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Abstract. In this note we give a brief sketch of real interpo-
lations, the Lorentz spaces and their applications to the Navier-
Stokes equations.

Introduction.

This note is a brief sketch of real interpolation and the Lorentz
spaces, and its application to the Navier-Stokes equations.

There are two methods of interpolation: complex method and real
method. Both of them survive because each has its advantages to the
other. Namely, the advantage of complex interpolation is the following:

(i) Multilinear operators can be treated
(ii) The operator may depend holomorphically with respect to the

interpolation parameter.

On the other hand, the advantage of real interpolation is the following:

(i) The function spaces need not be normed.
(ii) The operators need not be linear.
(iii) One can “improve” the function space in the course of inter-

polation.

Indeed, in the proof of the Mikhlin-Hörmander multiplier theorem we
use properties (i) and (iii) of real interpolation, and in the proof of the
boundedness of the Hardy-Littlewood maximal function, we use all of
them.

Section 1 to Section 5 are devoted to the sketch of real interpolation
and the Lorentz spaces. Generally I followed [1], but I avoided to
describe the whole theory and limited ourselves to the necessary part
of the theory, and some proofs are modified accordingly. Beside, all
of the aforementioned properties of real interpolation are employed in
the application to the Navier-Stokes equations, and hence I emphasized
such properties.

Section 6 is devoted to the application of the theory above to the
Navier-Stokes equations. There are two methods to the proof of the
key inequality (6.7) in Lemma 6.2. One is the cut-off method developed
by Prof. Shibata et al. This method can be applied to more general
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operators; namely, the operator need not be sectorial. This method
is employed by Hishida and Shibata [2]. Here we employ a simpler
method, which relies on the coercive estimate of the fractional power
of the Stokes operator as in [3], which is based on complex interpolation.
For related works, see the references therein.

1. Quasi-normed spaces.

Let X be an abelian group. A functional ∥ · ∥ on X is called a quasi-
norm if there exists a C ≥ 1 such that the following three conditions
are satisfied:

∥x∥ ≥ 0,(1.1)

∥x∥ = 0 if and only if x = 0,(1.2)

∥ − x∥ = ∥x∥,(1.3)

∥x+ y∥ ≤ C(∥x∥+ ∥y∥).(1.4)

If X is a vector space on R or C, we often assume the following condi-
tion, which is a generalization of (1.3):

(1.5) ∥ax∥ = |a|∥x∥ for a ∈ R or C.

Suppose that F (u) is a quasi-norm which satisfies the triangle inequal-
ity F (u+ v) ≤ F (u) + F (v) and the condition

(1.6) F (ax) = |a|pF (x) for a ∈ R or C

with some p ∈ (0, 1). (An example of such a quasi-norm is ∥u∥pp of the

Lebesgue space Lp with 0 < p < 1.) Then the function ∥a∥ = F (x)1/p

satisfies (1.1), (1.2) and (1.5). Moreover, by Hölder’s inequality we
have

∥x+ y∥ = F (a+ b)1/p ≤
(
F (a) + F (b)

)1/p
≤
(
F (a)1/p + F (b)1/p

)
(1 + 1)(1−p)/p = (∥a∥+ ∥b∥)21/p−1.

Namely, the functional ∥x∥ enjoys (1.4) with C = 21/p−1. Conversely,
we have the following theorem.

Theorem 1.1. Choose p ∈ (0, 1) such that C = 21/p−1, and put

F (x) = inf

{
N∑
j=1

∥xj∥p
∣∣∣∣∣

N∑
j=1

xj = x

}
.

Then F is a quasi-norm on X, which enjoys the inequalities F (x) ≤
∥x∥p ≤ 2F (x) and the triangle inequality F (x + y) ≤ F (x) + F (y). If
∥ · ∥ enjoys (1.5), then we have (1.6).

In view of this theorem we see that the quasi-norm defines a metric
on X, and the fundamental neighborhood system of 0 is given by the
sets {x ∈ X | ∥x∥ < ε} for ε > 0.
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Proof of Theorem 1.1. It is easy to see (1.1). Putting N = 1 and x1 =
x, we see F (x) ≤ ∥x∥p. Next, for x, y ∈ X, choose {xj}Mj=1 and {yk}Nk=1

such that x =
M∑
j=1

xj and y =
N∑
k=1

yk. Then we have

x+ y =
M∑
j=1

xj +
N∑
k=1

yj.

Hence, by the definition of ∥x+ y∥, we see that

F (x+ y) ≤
M∑
j=1

∥xj∥p +
N∑
k=1

∥yj∥p.

Taking the infimum for the sequences {xj}Mj=1 and {yk}Nk=1, we conclude
that F (x + y) ≤ F (x) + F (y). In the same way we can see (1.1) and
(1.3). Furthermore, if ∥ · ∥ satisfies (1.5), we can see in the same way
that F satisfies (1.6).

It remains to show that

(1.7) ∥x∥p ≤ 2F (x),

which immediately yields (1.2),

Suppose that x =
N∑
j=1

xj, and put M =
N∑
j=1

∥xj∥p. Then, for every

j = 1, . . . , N , we can choose a positive integer nj such that

2−nj ≤ ∥xj∥p

M
≤ 21−nj .

Admitting the following lemma, we conclude

∥x∥p ≤ max
j=1,...,N

2nj∥xj∥p ≤ 2M.

Taking the infimum for x1, . . . , xN we obtain (1.7). □
Lemma 1.2. Suppose that x1, . . . , xN ∈ X and that n1, . . . , nN be
positive integers such that

(1.8)
N∑
j=1

2−nj ≤ 1 and x =
N∑
j=1

xj.

Then we have

(1.9) ∥x∥p ≤ max
j=1,...,N

2nj∥xj∥p.

Proof. We proceed by induction on N . The statement for N = 1 is
trivial. Suppose that the statement holds for 1, . . . , N − 1. Then,
for every n1, . . . , nN satisfying (1.8), we can divide {1, . . . , n} into two

disjoint groups I1 and I2 such that
∑
j∈Iℓ

21−nj ≤ 1.
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Indeed, suppose that n1 ≤ n2 ≤ · · ·nN , and suppose that
n1, . . . , nj−1 were divided. Then we put nj into Iℓ such that the sum∑
k∈Iℓ,k≤j−1

2−nk is smaller. Then we have
∑

k∈Iℓ,k≤j−1

21−nk + 21−nj ≤ 1.

Proceeding in the same way we can obtain the required estimate.

Now put x(ℓ) =
∑
j∈Iℓ

xj for ℓ = 1, 2. Then the induction hypothesis

imply

(1.10) ∥x(ℓ)∥p ≤ max
j∈Iℓ

2nj−1∥xj∥p.

On the other hand, we have

∥x∥p ≤ Cp
(
∥x(1)∥+ ∥y(2)∥

)p ≤ Cp2p max
ℓ=1,2

∥x(ℓ)∥p = 2max
ℓ=1,2

∥x(ℓ)∥p

Say that ∥x(1)∥ ≥ ∥x(2)∥. Then, substituting (1.10) into the right-hand
side we obtain ∥x∥p ≤ max

j∈I1
2nj∥xj∥p ≤ max

j=1,...,N
2nj∥xj∥p. This completes

the proof. □

As we have seen before, a quasi-normed abelian group X becomes
a topological group with respect to the metric defined by d(u, v) =
F (u− v). If X is a vector space on R or C and F (u) enjoys (1.6), then
X becomes a topological vector space. A complete topological vector
space topologized in this way is called a quasi-Banach spaces.

2. Real interpolation between quasi-normed spaces.

Suppose that X0 and X1 be quasi-normed abelian groups. Sup-
pose moreover that X0 and X1 are contained in a common topological
abelian group. (For topological abelian groups X and Y , the notation
X ⊂ Y means not only the inclusion relation but also the inclusion is
a continuous mapping from X to Y in the sequel.) For x ∈ X0 + X1

and t ∈ (0,∞), we put

K(x, t) = K(x, t,X0, X1)

= inf

{
∥y∥X0 +

1

t
∥z∥X1

∣∣∣∣ y ∈ X0, z ∈ X1, x = y + z

}
.

