sequence
belongs to ¢4/~ and we have the estimate

< .
CIEN (g ¢

Since € > 0 is arbitrary, we conclude that £ € (Xg, X1)o,4/(q—1) With
the estimate ||§||(X, XDoasaty S ||§H((X07X1)9’q),. This completes the

*Oonq/(q 1)

proof of (4.3) for 1 < g < co. The inclusion relation ((X(),Xl)gpo_)/ C
(X0, X1)e1 can be proved in the same way. O

5. THE LORENTZ SPACES.

We begin with the introduction of two functions defined on (0, c0)
associated with a measurable function f(z) on a measure space (X, u).
For t > 0, we put

p(lfl > s) = n({z € X | |f(z)] > s})
and
f7(t) = sup{s € (0,00) | pu(|f[ > s) > t}.
Suppose that 0 < p < co. Then we have

= ([ rara)” = ([ @rroy 4"

On the other hand, the weak-L? space is defined as the collection of
functions f(z) such that

sup spu(|f] > s)!/P = suptl/”f (t) < oo.
s>

Generalizing these quantities, we define || f||,, for p € (0,00) and ¢q €

(0, 00] by
0o 1/q
T (/0 (tl/pf*(t))q %) for ¢ < oo,

sup tV/7 f*(t) for ¢ = oo
t>0

and let LP?(X) be the collection of all measurable functions on X such
that [ fllp.e < oo
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The function || f||,, does not enjoy the triangle inequality in general.
For example, let f(z) = 1 — 2z and g(z) = z on [0,1]. Then we have
f5(t) = g*(t) = f(t). Tt follows that

1flloe = ll9ll1oe = sup ¢(1—1) =7,
0<t<1

while f(z) 4+ g(z) = 1 and hence ||f + g|l1.0o = 1. However, suppose
that

(5.1) f ) <r, g'(t) <s.
Then we have
p(lfl>r) <t ullgl >s) <t

From these inequalities and the inclusion relation
{zeX||f(x)+g@)|>r+s}
ClzeX||f@)|>r}u{zeX]|lglz) > s}
it follows that u(|f + g| > r + s) < 2t, which implies
(f+9) (2t) <r+s.

Since r and s satisfying (5.1) are arbitrary, we obtain

(52) (f +9)'(20) < F() +4°(0).

This implies

1f+gllpg < (/Ooo (207(f + g)* (2))" %)1/11
<2 </OOO (/7 f* () + 9° (1) ﬂ)”q

t
< 2°C; (Ifllp.g + I9llpa) -

and hence ||-||,,, becomes a quasi-norm. It is easy to see that (af)*(t) =
la|f*(t) for a constant a, and hence || - ||, , enjoys (1.5).
If s <t <2s, we have

sYPfH(2s) <P () < (29)P 7 (s).
00 1/q
This implies that || - || is equivalent to ( Z (2j/pf*(2j))q> . From
Jj=—00
this fact we see that ¢ < r implies LP? C LP". At the end of this

section we give a proof of a theorem on the real interpolation between
the Lorentz spaces.

Theorem 5.1. Suppose that py, p1 € (0,00) satisfy po # p1, and
suppose that 0 < r < oo and 0 < 0 < 1. We define p € (0,00) by the
formula 1/p = (1 —0)/po+ 0/p1. Then, for every qo, q¢1 € (0,00], the
space X = (Lpodo LPra), = coincides with LPT.
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Proof. Without loss of generality we may assume py > p > p;.

