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Wavy Falling Films

● Advantages

● Good heat transfer 
due to small 
thickness

● Large Interface

● Applications

● Evaporation

● Cooling

● Absorption
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Hydrodynamic Model

Assumptions

● Incompressible, Newtonian two-phase flow

● No phase transition

● Constant surface tension

∂t (ρu)+∇⋅(ρu⊗u)+∇ p=∇⋅S+ρ g , Ω∖Σ

∇⋅u=0, Ω∖Σ
⟦p I−S⟧⋅nΣ=σ κnΣ , Σ
⟦u⟧=0, Σ

S=η(∇ u+(∇ u)T)
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The Volume of Fluid Method

One Fluid Formulation: 

● Density and viscosity depend on volume fraction

● Volume fraction has to be transported
 

● Additional surface tension force term  f Σ

∂t (ρu)+∇⋅(ρu⊗u)+∇ p=∇⋅S+ρ g+δ f Σ

∇⋅u=0
∂t f +u⋅∇ f =0
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Parasitic Currents

Parasitic Currents in a VOF simulation 
of a static droplet

● VOF simulations suffer from 
unphysical oscillation of velocity, 
so-called parasitic currents

● Stem from numerical treatment of 
interfacial jump condition for 
stress:

● Especially serious in stagnant 
flow situations

● Also problematic in simulations of 
falling films, which are convection 
dominated

⟦ p I−S⟧⋅nΣ=σ κnΣ
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Numerical Setup 

u (t , y)∣x=0=(1+ϵsin (2πω t )) ( ρl
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Continuum Surface Stress (CSS)

Body Force                                                               ,

n⃗Σ
● Approximate       by differentiating a smoothed f-field

● Momentum conservative

● Standard Surface Tension model in FS3D; delivers good results in many two-
phase flow situations.

∇⋅(∥∇ f∥σ(I−n⃗Σ⊗n⃗Σ))
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Falling Films with CSS

 Water/Air, Re 60

● 16 cells per mean film thickness (0.265mm)

● A = 30%, f = 20 Hz
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Continuum Surface Force (CSF)

Body Force

Renardy, J. Comput. Phys. 183 (2002)

● In the case of a sphere and constant curvature, 
an exact balance between surface tension and 
pressure can be achieved: „Balanced Force“

● Greatly reduces parasitic currents

● Relies on „good“ curvature information
 

● Easy for a falling film:

σ κ∇ f

i−1 i i1

hi


κ=

hxx

(1+hx
2)

3
2
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Falling Films with CSF

 Water/Air, Re 60

● 16 cells per mean film thickness (0.265mm)

● A = 30%, f = 20 Hz
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Comparison to experiment: Dietze

● Experimental data from  

● DMSO/Air

●

● Re = 8.6

● f = 16 Hz

● A = 40%

● Resolution

=2.85⋅10−6m
2

s
,=1098.3

kg
m3 ,=0.0484

N
m



16

G.F. Dietze, 
 Flow Separation in Falling Liquid Films, 2010
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Comparison to experiment: Film thickness

● Film thickness at    
x = 56 mm over a 
time span of 0.3 s
● CSS overshoots
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Species Transport in Falling Films

Data from Yoshimura et.al., 1996

Transport of Oxygen into a water film at 18°C

Sc=
νL

D
=570

Sh=
kLδ0

D

k L=
Γ
L

ln (
CS−C in

CS−Cout

)
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Species Transport in Falling Films: Model

Assumptions:

● Dilute system => species bears no mass or momentum, and does 
not affect viscosity
● No adsorption at the interface => surface tension stays constant
● No chemical reaction 
● Local thermodynamic equilibrium at the interface => Henry's law 
holds
● Constant Henry coefficient 

∂t c+u⋅∇ c=DΔ c , Ω
G
(t )∪Ω

L
(t)

⟦−D ∇ c⟧⋅nΣ=0, Σ
cL=H cG , Σ
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Numerical Approach

Two scalar approach with one-sided concentration gradient 
transfer flux

● Concentration is advected in the same way as volume fraction
● Two concentrations stored in each interfacial cell
● Both concentrations and Henry's law yield interfacial 
concentration
● Concentration gradient in liquid phase computed between 
interface and some value in bulk by subgrid model
● Diffuse flux from gas to liquid according to Fick's Law

ϕ
G
=c χΩG

ϕ
L
=cχΩL
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Calculations

Water film at 18°C in 
„Oxygen“ atmosphere

Resolution 

Re=31
Sc=50
kH ,cc=0.0270
cG=4.19e-5
cL ,0=2.37e-7
D=2.14e-4

δ0

16
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Validation: Method

Solve stationary advection diffusion 
problem

on domain

with boundary conditions.

Solved with Matlab ODE Solver, by 
defining x as pseudotime.

u( y )∂x c=D∂y
2 c

[0, xmax ]×[0,δ0]

c∣x=0=cL ,0

∂ y c∣y=0=0

∂x c∣x=10cm=0

∂ y c∣y=δ0
=kH ,cc cG
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Validation: Result
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0 Hz

Planar Interface
Pure Diffusion  

0mm

0.46mm

5.90cm 8.53cm
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20 Hz

0mm

0.53mm

5.25cm 9.19cm

● Time-periodic wave structures appear
● Large Wave humps, preceeded by several smaller 
capillary waves
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20 Hz

0mm

0.53mm

6.33cm 6.70cm

● Filaments of high concentration in the large wave humps
● Develop along the streamlines of the large vortex
● Touch the interface at a hyperbolic point
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20Hz

● Highly non-
monotonous 
concentration profiles
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20 Hz

● Strong contribution 
from the capillary wave 
region
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20 Hz

● Flow up the wall in the 
reference frame of the wall

0mm

0.53mm

6.59cm 6.77cm
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20 Hz

0mm

0.33mm

6.55cm
6.79cm

Pressure in film according to Young-
Laplace:

Increase in pressure large enough to 
drive water up the wall

Compare 

Δ p∼σ κ

Dietze et al., J. Fluid Mech., 637, 2009
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30 Hz

● Less capillary waves
● Wave length, peak height, and wave velocity decrease

0mm

0.53mm

7.22cm 9.84cm
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40 Hz

● No capillary waves; waves become sinusoidal
● Wave length, peak height, and wave velocity decrease further

0mm

0.53mm

7.39cm 9.65cm
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40 Hz

● At this Reynolds Number, there exists backflow even when 
Capillary Waves are absent

0mm

0.39mm

7.91cm 8.03cm
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Re 15 / 15Hz

● At this Reynolds Number, concentration profiles are 
monotonous

0mm

0.43mm

5.84cm 7.87cm
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Re 15 / 15Hz
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Re 15 / 15Hz

6.98cm 7.12cm

0mm

0.43mm

● No Vortex relative to wave velocity
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Thank you for your attention!
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