Then it is easy to see that

(2.1) K(x, t) ≤ K(x, s) ≤ t

s
K(x, t) if s ≤ t,

which implies that K(x, t) is continuous with respect to t ∈ (0,∞).
Next, for θ ∈ (0, 1) and q ∈ (0,∞] we put

∥x∥θ,q =


(∫ ∞

0

(
tθK(x, t)

)q dt

t

)1/q

if 0 < q < ∞,

sup
t>0

tθK(x, t) if q = ∞,
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and put (X0, X1)θ,q = {x ∈ X0 + X1 | ∥x∥θ,q < ∞}. In view of (2.1).

the quasi-norm above is equivalent to
∥∥∥{2θjK(x, 2j)

}∞
j=−∞

∥∥∥
ℓq
. We also

have the following proposition.

Proposition 2.1. Suppose that X0 and X1 are complete. Then
(X0, X1)θ,q is also complete.

Hence, if X0 and X1 are quasi-Banach spaces, then so is (X0, X1)θ,q.
On the other hand, if X0 and X1 are normed spaces and q ≥ 1, then
(X0, X1)θ,q is a normed space. From these facts we see that, if X0 and
X1 are Banach spaces and q ≥ 1, then (X0, X1)θ,q is a Banach space.

Proof of Proposition 2.1. Suppose that {xj}∞j=1 is a Cauchy sequence
in X = (X0, X1)θ,q. Then we can choose a subsequence {Xj(n)}∞n=1 such
that the inequality ∥xk −xj(n)∥X < 1/2n holds for every k > j(n). Put

yn =

{
xj(1) for n = 1,

xj(n) − xj(n−1) for n ≥ 2.

Then we have{
∞∑

k=−∞

(
2θkqK(yn, 2

k)
)q}1/q

≤ C∥yn∥X ≤

C∥xj(1)∥X for n = 1,
C

2n
for n ≥ 2.

Fix a positive number ε > 0. Then, for every n ∈ N and every k ∈ Z,
we can choose wn,k ∈ X0 and zn,k ∈ X1 such that wn,k + zn,k = yn and
that

∥wn,k∥X0 + 2−k∥zn,k∥X1 ≤ 2K(yn, 2
k).

Then, for every k ∈ Z, the series
∞∑
n=1

wn,k and
∞∑
n=1

zn,k converge in X0

and X1 respectively. Indeed, let F (w) be another quasi-norm on X0

satisfying the triangle inequality such that F (w) ≤ ∥w∥pX0
≤ 2F (w)

with some p ∈ (0, 1]. Then, for every positive integers M , N such that
N < M , we have∥∥∥∥∥

M∑
n=1

wn,k −
N∑

n=1

wn,k

∥∥∥∥∥
p

X0

≤ 2F

(
M∑

n=N+1

wn,k

)

≤ 2
M∑

n=N+1

F
(
wn,k

)
≤ 2

M∑
n=N+1

∥∥wn,k

∥∥p
X0

≤ 21+p

M∑
n=N+1

K(yn, 2
k)p

≤
∞∑

n=N+1

21+p

2np
=

21+p

(1− 2−p)2(N+1)p
.
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Hence
∞∑
n=1

wn,k converges in X0. Let uk denote the limit. Then, for

every N we have

(2.2)

∥∥∥∥∥uk −
N∑

n=1

wn,k

∥∥∥∥∥
X0

≤ 21+1/p

(1− 2−p)1/p

∞∑
n=N+1

K(yn, 2
k) ≤ C

2N+1
.

In the same way we can see that

(2.3)

∥∥∥∥∥vk −
N∑

n=1

zn,k

∥∥∥∥∥
X1

≤ C2k
∞∑

n=N+1

K(yn, 2
k) ≤ C2k

2N+1
.

with some vk ∈ X1. Then we have

uk + vk − xj(N) = uk + vk −
N∑

n=1

yn = uk −
N∑

n=1

wn,k + vk −
N∑

n=1

zn,k

It follows from (2.2) and (2.3) that

∥uk + vk − xj(N)∥X0+X1 ≤
C

2N
→ 0 as N → ∞.

This implies that the sequence {xj(n)}∞n=1 converges to uk + vk in X0 +
X1, which is topologized by the quasi-norm

∥x∥X0+X1 = inf
{
∥y∥X0 + ∥z∥X1 | y ∈ X0, z ∈ X1, x = y + z

}
.

It follows that uk + vk is independent of k ∈ Z. Put x = uk + vk. Then
it suffices to show that x ∈ X and that {xj}∞j=1 converges in X. To
this end we see that∥∥x− xj(N)

∥∥
X

≤ C

(
∞∑

k=−∞

2θkqK(x− xj(N), 2
k)q

)1/q

≤ C

(
∞∑

k=−∞

2θkq

(∥∥∥∥∥uk −
N∑

n=1

wn,k

∥∥∥∥∥
X0

+
1

2k

∥∥∥∥∥vk −
N∑

n=1

zn,k

∥∥∥∥∥
X1

)q)1/q

≤ C

(
∞∑

k=−∞

2θkq
∞∑

n=N+1

K(yn, 2
k)q

)1/q

= C

(
∞∑

n=N+1

∞∑
k=−∞

2θkqK(yn, 2
k)q

)1/q

= C

(
∞∑

n=N+1

∥yn∥X
q

)1/q

≤ C

( ∑
n=N+1

1

2nq

)1/q

→ 0 as N → ∞.
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This implies that x ∈ X and that the subsequence {xj(n)}∞n=1 converges
to x in X. It follows from this and the fact that the sequence {xj}∞j=1

is a Cauchy sequence in X that {xj}∞j=1 converges to x in X. □

3. Another interpolation and interpolation of
operators.

In this section we introduce another method of real interpolation for
complete quasi-normed abelian groups. For x ∈ X0 ∩X1 and t > 0 we
put

J(x, t) = J(x, t,X0, X1) = max

{
∥x∥X0 ,

1

t
∥x∥X1

}
Then we have

(3.1) J(x, t) ≤ J(x, s) ≤ t

s
if s ≤ t.

We introduce (X0, X1)
θ,q intuitively as the collection of∫ ∞

0

u(t)
dt

t

for an X0 ∩X1-valued function u(t) on (0,∞) such that(∫ ∞

0

{
tθJ
(
x(t), t

)}q dt

t

)1/q

< ∞.

In order to avoid the difficulty of the convergence of improper integrals,
we use the infinite sum in view of (3.1). For a finite sequence {xj}Nj=−N

in X0 ∩ X1, we put
∥∥{xj}Nj=−N

∥∥ =
∥∥∥{2θjJ(xj, 2

j)
}N
j=−N

∥∥∥
ℓq
. Then, for

x ∈ X0 ∩X1, we introduce the quasi-norm by

inf

{∥∥{xj}Nj=−N

∥∥ ∣∣∣∣∣x =
N∑

j=−N

xj

}
.

This quasi-norm is weaker than the standard quasi-norm ∥x∥X0+∥x∥X1

in X0∩X1. It is natural to consider the completion of X0∩X1 with re-
spect to the norm corresponding to this quasi-norm. This coincides
with the space (X0, X1)

θ,q
∗ defined as the infinite sum of the series

∞∑
j=−∞

xj such that

(3.2)
∥∥{xj}∞j=−∞

∥∥ =
∥∥∥{2θjJ(xj, 2

j)
}∞
j=−∞

∥∥∥
ℓq
< ∞,

where the convergence is considered with respect to the quasi-norm

(3.3) ∥x∥(X0,X1)θ,q
= inf

{∥∥{xj}∞j=−∞
∥∥ ∣∣∣∣∣x =

∞∑
j=−∞

xj

}
.
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There is another method. Let (X0, X1)
θ,q denote the infinite sum of the

series
∞∑

j=−∞

xj satisfying (3.2), where the infinite sum
∞∑
j=0

xj converges

in X0 and the sum
−1∑

j=−∞

xj converges in X1. We equip (X0, X1)
θ,q with

the quasi-norm defined by (3.3). Then (X0, X1)
θ,q is identical with

(X0, X1)
θ,q
∗ for q ∈ (0,∞). However, the space X0 ∩X1 is not dense in

(X0, X1)
θ,∞, and (X0, X1)

θ,∞
∗ coincides with the closure of X0 ∩X1 in

(X0, X1)
θ,∞.

