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Introduction

Typical blow-up phenomenon for semilinear parabolic equations

Oru = Au+ f(u), with B.C.+1.C.

A

classical solution (0 <t < T)  blow-up profile (t = T)
T: blow-up time U(x) = lim u(x, t)
t—>T

)
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Our equation and assumption
We study blow-up phenomenon of positive solutions to

{8tu = Au inRLx(0,T), P)

Oyu=u? ondR]x(0,T) +IC
where g € (1,n/(n — 2)).
Definition. We call u(x) x,-axial symmetric, if u(x) = u(|x'], xn).

Assumption (monotonicity). x” - V'ug(x) <0, 9pup(x) < 0.
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Properties of equation (P)

Oru=Au in R x(0, T),
Oyu=u? ondR]x(0,T) +IC
Properties of equation (P)

» A comparison argument is available.

v

Since solutions are defined on a half space R” , x,-direction is
a special one.

v

Blow-up phenomenon occurs only on the boundary OR".
under some conditions.

» Scaling invariance. uy(x, t) = A u(\x, A%t).
» Energy functional.
1 2 1 +1 4./
E(u)== |Vul“dx — —— |ul9 dx'.
2 Jry q+1 Jorn
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Trivial blow-up phenomena and self-similar blow-up phenomena

Oru = Au+ uP (F)
Trivial blow-up solutions for equation (F) "Au=0"
Oru=uP = uiv(t) = (T — t)*l/(pfl)
\
Backward self-similar (blow-up) solutions
u(x,t) = (T =) p(x/VT —t)  (v>0).
Do—YL Vo 1 o0, 0= (BP)
Yy
Ap—= -V — + P =0. BF
R Rl ey Ll (BF)
_ /
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Self-similar blow-up solutions for equation (P)

From Fila-Quittner (91), Chlebik-Fila (00), if g € (1,n/(n — 2)),
(BP) has a unique positive bounded solution ¢o(y) = ¢o(yn):

¢ 1 .
o — 50~ 2(q-1)7° " 0 inRy, Jupo=f on {0}.

Therefore our equation (P) has a trivial blow-up solution:

utriv(Xa t) = (T - ) 1/2(a= 1)()0 (( t)71/2X”)'

Above arguments, we just constructed a special blow-up solu-
tion. How about general blow-up solutions ?

6
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General blow-up phenomena for equation (P)

Self-similar valuables x= (T —t)/2y, T —t=e"%

p(y,8) = (T = t)Tu(x, t).

blow-up timet=T — s= .

y 1
5590:A<P—§'V<P—m¢

Opp = 9 on JR’ x (s1,00).

in R7 x (s7,00), (RP)

Chlebik-Fila (00) (y =1/2(q — 1), g € (1,n/(n - 2)))
> ¢(y,s) is uniformly bounded.

> o(y:s) = wo(yn) in Goc(RY) (s — o00).
©o(yn) is a solution of (BP), that is the steady state of (RP).
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Trivial blow-up profile for equation (P)
Asymptotic behavior near blow-up time

u(x,t) = (T — t)_1/2(q_1)g0((7' — t)_l/zx, log(T —t))
~ (T = t) Y23 Do ((T = £)7%x,) = tiriv(x, 1)

Blow-up profile

U(x) = lim u(x,t) ~ lim uyiv(x, t)
t=T t—T
= cqxn—l/(q—l) = ¢4(cos 0)*1/(q71)r71/(q71)
= Utriv(X)~
Polar coordinate
Xp = rcosf
|x'| = rsinf




Goal of this talk.

» What conditions on the initial data assure a single point
blow-up ?

» When a single point blow-up occurs, how is the singularity
of the blow-up profile on IR’ (along |x'|-axis) ?

Single pint blow-up.
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Main results

Assumption
x"V'ug(x) <0,  Opup(x) <O0. (A)

\

Theorem 1 (single point blow-up)
Let up(x) be ug € BCY(RT), xp-axial symmetric and satisfy

(A). Then if u(x,t) blows up in a finite time, the blow-up
occurs only on the boundary.

J
L . . h
Theorem 2 (spacial singularity of blow-up profile)

Let up(x) be as in Theorem 1. Then if u(x,t) blows up in a
finite time, u(x, t) has a blow-up profile U(|x'|, x,) and satisfies

12 —1/2(q—1) 12 —1/2(q-1)
a (X | ) < U(]X|,0) < o <|X | > .
_

| log [x']] | log |x[|
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Remarks of Theorem 2

For equation (F), Herrero-Velazquez (92-93) studied singularities
of blow-up profile. We apply their strategy.

Strategy by Herrero-Velazquez (92-93)
1) Dynamical system on Hilbert space L%(Ri).
2) Improvement of convergence range.
3) Singularity of blow-up profile.
)

4) Selection of eigen-mode.
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Our main analysis is a large time behavior of ¢(y, s).
©(y,s) = ¢o(yn) + (2'nd approximation) + (h.o.t)

o 1'st approximation ¢o(y,) — singularity of x,-axis.
© 2'nd approximation — singularity of |x’|-axis.

Set v(y,s) = ¢(y,s) — vo(yn)-

Osv = Av, &,v:qgog*lerf(v). (Dy)
3% 1
Av=Av—2 .Vy— ——
% v > Vv 2(q—1)v’

D(A) ={v e Hg(Ri);&/V = qcpg_lv on OR] }.
o Weighted Sobolev space (weight function p(y) = e~ ¥I*/4)

+

Lg(Rl) = {V € Llloc(]Rgr);/Rn lv[Ppdy < OO},
HX(RT) = {v € [2(R1); D*v € L2(R%), V|a| < k}.
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Analysis of linearized equations

Let K = gpo(0)971 > 0.
Osv = Av — % -Vv inRL, 9d,v=Kv ondR]. (L1)

Set w(y,s) = e °v(y,s)/bk(yn), where ux < 0, bx(yn) are the
first eigenvalue and eigenfunction of

- (b” + gb') =ub inRy, 9,b= Kb on {0}.

y 2b2<(yn)>
Osw=Aw —=-Vw+ Oqhw, 0O,w=0. L2
5 v (s 2

A goal is to derive global heat kernel estimates of (L2)

rK(Y? 67 S) = rR"*l(yIa 51’ S)WK(ym gn? S)‘
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vk (€,€,s) is a heat kernel of

§

2b)
OsW = Wee — SWe + < 4O

bk (€)

In the original valuable, U(x, t) = W((1 — t)"%/2x, — log(1 — t)).

>W§, oW =0. (L3)

-1/2 2b/K
OsU = U + (1 —1t) B Us, 0o,U=0.

K

-
Proposition. Let vx(&,&’,s) be the heat kernel of (L3). Then

there exits 6 € (0,1) such that for £ € (0, (8¢’ —2)e*/?), s > 1

Tk (§,€,5) < e (€, 0€,s),

where v is the heat kernel of OsW = Wee — gwg, o,W =0.
\ J
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