We first show the inclusion relation X C LP". In the proof of this
relation we may assume that go = ¢ = oo without loss of generality.
For every m € Z there exist g,, € LP>*> and h,, € LP* such that
f = gm + h,, and that

1 m
”gm”po,oo + z_mHhm”pl,oo < ZK(f, 2 )
We then have
Grn(27) < 279770 gy 00 < 27K (f,27)

and . A ‘
7 (27) < 279 By |y o < 27PHHELEC(F, 27,
For every j € Z, let m = m(j) denote the largest integer m such that

Then we have

j_1<pop1m <
bPo— D1
It follows that
) 1
S P L
Po Po — D1 Do
and
) i1
RS [ LIRS (R UL [ R
b1 Po— P Po — D1 b1

The estimate (5.2) implies the inequality f*(2/T!) < g% (27) + h?,(27).
We also have

1 1—-0 0 1 0 —
Z = +_:_+M'
b Do b1 Po PoP1

It follows that
QUFTDO/E (271 < 9b/popopim/plpo=pi) (g* (27) 4 P (27))
< CQplm/(pOfpl)+m927p1m/(pofp1)K(f’ 2™)

= C2™K(f,2™).

There exists a positive number N such that, for every n € Z, there
exists at most N number of j € Z such that m(j) = n. We then have
Z (2(j+1)9/pf*(2j+1))r S CN Z (zneK(f’ 2n>)T )
j:—oo n=—oo

This implies || |, < C| f]|x, and completes the proof of the inclusion
relation X C LP".

We turn to the proof of the inclusion relation LP"" C X. In the proof
of this relation we may assume ¢ < r without loss of generality. Choose
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s € (0,00) so that 1/r = 1/q 4+ 1/s. Suppose that f € LP". For an
integer ¢, we put
ge(x) = f(x), hy(x) =0 if [f(2)] <27,
{ge(ﬂﬁ) 0, he(x) = fz) if |f(z)] > 2™
Then we have

oy ey ) G F®) < p(lfl > 2,
(gz (t)vhf(t)) - {(f*(t),()) t> N(‘f' < 26)

It follows that

19¢llpo.q

00 . dt 1/q
_ {/ (tl/pogﬁ (t))q 7}
u(lf1>2% dt oo dt
[ ey S [ @) T
0 w(lf1>24)

) 1/q
o Loy i) @) }
{ nift= /u(f|>2‘)( f1(0) t

0o 1/r
<C QZM (1f] > 25 po 4 (/ (t1/2(1/p+1/po)f*(t))r _) X

u(F1>29) ¢
( / L1 /po—1/p)s/2 dt)
(1 f1>2) t

< Cu(lf] > 297 f(u(|f] > 2))+

o0 s dt\ YT
Cu(lf| > 25)1/2(1/170*1/10) (/ (tl/Q(l/erl/po)f* (t)) _>
u(1£1>2) t

C

IA

and

1Pl 1.0

(112 a )
_ 1/p1 p* a >
—C{A (t f@)t}

<o {
(1£1>29) Ys

/ g (e 4

. ¢

u(l£1>29) AN
< Cu(lf] > 26)1/2(1/p1=1/p) / (t1/2(1/p+1/p1)f*(t)) " .
0

2 e meason) prgpyy & "
t PrPY £ (1)) — X
( f1®) 5

S
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For every k € 7Z, choose ¢ = ((k) so that 28 < u(|f| > 2°)V/m—t/r <
281 Then we have

1 1 1 1 1 1 1 1
() G
Po P pP1 Do b1 p pP1 Do

9kpop1/(po—p1) < U(‘f' > QK) < 9(k+1)pop1/(po—p1)
It follows that

and

E : (29k||g€||po,q)r < I + Iy,
k=—00
where
N VYN Lo dt
L=C § : (2k62 k9/2) /2kpopl/(p0p1) (tl/Q(l/p—f—l/po)f (t)) "

k=—o00

oo loga(1/p1—1/po)]+1 dt
<C okOr/2 (411/2(1/p+1/po) £ (¢ i
<o [TTS ( O

-0 k=—00

o rd
<c [ @rrw)y § =cirl,.