Then we have the following theorem.

Theorem 3.1. Let X0 and X1 be complete quasi-normed abelian
groups. Then, for every θ ∈ (0, 1) and every q ∈ (0,∞], the space
(X0, X1)

θ,q coincides with the space (X0, X1)θ,q, and their quasi-norms
are equivalent.

Proof. We first show the inclusion relation (X0, X1)
θ,q ⊂ (X0, X1)θ,q.

Suppose that x ∈ (X0, X1)
θ,q. Choose a sequence {xj}∞j=−∞ such that

x =
∞∑
j=0

xj in X0, x =
−1∑

j=−∞

xj in X1 and

∥∥∥{2θjJ(xj, 2
j)
}∞
j=−∞

∥∥∥ < 2∥x∥(X0,X1)θ,q
.

For every h, k ∈ Z, we put wh,k =
∑k

j=h xj. Recall that there exists a

quasi-norm F onX0 satisfying the triangle inequality such that F (w) ≤
∥w∥p ≤ 2F (w) holds for some p ∈ (0, 1]. We hence have

∥wh,k∥pX0
≤

k∑
j=h

2−jpθ∥x∥(X0,X1)θ,∞
p ≤ C2−kpθ∥x∥(X0,X1)θ,q

p.

This implies ∥wh,k∥X0 ≤ C2−kθ∥x∥(X0,X1)θ,q
. In the same way we have

∥wh,k∥X1 ≤ C2(1−θ)h∥x∥(X0,X1)θ,q
.

Hence the completeness of X0 and X1 implies the existence of

yk =
∞∑

j=k+1

xj ∈ X0, zk =
k∑

j=−∞

xj ∈ X1,

and they satisfy the equality x = yk + zk. It follows that

K(x, 2k) ≤ ∥yk∥X0 +
1

2k
∥zk∥X1 ,

and hence

(3.4) ∥x∥θ,q ≤ C

(
∞∑

k=−∞

{
2kθ
(
∥yk∥X0 +

1

2k
∥zk∥X1

)}q
)1/q

≤ I1+ I2,
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where

I1 = C

(
∞∑

k=−∞

2kqθ∥yk∥qX0

)1/q

I2 =

(
∞∑

k=−∞

2kq(θ−1)∥zk∥qX1

)1/q

.

Here we have ∥yk∥pX0
≤ C

∞∑
j=k+1

∥xj∥pX0
≤ C

∞∑
j=k+1

J(xj, 2
j)p. It follows

that

I1 ≤ C

 ∞∑
k=−∞

2kqθ

{
∞∑

j=k+1

J(xj, 2
j)p

}q/p
1/q

.

If p ≥ q, we have

I1 ≤ C

(
∞∑

k=−∞

2kqθ
∞∑

j=k+1

J(xj, 2
j)q

)1/q

.

= C

(
∞∑

j=−∞

J(xj, 2
j)q

k−1∑
k=−∞

2kqθ

)1/q

≤ C

(
∞∑

j=−∞

2jqθJ(xj, 2
j)q

)1/q

≤ C∥x∥(X0,X1)θ,q .

On the other hand, if p < q, we choose s so that 1 = 1/s+ p/q. Then
Hölder’s inequality yields

I1 ≤ C

 ∞∑
k=−∞

{
∞∑

j=k+1

2(k−j)spθ/2

}q/sp k∑
j=−∞

(
2(k+j)θ/2J(xj, 2

j)
)q1/q

≤ C

(
∞∑

j=−∞

{
k−1∑

k=−∞

2(j−k)qθ/2

}(
2jθJ(xj, 2

j)
)q)1/q

≤ C

(
∞∑

j=−∞

2jqθJ(xj, 2
j)q

)1/q

≤ C∥x∥(X0,X1)θ,q .

Hence in both cases we have I1 ≤ C∥x∥(X0,X1)θ,q . In the same way
we have I2 ≤ C∥x∥(X0,X1)θ,q . Substituting these inequalities into (3.4)
we conclude that ∥x∥θ,q ≤ C∥x∥(X0,X1)θ,q . This implies the inclusion

relation (X0, X1)
θ,q ⊂ (X0, X1)θ,q.

We turn to the proof of the converse inclusion relation (X0, X1)θ,q ⊂
(X0, X1)

θ,q. Suppose that x ∈ (X0, X1)θ,q. Then, for every j ∈ Z, there
exists yj ∈ X0 satisfying zj = x− yj ∈ X1 such that

∥yj∥X0 +
1

2j
∥zj∥X1 < 2K(x, 2j).
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Now put wj = yj+1 − yj. Then we have wj = zj − zj+1, and hence we
have

∥wj∥X0 ≤ C(∥yj+1∥X0 + ∥yj∥X0)

≤ C
(
K(x, 2j) +K(x, 2j+1)

)
≤ CK(x, 2j).

In the same way we have ∥wj∥X1 ≤ C2jK(x, 2j). It follows that
J(wj, 2

j) ≤ CK(x, 2j) with an absolute constant C, and hence

(3.5) ∥{wj}∞j=−∞∥ =

(
∞∑

j=−∞

{
2θjJ(wj, 2

j)
}q)1/q

≤ C

(
∞∑

j=−∞

{
2θjK(x, 2j)

}q)1/q

= C∥x∥θ,q.

Next, in view of the equality
N∑

j=−M

wj = yN+1 − y−M = zN+1 − z−M

and the inequality

2θj∥yj∥X0 ≤ 2θj+1K(x, 2j) ≤ C∥x∥θ,∞ ≤ C∥x∥θ,q ,
we obtain

∥yj∥X0 ≤ C∥x∥θ,q2
−θj → 0 as j → ∞,

which implies that

lim
N→∞

yN+1 = 0, lim
N→∞

zN+1 = x in X0.

In the same way we can show

lim
M→∞

y−M = x, lim
N→−∞

z−M = 0 in X1.

From these facts and the estimate (3.5) we have ∥x∥(X0,X1)θ,q ≤ C∥x∥θ,q,
and hence the inclusion relation (X0, X1)θ,q ⊂ (X0, X1)

θ,q holds. □
This theorem yields the following corollary.

Corollary 3.2. Suppose that X0 and X1 are complete, and let Ej

denote the closure of X0 ∩ X1 in Xj for j = 0, 1. If Fj is a closed
subgroup of Xj containing Ej for j = 0, 1, then (F0, F1)θ,q coincides
with (X0, X1)θ,q. In particular, we have

(E0, E1)θ,q = (E0, X1)θ,q = (X0, E1)θ,q = (X0, X1)θ,q.

Proof. The inclusion relation (E0, E1)θ,q ⊂ (F0, F1)θ,q ⊂ (X0, X1)θ,q
and the equality of the quasi-norms are clear. On the other hand,
it follows from the definition of (X0, X1)

θ,q the inclusion relation
(X0, X1)θ,q = (X0, X1)

θ,q ⊂ E0 + E1. Hence we have the equality
(E0, E1)θ,q = (X0, X1)θ,q, which implies the conclusion (F0, F1)θ,q =
(X0, X1)θ,q. □
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At the end of this section we consider the situation that an operator
is defined from a pair of quasi-normed abelian groups to another pair,
and show that the operator maps an interpolation space of the first
pair to the corresponding interpolation space of the second pair.

Let X0, X1, Y0 and Y1 be quasi-normed abelian groups, and let T be
a mapping from X0 +X1 to Y0 + Y1 satisfying the following:

(i) For j = 0, 1, the mapping T maps Xj to Yj, and there ex-
ist nonnegative constants A0 and A1 such that the estimates
∥Tx∥Yj

≤ Aj∥x∥Xj
hold for x ∈ Xj.

(ii) For every x = x0 + x1 such that xj ∈ Xj, there exists yj ∈
Yj such that Tx = y0 + y1 and that the estimates ∥yj∥Yj

≤
Aj∥Txj∥Xj

hold.

A typical example is the case that Yj are function spaces such that
|f(x)| ≤ |g(x)| for every x implies ∥f∥Yj

≤ ∥g∥Yj
, and that the operator

T satisfies the inequality∣∣(T{f0 + f1}
)
(x)− (Tf0)(x)

∣∣ ≤ ∣∣(Tf1)(x)∣∣
for every x. A typical example is the maximal function. Another
example, which will be employed for the Navier-Stokes equation, is the
norm ∥f(t)∥X of an X-valued function of t.

Then we have the following theorem.

Theorem 3.3. Suppose that 0 < θ < 1 and that 0 < q ≤ ∞.
Then, under these assumptions, the operator T is bounded from X =
(X0, X1)θ,q to Y = (Y0, Y1)θ,q with

∥Tx∥Y ≤ A1−θ
0 Aθ

1∥x∥X .

Proof. We first put S = A1/A0, and let ε be an arbitrary positive
number.

Suppose that x ∈ X. Then, for every t > 0, we can choose y(t) ∈ X0

such that z(t) = x− y(t) ∈ X1 and that

(3.6) ∥y(t)∥X0 +
1

t
∥z(t)∥X1 ≤ (1 + ε)K(x, t).

Then, from the assumption we can take u(t) ∈ Y0 and v(t) ∈ Y1 such
that Tx = u(t) + v(t),

∥u(t)∥Y0 ≤ ∥Ty(t)∥Y0 ≤ A0∥y(t)∥X0 ,

∥v(t)∥Y1 ≤ ∥Tz(t)∥Y1 ≤ A1∥z(t)∥X1 .

Then (3.6) yields

K(Tx, St) ≤ ∥u(t)∥Y0 +
1

St
∥v(t)∥Y1 ≤ A0∥y(t)∥X0 +

A1

St
∥z(t)∥X1

≤ A0

(
∥y(t)∥X0 +

1

t
∥z(t)∥X1

)
≤ (1 + ε)A0K(x, t).
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It follows that

∥Tx∥Y

=

(∫ ∞

0

(
sθK(Tx, s)

)q ds
s

)1/q

=

(∫ ∞

0

(
SθtθK(Tx, St)

)q Sdt
St

)1/q

≤ (1 + ε)A0S
θ

(∫ ∞

0

(
tθK(x, t)

)q dt
t

)1/q

= (1 + ε)A1−θ
0 Aθ

1∥x∥X .

Since ε > 0 is arbitrary, we obtain the conclusion. □

4. Duality.

In this section we assume that X0 and X1 are Banach spaces, and
we characterize the dual spaces of the real interpolation spaces. Let X ′

j

denote the dual space of Xj for j = 0, 1. We start with a preliminary
lemma.

Lemma 4.1. The mapping X ′
0 → (X0 ∩X1)

′ is injective if and only if
X0 ∩X1 is dense in X0.

Proof. If the closure of X0 ∩X1 is E ⊄= X0, then there exists ξ ∈ X ′
0

such that ξ ̸= 0 and that ξE = 0. Hence the mapping X ′
0 → (X0∩X1)

′

is not injective.
On the other hand, if X0 ∩X1 is dense in X0, then every ξ ∈ (X0 ∩

X1)
′ is bounded on X0, and is uniquely extended to a bounded linear

functional η ∈ X ′
0. Then η is the only element in X ′

0 mapped to ξ. □

Lemma 4.1 implies that, if X0 ∩X1 is dense both in X0 and in X1,
then we have X ′

0 +X ′
1 ⊂ (X0 ∩X1)

′. The main result of this section is
the following theorem.

Theorem 4.2. Suppose that X0 ∩X1 is dense both in X0 and in X1.
Then we have

(
(X0, X1)θ,q

)′
= (X ′

0, X
′
1)θ,q/(q−1) for q ∈ [1,∞), and(

(X0, X1)θ,∞−
)′
= (X ′

0, X
′
1)θ,1.

As we see in Section 5, we have
(
L2/3, L2

)
1/2,1

= L1, which im-

plies
((

L2/3, L2
)
1/2,1

)′
= L∞. On the other hand, since L1,∞([0, 1]) ⊂

L2/3([0, 1]) and
(
L1,∞([0, 1])

)′
= {0}, it follows that

(
L2/3([0, 1])

)′
=

{0}. This implies
((

L2/3([0, 1])
)′
,
(
L2([0, 1])

)′)
1/2,∞

= {0}. Hence we

see that the assumption that X0 and X1 are Banach spaces is essential.
In fact, we essentially use the Hahn-Banach theorem in the proof.

Proof of Theorem 4.2. We first show

(4.1) (X ′
0, X

′
1)θ,q/(q−1) ⊂

(
(X0, X1)θ,q

)′
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for q ∈ [1,∞). To this end we first show that, for every ξ ∈ X ′
0 +X ′

1

and every t > 0, we have the inequality

(4.2) sup
x∈X0∩X1

∣∣⟨x, ξ⟩∣∣
J(x, 1/t,X0, X1)

≤ K(ξ, t,X ′
0, X

′
1).

Suppose that ξ = η + ζ such that η ∈ X ′
0 and that ζ ∈ X ′

1. Then, for
every x ∈ X0 ∩X1 we have∣∣⟨x, ξ⟩∣∣ ≤ ∣∣⟨x, η⟩∣∣+ ∣∣⟨x, ζ⟩∣∣ ≤ ∥x∥X0∥η∥X′

0
+ ∥x∥X1∥ζ∥X′

1

≤ J(x, t,X0, X1)∥η∥X′
0
+ J(x, t,X0, X1)t∥ζ∥X′

1
.

Taking the infimum of the right-hand side, we obtain∣∣⟨x, ξ⟩∣∣ ≤ J(x, t,X0, X1)K(ξ, 1/t,X ′
0, X

′
1),

which implies (4.2).
Now we prove (4.1) for q < ∞. To this end we assume that ξ ∈

(X ′
0, X

′
1)θ,q/(q−1) ⊂ X ′

0 +X ′
1 and that {xj}Nj=−M is a finite sequence in

X0 ∩X1. Put x =
N∑

j=−M

xj. Then (4.2) yields

∣∣⟨x, ξ⟩∣∣ ≤ N∑
j=−M

∣∣⟨xj, ξ⟩
∣∣

≤
N∑

j=−M

2θjJ(xj, 2
j, X0, X1)2

−θjK(ξ, 2−j, X ′
0, X

′
1).

Hence Hölder’s inequality implies that

∣∣⟨x, ξ⟩∣∣ ≤ ( N∑
j=−M

(
2θjJ(xj, 2

j, X0, X1)
)q)1/q

(
∞∑

j=−∞

(
2−θjK(ξ, 2−j, X ′

0, X
′
1)
)q/(q−1)

)1−1/q

.

It follows that
∣∣⟨x, ξ⟩∣∣ ≤ ∥x∥θ,q∥ξ∥θ,q/(q−1). Since X0 ∩ X1 is dense in

(X0, X1)θ,q, we obtain (4.1). In the same way we can show

(X ′
0, X

′
1)θ,1 ⊂

(
(X0, X1)θ,∞−

)′
.