[e.o]

On the other hand, we have

04 p1 :1/17—1/190 D1 :p1(po—p)+ D1
po—p1 1/pi—1/po po—p1 p(P0o—p1) Po— M1

D (1 Po — p) o PopP1
— + — .
Po— D1 p p(po - pl)

It follows that
I,=C Z (20k:+kp1/(po—p1)f*(Qkpom/(po—m)))’"

k=—00

—C Z (2kpom/p(p07p1)f*(Qkpom/(pofm)))” < CHfH;r

k=—o00

Finally, we have

> UMkl lpg)
k=—o00
00 ( e ) 9(k+1)pop1/(Po—P1) a1y Jou) dt
_ 26—1k+1—9k2T/ t121p+1p1 *(¢ [t
k:zoo( ) i ( ) 5

- / h S QO=Vkr/2 (/20 /p1Ip) (1)) dt
0

t
k=[logs(1/p1—1/po)]—1

oo rd
<c [ @rrw) =l
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We thus conclude that

00 1/r
1fllx = ( > (@FK(f, Qk))r)

k=—o0

o 1/r
< ( Z (2k9(||9£|po,q +2_k|‘h€||p1,q)> ) < CHpr""'

k=—o0

This completes the proof of the inclusion relation LP" C X. O

From Theorem 5.1 we have several important facts. First, if 1 < p <
oo and 1 < g < 0o, the space LP? becomes Banach spaces since we can
write

P9 = (Lpoypo’ Lp1,p1)97q — (Lpo7 Lpl)e,q

with po, p1 € (1,00). Moreover, Theorem 4.2 implies that

!/
(Lp,q)’ — <<Lpo7 Lpl)e’q>
-1 -1 -1 -1
_ (Lpo/(po )7Lp1/(p1 ))qu/(q_l) — [p/(p=1).a/(¢=1)
for 1 < p < 00, 1< ¢q < oco. In the same way we can prove (LP>~)" =
LP/=D:1 where LP* is the closure of LP in L7,

On the other hand, consider the Lorentz spaces on a domain of R"”
with respect to the Lebesgue measure. Then the space L! is a proper
subspace of L' for every q € (1,00]. From this fact and (L') = L,
together with the property of the Lebesgue measure, we can show
(L) = {0}. Hence the Hahn-Banach theorem implies that L9 can-
not be a Banach space, and this space cannot be contained in the space
of distributions. It follows that these spaces cannot be applied to the
study of partial differential equations directly.

We also add a remark that we can prove the interpolation relation
(L, LP9),y, = LP/%" in the same way as in Theorem 5.1.

6. APPLICATIONS THE THE NAVIER-STOKES EXTERIOR PROBLEM.

In this section we consider the following non-stationary Navier-
Stokes equation on n-dimensional exterior domain {2 with smooth
boundary, where n > 3 and V - F' is a time-dependent external force
with F' = F(t, z):

ou

(6.1) E:Au—(u-V)u—VﬂqLV-FinRXQ,
62)  V-u=0 R xQ,
(6.3) u=0 on R x 99.

Here u denotes a vector-valued unknown function standing for the ve-
locity of the fluid, and 7 denotes another scalar-valued unknown func-
tion standing for the pressure.
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The purpose of this section is to prove the following theorem.

Theorem 6.1. Suppose that F' is small in BUC (]R, (L”/Q’“(Q))n2>

Then there uniquely exists a solution u of the system (6.1)—(6.3) small
in BUC (]R, (L”“(Q))n) Furthermore, the mapping from F to u is
continuous in the function spaces above.

This theorem implies that, if F' is a time-periodic function, then
is also time-periodic with the same period. We also see that, if F' is
almost periodic with respect to ¢, then so is u in view of the continuity
of the mapping.