Observe that X0 and X1 need not be Banach spaces in this part.
We next show that

(4.3) (X ′
0, X

′
1)θ,q/(q−1) ⊃

(
(X0, X1)θ,q

)′
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for q ∈ [1,∞). To this end we show that, for every ξ ∈ (X0 ∩X1)
′ and

every t > 0, we have the inequality

(4.4) sup
x∈X0∩X1

∣∣⟨x, ξ⟩∣∣
J(x, 1/t,X0, X1)

≥ K(ξ, t,X ′
0, X

′
1).

Put Y = X0 ⊕X1 with the quasi-norm

∥(y, z)∥Y = max {∥y∥X0 , t∥z∥X1} .
Then we have Y ′ = X ′

0 ⊕X ′
1 with the quasi-norm

∥(η, ζ)∥Y ′ = ∥η∥X′
0
+

1

t
∥ζ∥X′

1
,

and the space X0 ∩ X1 can be identified with Z = {(x, x) | x ∈ X0 ∩
X1}. This implies that every ξ ∈ (X0 ∩ X1)

′ can be regarded as the
bounded linear functional on Z. Since Z is closed in Y , the Hahn-
Banach theorem implies the existence of a functional ρ ∈ Y ′ such that
ρ|Z = ξ and that ∥ρ∥Y ′ = ∥ξ∥(X0∩X1)′ . Here we note that

∥ξ∥(X0∩X1)′ = sup
x∈X0∩X1,x ̸=0

∣∣⟨x, ξ⟩∣∣
max {∥x∥X0 , t∥x∥X1}

= sup
x∈X0∩X1,x ̸=0

∣∣⟨x, ξ⟩∣∣
J(x, 1/t,X0, X1)

.

We next define ρ0 ∈ X ′
0 and ρ1 ∈ X ′

1 by ρ0(y) = ρ
(
(y, 0)

)
and ρ1(z) =

ρ
(
(0, z)

)
. Then, for every x ∈ X0 ∩X1, we have

ρ0(x) + ρ1(x) = ρ
(
(x, x)

)
= ξ(x).

Hence ξ = ρ0 + ρ1 ∈ X ′
0 + X ′

1. Next, for every ε > 0, we can choose
y ∈ X0 and z ∈ X1 such that ∥(y, 0)∥Y = ∥(0, z)∥Z = 1 and that

ρ
(
(y, 0)

)
> sup

y∈X0,y ̸=0

ρ
(
(y, 0)

)
∥(y, 0)∥Y

− ε

2
, ρ
(
(0, z)

)
> sup

z∈X1,z ̸=0

ρ
(
(0, z)

)
∥(0, z)∥Y

− ε

2
.

It follows that ∥(y, z)∥Y = 1 and

ρ(y, z) >
ρ
(
(y, 0)

)
∥(y, 0)∥Y

+
ρ
(
(0, z)

)
∥(0, z)∥Y

− ε.

Since ε > 0 is arbitrary, we have

(4.5) ∥ρ∥Y ′ ≥ sup
y∈X0,y ̸=0

ρ
(
(y, 0)

)
∥(y, 0)∥Y

+ sup
z∈X1,z ̸=0

ρ
(
(0, z)

)
∥(0, z)∥Y

.

On the other hand, we have

∥ρ0∥X′
0
= sup

y∈X0,y ̸=0

ρ
(
(y, 0)

)
∥y∥X0

= sup
y∈X0,y ̸=0

ρ
(
(y, 0)

)
∥(y, 0)∥Y

and

∥ρ1∥X′
1
= sup

z∈X1,z ̸=0

ρ
(
(0, z)

)
∥z∥X1

= t sup
z∈X1,z ̸=0

ρ
(
(0, z)

)
∥(0, z)∥Y
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Substituting these estimates into (4.5) we obtain

∥ρ0∥X′
0
+

1

t
∥ρ1∥X′

1
≤ ∥ρ∥Y ′ = ∥ξ∥(X0∩X1)′

= sup
x∈X0∩X1,x ̸=0

∣∣⟨x, ξ⟩∣∣
J(x, 1/t,X0, X1)

.

This implies (4.4).
Then we show that (4.3) for q ∈ [1,∞). Suppose that ξ ∈(

(X0, X1)θ,q
)′ ⊂ (X0∩X1)

′. Let ε be an arbitrary small number. Then
we see by (4.4) that, for every j ∈ Z there exists xj ∈ X0 ∩ X1 such
that

⟨xj, ξ⟩
J(xj, 2−j, X0, X1)

≥ K(ξ, 2j, X0, X1)−
ε

22+|j| .

Let {αj}∞j=−∞ be a sequence of positive numbers satisfying the condi-

tion {2−θjαj}∞j=−∞ ∈ ℓq. Then we have

2−θjJ

(
αjxj

J(xj, 2−j, X0, X1)
, 2−j, X0, X1

)
≤ 2−θjαj,

It follows that the sum

(4.6) x =
∞∑

j=−∞

αjxj

J(xj, 2−j, X0, X1)
.

converges in (X0, X1)θ,q and that

∥x∥θ,q ≤ C

{
∞∑

j=−∞

(
2−jθαj

)q}1/q

.

We thus obtain

(4.7)
∣∣⟨x, ξ⟩∣∣ ≤ C

{
∞∑

j=−∞

(
2−jθαj

)q}1/q

∥ξ∥(
(X0,X1)θ,q

)′ .
Since the summation in (4.6) is convergent in (X0, X1)θ,q, we have

⟨x, ξ⟩ = lim
N→∞

N∑
j=−N

⟨
αjxj

J(xj, 2−j, X0, X1)
, ξ

⟩

≥ lim
N→∞

N∑
j=−N

2−jθαj2
jθ
(
K(ξ, 2j, X ′

0, X
′
1)−

ε

22+|j|

)
=

∞∑
j=−∞

2−jθαj2
jθK(ξ, 2j, X ′

0, X
′
1)−

∞∑
j=−∞

2−jθαj
ε

22+|j|

≥
∞∑

j=−∞

2−jθαj2
jθK(ξ, 2j, X ′

0, X
′
1)− ε

∥∥{2−jθαj}∞j=−∞
∥∥
ℓq
.
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It follows from this inequality and (4.7) that

∞∑
j=−∞

2−jθαj2
jθK(ξ, 2j, X ′

0, X
′
1)

≤ C

{
∞∑

j=−∞

(
2−jθαj

)q}1/q

∥ξ∥(
(X0,X1)θ,q

)′ + ε
∥∥{2−jθαj}∞j=−∞

∥∥
ℓq
.

Since the choice of the sequence {αj}∞j=−∞ of positive numbers such

that {2−jθαj}∞j=−∞ ∈ ℓq is arbitrary, we see that the sequence

{2jθK(ξ, 2j, X ′
0, X

′
1)}∞j=−∞ belongs to ℓq/(q−1), and we have the estimate∥∥{2jθK(ξ, 2j, X ′

0, X
′
1)}∞j=−∞

∥∥
ℓq/(q−1) ≤ C∥ξ∥(

(X0,X1)θ,q)′
+ ε.

Since ε > 0 is arbitrary, we conclude that ξ ∈ (X ′
0, X

′
1)θ,q/(q−1) with

the estimate ∥ξ∥(X′
0,X

′
1)θ,q/(q−1)

≤ C∥ξ∥(
(X0,X1)θ,q

)′ . This completes the

proof of (4.3) for 1 ≤ q < ∞. The inclusion relation
(
(X0, X1)θ,∞−

)′ ⊂
(X ′

0, X
′
1)θ,1 can be proved in the same way. □

5. The Lorentz spaces.

We begin with the introduction of two functions defined on (0,∞)
associated with a measurable function f(x) on a measure space (X,µ).
For t > 0, we put

µ(|f | > s) = µ
(
{x ∈ X | |f(x)| > s}

)
and

f ∗(t) = sup{s ∈ (0,∞) | µ(|f | > s) > t}.
Suppose that 0 < p < ∞. Then we have

∥f∥p =
(∫ ∞

0

f ∗(t)p dt

)1/p

=

(∫ ∞

0

(
t1/pf ∗(t)

)p dt

t

)1/p

.

On the other hand, the weak-Lp space is defined as the collection of
functions f(x) such that

sup
s>0

sµ(|f | > s)1/p = sup
t>0

t1/pf ∗(t) < ∞.

Generalizing these quantities, we define ∥f∥p,q for p ∈ (0,∞) and q ∈
(0,∞] by

∥f∥p,q =


(∫ ∞

0

(
t1/pf ∗(t)

)q dt

t

)1/q

for q < ∞,

sup
t>0

t1/pf ∗(t) for q = ∞,

and let Lp,q(X) be the collection of all measurable functions on X such
that ∥f∥p,q < ∞.
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The function ∥f∥p,q does not enjoy the triangle inequality in general.
For example, let f(x) = 1 − x and g(x) = x on [0, 1]. Then we have
f ∗(t) = g∗(t) = f(t). It follows that

∥f∥1,∞ = ∥g∥1,∞ = sup
0<t<1

t(1− t) =
1

4
,

while f(x) + g(x) ≡ 1 and hence ∥f + g∥1,∞ = 1. However, suppose
that

(5.1) f ∗(t) < r, g∗(t) < s.

Then we have
µ(|f | > r) < t, µ(|g| > s) < t.

From these inequalities and the inclusion relation{
x ∈ X | |f(x) + g(x)| > r + s

}
⊂
{
x ∈ X | |f(x)| > r

}
∪
{
x ∈ X | |g(x)| > s

}
it follows that µ(|f + g| > r + s) < 2t, which implies

(f + g)∗(2t) ≤ r + s.

Since r and s satisfying (5.1) are arbitrary, we obtain

(5.2) (f + g)∗(2t) ≤ f ∗(t) + g∗(t).

This implies

∥f + g∥p,q ≤
(∫ ∞

0

(
(2t)1/p(f + g)∗(2t)

)q dt

t

)1/q

≤ 21/p
(∫ ∞

0

(
t1/p{f ∗(t) + g∗(t)

)q dt

t

)1/q

≤ 21/pCq (∥f∥p,q + ∥g∥p,q) ,
and hence ∥·∥p,q becomes a quasi-norm. It is easy to see that (af)∗(t) =
|a|f ∗(t) for a constant a, and hence ∥ · ∥p,q enjoys (1.5).

If s ≤ t ≤ 2s, we have

s1/pf ∗(2s) ≤ t1/pf ∗(t) ≤ (2s)1/pf ∗(s).

This implies that ∥ · ∥ is equivalent to

(
∞∑

j=−∞

(
2j/pf ∗(2j)

)q)1/q

. From

this fact we see that q < r implies Lp,q ⊂ Lp,r. At the end of this
section we give a proof of a theorem on the real interpolation between
the Lorentz spaces.

Theorem 5.1. Suppose that p0, p1 ∈ (0,∞) satisfy p0 ̸= p1, and
suppose that 0 < r ≤ ∞ and 0 < θ < 1. We define p ∈ (0,∞) by the
formula 1/p = (1− θ)/p0 + θ/p1. Then, for every q0, q1 ∈ (0,∞], the
space X = (Lp0,q0 , Lp1,q1)θ,r coincides with Lp,r.
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Proof. Without loss of generality we may assume p0 > p > p1.
We first show the inclusion relation X ⊂ Lp,r. In the proof of this

relation we may assume that q0 = q1 = ∞ without loss of generality.
For every m ∈ Z there exist gm ∈ Lp0,∞ and hm ∈ Lp1,∞ such that
f = gm + hm and that

∥gm∥p0,∞ +
1

2m
∥hm∥p1,∞ < 2K(f, 2m).

We then have

g∗m(2
j) ≤ 2−j/p0∥gm∥p0,∞ ≤ 2−j/p0+1K(f, 2m)

and
h∗
m(2

j) ≤ 2−j/p1∥hm∥p1,∞ ≤ 2−j/p1+m+1K(f, 2m).

For every j ∈ Z, let m = m(j) denote the largest integer m such that(
1

p1
− 1

p0

)
j ≥ m.

Then we have
j − 1 <

p0p1m

p0 − p1
≤ j.

It follows that

− j

p0
+ 1 ≤ − p1m

p0 − p1
+ 1 < −j − 1

p0
+ 1

and

− j

p1
+m+ 1 ≤ − p0m

p0 − p1
+m+ 1 = − p1m

p0 − p1
+ 1 < −j − 1

p1
+m+ 1.

The estimate (5.2) implies the inequality f ∗(2j+1) ≤ g∗m(2
j) + h∗

m(2
j).

We also have

1

p
=

1− θ

p0
+

θ

p1
=

1

p0
+

θ(p0 − p1)

p0p1
.

It follows that

2(j+1)θ/pf ∗(2j+1) ≤ 2θ/p2p0p1m/p(p0−p1)
(
g∗m(2

j) + h∗
m(2

j)
)

≤ C2p1m/(p0−p1)+mθ2−p1m/(p0−p1)K(f, 2m)

= C2mθK(f, 2m).

There exists a positive number N such that, for every n ∈ Z, there
exists at most N number of j ∈ Z such that m(j) = n. We then have

∞∑
j=−∞

(
2(j+1)θ/pf ∗(2j+1)

)r ≤ CN

∞∑
n=−∞

(
2nθK(f, 2n)

)r
.

This implies ∥f∥p,r ≤ C∥f∥X , and completes the proof of the inclusion
relation X ⊂ Lp,r.

We turn to the proof of the inclusion relation Lp,r ⊂ X. In the proof
of this relation we may assume q < r without loss of generality. Choose
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s ∈ (0,∞) so that 1/r = 1/q + 1/s. Suppose that f ∈ Lp,r. For an
integer ℓ, we put{

gℓ(x) = f(x), hℓ(x) = 0 if |f(x)| ≤ 2m,

gℓ(x) = 0, hℓ(x) = f(x) if |f(x)| > 2m.

Then we have(
g∗ℓ (t), h

∗
ℓ(t)
)
=

{(
2ℓ, f ∗(t)

)
t ≤ µ(|f | > 2ℓ),(

f ∗(t), 0
)

t > µ(|f | ≤ 2ℓ)

It follows that

∥gℓ∥p0,q

= C

{∫ ∞

0

(
t1/p0g∗ℓ (t)

)q dt

t

}1/q

= C

{∫ µ(|f |>2ℓ)

0

(
t1/p02ℓ

)q dt

t
+

∫ ∞

µ(|f |>2ℓ)

(
t1/p0f ∗(t)

)q dt

t

}

≤ C

{
2ℓµ(|f | > 2ℓ)1/p0 +

(∫ ∞

µ(|f |>2ℓ)

(
t1/p0f ∗(t)

)q dt

t

)1/q
}

≤ C

{
2ℓµ(|f | > 2ℓ)1/p0 +

(∫ ∞

µ(|f |>2ℓ)

(
t1/2(1/p+1/p0)f ∗(t)

)r dt

t

)1/r

×

C

(∫ ∞

µ(|f |>2ℓ)

t(1/p0−1/p)s/2 dt

t

)1/s
}

≤ Cµ(|f | > 2ℓ)1/p0f ∗(µ(|f | > 2ℓ)
)
+

Cµ(|f | > 2ℓ)1/2(1/p0−1/p)

(∫ ∞

µ(|f |>2ℓ)

(
t1/2(1/p+1/p0)f ∗(t)

)r dt

t

)1/r

and

∥hℓ∥p1,q

= C

{∫ µ(|f |>2ℓ)

0

(
t1/p1f ∗(t)

)q dt

t

}1/q

≤ C

{∫ µ(|f |>2ℓ)

0

(
t1/2(1/p+1/p1)f ∗(t)

)r dt

t

}1/r

×

{∫ µ(|f |>2ℓ)

0

(
t1/2(1/p1−1/p)

)s dt

t

}1/s

≤ Cµ(|f | > 2ℓ)1/2(1/p1−1/p)

{∫ µ(|f |>2ℓ)

0

(
t1/2(1/p+1/p1)f ∗(t)

)r dt

t

)1/r

.
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For every k ∈ Z, choose ℓ = ℓ(k) so that 2k ≤ µ(|f | > 2ℓ)1/p1−1/p0 <
2k+1. Then we have

1

p0
− 1

p
= −θ

(
1

p1
− 1

p0

)
,

1

p1
− 1

p
= (1− θ)

(
1

p1
− 1

p0

)
and

2kp0p1/(p0−p1) ≤ µ(|f | > 2ℓ) < 2(k+1)p0p1/(p0−p1).