In order to remove the function 7, we introduce the Helmholtz de-
composition. Suppose that €2 is one of the following:

e The whole space R".

e The half space R} = {(x1,...,2p-1,2y) | , > 0}.

e A bounded domain with smooth boundary.

e An exterior domain with smooth boundary.
Then, for every p € (1,00), the space (LP(2))" admits a direct sum
decomposition L2(Q) @& GP(2), where

LE(Q) = {u(x) € (LP(2)"| V- u(z) =0in Q, v - u(z) =0 on 9N}

and
GP(Q2) = {u(z) € (LP(2)" | u(x) = V f(x) with some f(z) € L} (Q)}
Observe that Vu € LP implies that u is “partly” contained in H;, and

hence we can define the normal trace in the Besov space B, ;/ P On
the other hand, the function f(z) in the definition of GP(Q2) is in the

homogeneous Sobolev space HI}, and hence its trace is in B,}fpl/ PoTt

follows that the element of GP(2) has the tangential trace in B, e

Let P, denote the projection from (LP(€2))" onto LZ(f) accord-
ing to the direct sum decomposition above. Then P, is a bounded
linear operator, and we have the identity P,, = P, on (L”(Q) N
L”l(Q))n. Hence we can define the bounded projection P from the
Lorentz spaces (LP7(2))" = ((LPO(Q))n, (Lpl(Q))n)W onto L2"(Q) =
(L20(Q), LB (),
as in Theorem 5.1. Next, for p € (1,00) we see that (u,v) = 0 for
u € L2(Q) and v € GP/?P~Y(Q), by approximating u by test func-
tions and integrating by parts. This equality implies that (Lg(Q))I
e/ ®= (Q2). From this we conclude that (Lg’q(Q))l = Lg/(p_l)’q/(q_l)(Q
for 1 <p < oo and 1 < ¢ < oo, and that (Lg’o"*(Q))/ = Lg/(p_l)’l(Q
for 1 < p < 0.

The composite operator —PA is called the Stokes operator. It is

known that the Stokes operator is a sectorial operator and generates a
bounded semigroup on L2(€2), and hence on L2"(12).

where the numbers pg, p1, p, r and 6 are the same

~— —
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By applying the projection P we transform the system (6.1)—(6.3)
into the following evolution equation
du

(6.4) E:—AU—FP[—(U-V)U—I—V-F].

Introducing the mapping T" defined by
Thl(t) = / exp(—sA)P [~ (u(t —s) - V)ult — s) + V- F(t —s)] ds,
0

we can rewrite (6.4) into T'[u] = u. Hence, in order to prove Theo-
rem 6.1, it suffices to find the unique fixed point u(t) of 7" small in X =

BUC (R, L»>*(%)) for given F small in Y = BUC (]R, (L”/QvOO(Q))M)
The main difficulty is that the improper integral in the right-hand
side does not exist in the sense of the Bochner integral in general. In-

stead we show that the improper integral exists in the weak-* topology.
Namely, for F' € ), we define U[F| by the identity

WY = [ (P, Verp(-sA)p) ds

for ¢ € LZ/("fl)’l(Q) in view of the identity divu = 0, and put T'[u] =
Ulu ® u — F]. Then we have the following lemma.

Lemma 6.2. There exists a positive constant C' such that the estimate

/ IV exp(—=sA)@ln/n-2)1ds < Cll@llnsn-1)1,
0

holds for every ¢ € LZ/(n_l)’l(Q).
Proof. We observe the estimate
|42 exp(—sA)plly < Cs™2HaP=2 g,
for p, g such that 1 < p < ¢ < co. Applying real interpolation
(6.5) 142 exp(—sA)pllgr < Cs™2HTVD2 g ;.
We next observe that, it follows from the estimate
||A1/2qu,q < C[[Vullpq for 1 <p <o00,1<g< o0

and the fact that the the function u(z) satisfying Vu(z) € LP? with
either 1 <p<n,1<g<ooorp=nmn,q=1decays as || — oo that
the converse estimate
(6.6)

|Vl < CIIAYu||,, for 1 <p<n,l<g<ocorp=mn,qg=1
holds. Note that this estimate fails for p = ¢ = n.