It follows that
∞∑

k=−∞

(
2θk∥gℓ∥p0,q

)r ≤ I1 + I2,

where

I2 = C

∞∑
k=−∞

(
2kθ2−kθ/2

)r ∫ ∞

2kp0p1/(p0−p1)

(
t1/2(1/p+1/p0)f ∗(t)

)r dt

t

≤ C

∫ ∞

−∞

[log2(1/p1−1/p0)]+1∑
k=−∞

2kθr/2
(
t1/2(1/p+1/p0)f ∗(t)

)r dt

t

≤ C

∫ ∞

−∞

(
t1/pf ∗(t)

)r dt

t
= C∥f∥rp,r.

On the other hand, we have

θ +
p1

p0 − p1
=

1/p− 1/p0
1/p1 − 1/p0

+
p1

p0 − p1
=

p1(p0 − p)

p(p0 − p1)
+

p1
p0 − p1

=
p1

p0 − p1

(
1 +

p0 − p

p

)
=

p0p1
p(p0 − p1)

.

It follows that

I1 = C
∞∑

k=−∞

(
2θk+kp1/(p0−p1)f ∗(2kp0p1/(p0−p1))

)r
= C

∞∑
k=−∞

(
2kp0p1/p(p0−p1)f ∗(2kp0p1/(p0−p1))

)r ≤ C∥f∥rp,r.

Finally, we have
∞∑

k=−∞

(
2(θ−1)k∥hk∥p1,q

)r
=

∞∑
k=−∞

(
2(θ−1)k+(1−θ)k/2

)r ∫ 2(k+1)p0p1/(p0−p1)

0

(
t1/2(1/p+1/p1)f ∗(t)

)r dt

t

=

∫ ∞

0

∞∑
k=[log2(1/p1−1/p0)]−1

2(θ−1)kr/2
(
t1/2(1/p+1/p1)f ∗(t)

)r dt

t

≤ C

∫ ∞

0

(
t1/pf ∗(t)

)r dt

t
= C∥f∥rp,r.
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We thus conclude that

∥f∥X =

(
∞∑

k=−∞

(
2kθK(f, 2k)

)r)1/r

≤

(
∞∑

k=−∞

(
2kθ
(
∥gℓ|p0,q + 2−k∥hℓ∥p1,q

))r)1/r

≤ C∥f∥p,r.

This completes the proof of the inclusion relation Lp,r ⊂ X. □
From Theorem 5.1 we have several important facts. First, if 1 < p <

∞ and 1 ≤ q ≤ ∞, the space Lp,q becomes Banach spaces since we can
write

Lp,q = (Lp0,p0 , Lp1,p1)θ,q = (Lp0 , Lp1)θ,q

with p0, p1 ∈ (1,∞). Moreover, Theorem 4.2 implies that

(Lp,q)′ =
(
(Lp0 , Lp1)θ,q

)′
=
(
Lp0/(p0−1), Lp1/(p1−1)

)
θ,q/(q−1)

= Lp/(p−1),q/(q−1).

for 1 < p < ∞, 1 ≤ q < ∞. In the same way we can prove (Lp,∞−)
′
=

Lp/(p−1),1, where Lp,∞− is the closure of Lp in Lp,∞.
On the other hand, consider the Lorentz spaces on a domain of Rn

with respect to the Lebesgue measure. Then the space L1 is a proper
subspace of L1,q for every q ∈ (1,∞]. From this fact and (L1)′ = L∞,
together with the property of the Lebesgue measure, we can show
(L1,q)

′
= {0}. Hence the Hahn-Banach theorem implies that L1,q can-

not be a Banach space, and this space cannot be contained in the space
of distributions. It follows that these spaces cannot be applied to the
study of partial differential equations directly.

We also add a remark that we can prove the interpolation relation
(L∞, Lp,q)θ,r = Lp/θ,r in the same way as in Theorem 5.1.

6. Applications the the Navier-Stokes exterior problem.

In this section we consider the following non-stationary Navier-
Stokes equation on n-dimensional exterior domain Ω with smooth
boundary, where n ≥ 3 and ∇ · F is a time-dependent external force
with F = F (t, x):

∂u

∂t
= ∆u− (u · ∇)u−∇π +∇ · F in R× Ω,(6.1)

∇ · u = 0 in R× Ω,(6.2)

u = 0 on R× ∂Ω.(6.3)

Here u denotes a vector-valued unknown function standing for the ve-
locity of the fluid, and π denotes another scalar-valued unknown func-
tion standing for the pressure.
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The purpose of this section is to prove the following theorem.

Theorem 6.1. Suppose that F is small in BUC
(
R,
(
Ln/2,∞(Ω)

)n2
)
.

Then there uniquely exists a solution u of the system (6.1)–(6.3) small
in BUC

(
R,
(
Ln,∞(Ω)

)n)
. Furthermore, the mapping from F to u is

continuous in the function spaces above.

This theorem implies that, if F is a time-periodic function, then u
is also time-periodic with the same period. We also see that, if F is
almost periodic with respect to t, then so is u in view of the continuity
of the mapping.

In order to remove the function π, we introduce the Helmholtz de-
composition. Suppose that Ω is one of the following:

• The whole space Rn.
• The half space Rn

+ = {(x1, . . . , xn−1, xn) | xn > 0}.
• A bounded domain with smooth boundary.
• An exterior domain with smooth boundary.

Then, for every p ∈ (1,∞), the space (Lp(Ω))n admits a direct sum
decomposition Lp

σ(Ω)⊕Gp(Ω), where

Lp
σ(Ω) = {u(x) ∈ (Lp(Ω))n | ∇ · u(x) ≡ 0 in Ω, ν · u(x) ≡ 0 on ∂Ω}

and

Gp(Ω) = {u(x) ∈ (Lp(Ω))n | u(x) = ∇f(x) with some f(x) ∈ Lp
loc(Ω)}

Observe that ∇u ∈ Lp implies that u is “partly” contained in H1
p , and

hence we can define the normal trace in the Besov space B
−1/p
p,p . On

the other hand, the function f(x) in the definition of Gp(Ω) is in the

homogeneous Sobolev space Ḣ1
p , and hence its trace is in B

1−1/p
p,p . It

follows that the element of Gp(Ω) has the tangential trace in B
−1/p
p,p .

Let Pp denote the projection from
(
Lp(Ω)

)n
onto Lp

σ(Ω) accord-
ing to the direct sum decomposition above. Then Pp is a bounded
linear operator, and we have the identity Pp0 = Pp1 on

(
Lp0(Ω) ∩

Lp1(Ω)
)n
. Hence we can define the bounded projection P from the

Lorentz spaces
(
Lp,r(Ω)

)n
=
((
Lp0(Ω)

)n
,
(
Lp1(Ω)

)n)
θ,r

onto Lp,r
σ (Ω) =(

Lp0
σ (Ω), Lp1

σ (Ω)
)
θ,r
, where the numbers p0, p1, p, r and θ are the same

as in Theorem 5.1. Next, for p ∈ (1,∞) we see that (u, v) = 0 for
u ∈ Lp

σ(Ω) and v ∈ Gp/(p−1)(Ω), by approximating u by test func-

tions and integrating by parts. This equality implies that
(
Lp
σ(Ω)

)′
=

L
p/(p−1)
σ (Ω). From this we conclude that

(
Lp,q
σ (Ω)

)′
= L

p/(p−1),q/(q−1)
σ (Ω)

for 1 < p < ∞ and 1 ≤ q < ∞, and that
(
Lp,∞−

σ (Ω)
)′

= L
p/(p−1),1
σ (Ω)

for 1 < p < ∞.
The composite operator −P∆ is called the Stokes operator. It is

known that the Stokes operator is a sectorial operator and generates a
bounded semigroup on Lp

σ(Ω), and hence on Lp,r
σ (Ω).
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By applying the projection P we transform the system (6.1)–(6.3)
into the following evolution equation

(6.4)
du

dt
= −Au+ P

[
−(u · ∇)u+∇ · F ].

Introducing the mapping T defined by

T [u](t) =

∫ ∞

0

exp(−sA)P
[
−
(
u(t− s) · ∇)u(t− s) +∇ · F (t− s)

]
ds,

we can rewrite (6.4) into T [u] = u. Hence, in order to prove Theo-
rem 6.1, it suffices to find the unique fixed point u(t) of T small in X =

BUC
(
R, Ln,∞

σ (Ω)
)
for given F small in Y = BUC

(
R,
(
Ln/2,∞(Ω)

)n2
)
.

The main difficulty is that the improper integral in the right-hand
side does not exist in the sense of the Bochner integral in general. In-
stead we show that the improper integral exists in the weak-∗ topology.
Namely, for F ∈ Y , we define U [F ] by the identity

⟨U [F ](t), φ⟩ =
∫ ∞

0

⟨
F (t− s),∇ exp(−sA)φ

⟩
ds

for φ ∈ L
n/(n−1),1
σ (Ω) in view of the identity div u = 0, and put T [u] =

U [u⊗ u− F ]. Then we have the following lemma.

Lemma 6.2. There exists a positive constant C such that the estimate∫ ∞

0

∥∇ exp(−sA)φ∥n/(n−2),1 ds ≤ C∥φ∥n/(n−1),1,

holds for every φ ∈ L
n/(n−1),1
σ (Ω).

Proof. We observe the estimate

∥A1/2 exp(−sA)φ∥q ≤ Csn/2(1/q−1/p)−1/2∥φ∥p
for p, q such that 1 < p ≤ q < ∞. Applying real interpolation

(6.5) ∥A1/2 exp(−sA)φ∥q,1 ≤ Csn/2(1/q−1/p)−1/2∥φ∥p,1.
We next observe that, it follows from the estimate

∥A1/2u∥p,q ≤ C∥∇u∥p,q for 1 < p < ∞, 1 ≤ q ≤ ∞
and the fact that the the function u(x) satisfying ∇u(x) ∈ Lp,q with
either 1 < p < n, 1 ≤ q ≤ ∞ or p = n, q = 1 decays as |x| → ∞ that
the converse estimate
(6.6)

∥∇u∥p,q ≤ C∥A1/2u∥p,q for 1 < p < n, 1 ≤ q ≤ ∞ or p = n, q = 1

holds. Note that this estimate fails for p = q = n.
Applying (6.6) with p = n/(n − 2), q = 1 to the left-hand side of

(6.5) with q = n/(n− 2), we obtain
(6.7)
∥∇ exp(−sA)φ∥n/(n−2),1 ≤ Cs(n−3)/2−n/2p∥φ∥p,1 for 1 < p ≤ n/(n− 2).
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Note that, in the case n = 3, the above argument holds for p = n/(n−
2) = n and q = 1.

Now we consider the mapping S from φ to the function of s ∈ (0,∞)
defined by ∥∇ exp(−sA)φ∥n/(n−2),1. Then (6.7) implies that S is

bounded from Lp,1
σ (Ω) to L2p/(3p+n−np),∞(0,∞) for 1 < p ≤ n/(n − 2).

Applying real interpolation once again, we see that S is bounded from

Ln/(n−1),1
σ (Ω) =

(
L2n/(2n−1),1

σ (Ω), L2n/(2n−3),1
σ (Ω)

)
1/2,1

into

L1(0,∞) = L1,1(0,∞) =
(
L4/5,∞(0,∞), L4/3,∞(0,∞)

)
1/2.1

,

which implies the conclusion. □
This lemma immediately yields the following corollary.

Corollary 6.3. If F ∈ Y, then we have U [F ] ∈ X , and we have the
estimate ∥U [F ]∥X ≤ C∥F∥Y with a constant C.

Proof. Lemma 6.2 yields the estimate∣∣⟨U [F ](t), φ⟩
∣∣ ≤ ∫ ∞

0

∣∣⟨F (t− s),∇ exp(−sA)φ
⟩∣∣ ds

≤ C

∫ ∞

0

∥F (t− s)∥n/2,∞∥∇ exp(−sA)φ
⟩
∥n/(n−2),1 ds

≤ C∥F∥Y∥φ∥n/(n−1),1

for F ∈ Y . Hence the duality
(
L
n/(n−1),1
σ

)′
= Ln,∞

σ implies

∥U [F ](t)∥n,∞ ≤ C∥F∥Y . Next, for every ε > 0, choose δ > 0 such

that |t− τ | < δ implies ∥F (t)− F (τ)∥n/2,∞ < ε/C. Next, fix a number

θ ∈ (−δ, δ), and put G(t) = F (t+ θ)− F (t). Then we have

∥U [F ](t+ θ)− U [F ](t)∥n,∞ = ∥U [G](t)∥n,∞
≤ C∥G∥Y = C sup

s∈R
∥F (s+ θ)− F (s)∥n/2,∞ < ϵ

for every t ∈ R. Since ε > 0 is arbitrary, we have U [F ](t) ∈ X and
∥U [F ]∥X ≤ C∥F∥Y . □

For u, v ∈ X the generalized Hölder inequality implies u⊗u, v⊗v ∈ Y
and the estimate

∥u⊗ u− v ⊗ v∥Y ≤ ∥u⊗ (u− v)∥Y + ∥(u− v)⊗ v∥Y
≤ A(∥u∥X + ∥v∥X )∥u− v∥X

with a constant A. Hence Corollary 6.3 yields

(6.8) ∥U [u⊗ u− F − v ⊗ v +G]∥X
≤ AC(∥u∥X + ∥v∥X )∥u− v∥X + C∥F −G∥X .
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In particular, putting v = G = 0, we have

(6.9) ∥T [u]∥X ≤ AC∥u∥X
2 + C∥F∥X ,

and putting F = G, we have

(6.10) ∥T [u]− T [v]∥X ≤ AC(∥u∥X + ∥v∥X )∥u− v∥X .
Suppose that ∥F∥Y < 1/4C2A. Then the equation ACX2 +C∥F∥Y =
X has two distinct positive solutions. Let α denote the smaller one:
namely,

α =
1−

√
1− 4AC2∥F∥Y
2AC

.

Then, if ∥u∥X ≤ α, the estimate (6.9) implies

∥T [u]∥X ≤ ACα2 + C∥F∥Y = α.

Hence the mapping T maps BX (0, α) into itself.
Next, for u, v ∈ BX (0, α), the estimate (6.10) and the fact

(6.11) AC(∥u∥X + ∥v∥X ) ≤ 2ACα = 1−
√

1− 4AC2∥F∥Y < 1

implies that the mapping T is a contraction mapping from BX (0, α)
into itself, which is a closed ball of a Banach space. Hence T has a
unique fixed point in BX (0, α), which is the required solution.

Finally we prove the continuity of the mapping F 7→ u. Suppose that
F , G ∈ Y , and let u, v ∈ X denote the solutions corresponding to F
andG respectively. Then we have u = U [u⊗u−F ] and v = U [v⊗v−G].
It follows that u− v = U [u⊗u−F − v⊗ v+G]. Substituting this into
(6.8) we see(

1− AC(∥u∥X + ∥v∥X )
)
∥u− v∥X ≤ ∥F −G∥Y .

In view of (6.11) we obtain the required continuity. □
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