Applying (6.6) with p = n/(n —2), ¢ = 1 to the left-hand side of
(6.5) with ¢ = n/(n — 2), we obtain
(6.7)
IV exp(—5A)@|ln/m_2y1 < Cs"IE20) 0|4 for 1 < p <nf(n—2).
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Note that, in the case n = 3, the above argument holds for p = n/(n —
2)=nand ¢ = 1.

Now we consider the mapping S from ¢ to the function of s € (0, 00)
defined by ||V exp(—=sA)¢lln/m-2),1- Then (6.7) implies that S is
bounded from L2Y(Q) to L2/Grn=mr):(( o0) for 1 < p < n/(n — 2).
Applying real interpolation once again, we see that S is bounded from

Lg/(n—l),i(@) _ (Lin/(Qn—l),l(Q)’Lin/(Qn—S),l(Q))l/z1

into

L}(0,00) = LM (0, 00) = (LY5(0, 00), LY**(0,00))  , ,
which implies the conclusion. U
This lemma immediately yields the following corollary.

Corollary 6.3. If F € Y, then we have U[F| € X, and we have the
estimate ||U[F]||, < C|F|,, with a constant C.

Proof. Lemma 6.2 yields the estimate
|<U[F](t)750>’ S / }<F(t—$),VeXp(—SA)gO>‘ ds
0

< C/ HF(t - S)Hn/loouveXp(_SA>§0>“n/(n—2)71 ds
0
< C||F”y||90||n/(n—1),1

/
for ' € ). Hence the duality <L2/ (n_l)’1> = L™ implies
WUF]()l < C||F|ly. Next, for every ¢ > 0, choose § > 0 such

n,00 —

that |t — 7| < d implies [|F(¢) — F(7)]],, /9.0, < &/C. Next, fix a number
0 € (—=9,0), and put G(t) = F(t +60) — F(t). Then we have

[VIF)(E +6) = ULFIOl 0 = IUICTO]
< CYGlly = Csup [F(s +8) = F(3)] s <

Moo

for every t € R. Since ¢ > 0 is arbitrary, we have U[F](t) € X and
IULETN < CIEly - m

For u, v € X the generalized Holder inequality implies u®@u, vv € )
and the estimate

lueu—vooly < us w—vl,+ | -v) @ vl
< Alllullx + llollp)llw = |
with a constant A. Hence Corollary 6.3 yields

(6.8) |Uu®@u—F—-—v@uv+Gl|,y
< AC(HUHX + ||U||X)||U - U”X + CHF - GHX'
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In particular, putting v = G = 0, we have

(6.9) ITullly < AC|ullx* + C|IF |4,
and putting F' = G, we have
(6.10) [ Tu] = Tl < AC([[ullx + vl )llu = vl

Suppose that [|F||,, < 1/4C*A. Then the equation ACX?+ C||F||,, =
X has two distinct positive solutions. Let o denote the smaller one:
namely,

1= \/1-4AC*|F],,
N 2AC '
Then, if ||ul|, < a, the estimate (6.9) implies

IT[ulllx < ACa® + C||F|ly = a.

«

Hence the mapping 7" maps Bx(0,a) into itself.
Next, for u, v € Bx(0, «), the estimate (6.10) and the fact

6.11)  AC(|ullx + 0]l ) < 24Ca =1 — \/1 — JAC?|F||,, < 1

implies that the mapping 7" is a contraction mapping from By (0, @)
into itself, which is a closed ball of a Banach space. Hence T has a
unique fixed point in By (0, ), which is the required solution.

Finally we prove the continuity of the mapping F' +— u. Suppose that
F, G e )Y, and let u, v € X denote the solutions corresponding to F
and G respectively. Then we have u = Uju®u—F] and v = Ujv@v—G|.
It follows that u —v = Ulu®u— F —v® v+ G|. Substituting this into
(6.8) we see

(1= AClully + ol 2)) v = vllx < [F =Gl

In view of (6.11) we obtain the required continuity. O
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