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Geophysical fluid dynamics

@ Fluids: gases and liquids as water and air.

@ Geophysical fluids: large-scale fluids as the earth’s
atmosphere, ocean and climate.

@ Features of geophysical fluids: Rotation, Stratification, and
Heat effects.

@ Rotation: the earth’s rotation (Coriolis force).

@ Stratification: Density and Temperature.



What is an Ekman boundary layer ?

What is an Ekman boundary layer ?
@ Boundary layers appearing in the atmosphere and ocean

@ A stationary solution of a rotating Navier-Stokes equations with
a boundary condition (half space, infinite layer)

Our purpose

@ Constructing a stationary solution of a geophysical system
(our Ekman layer)

@ Investigating the Ekman layer (stability and instability)



Known results (Ekman layers without heat and
stratification effects)

@ Giga-Inui-Mahalov-Matsui-Saal '07:
Existence of a unique mild solution of an Ekman perturbed
system with non-decaying initial data.

@ Hess-Hieber-Mahalov-Saal '10:
The nonlinear stability of Ekman boundary layers (weak
solution).

@ Hieber-Stannat '11:
The stability of Ekman boundary layers in a stochastic sense.



Navier-Stokes equations

@ Navier-Stokes equations:

U —vA Y Vp =0,
(NS){IU vAu + (u,V)u+ Vp
V.-u=0,

where A = 35 + 05 + 95, V = (01,2, 33),
u = (ut,u?,u®): the velocity,

p: the pressure,

v > 0: the viscosity coefficient,

V - u = 0: incompressible condition.



Coriolis force

@ Rotating Navier-Stokes equations:

ou — vAu + (u,V)u + Vp = —Qe;z x u,

(RNS){V-U:O

where X: exterior product,
ez = (0,0,1): the rotating axis,
Q € R: the rotation rate (rotation parameter).



Stratification and heat effects

@ Navier-Stokes Boussinesq equations with stratification effect:

(NSBS) {&u —vAu + (u, V)u + Vp = Ges0,
00 — kA0 + (u, V)0 = —N?u3,
where 6: the temperature (distribution),
k > 0: the heat diffusion rate,
G € R\ {0}: gravity,
N € R: Brunt-Vaisala frequency(stratification parameter).



Our system

@ A rotating Navier-Stokes-Boussinesq equations with
stratification effects:

oru —vAu + (u, V)u + Qd x u + Vp = Ges#,
0.6 — kA + (u, V)0 = —N2u3,

(S)3V-u=0,
ultZO - (Ué, ug’ ug)a
Qlt:O - 00’

where v,k >0, Q,N e R, G e R\ {0}, e3 = (0,0, 1),
desS?:= {d = (dl,dz,dg) eR3: |d| =1} with d3 # 0.



Construction of our Ekman layer
Assume that Q2d; > 0. Let a3, a,, by, by, c1,C> € R and let us set

_ 2y
0= ,/Q—ds.

Form:

Ug = UE(Xs), O = QE(Xs),
Pe = P(X3) — Qdsazx, + Qbydsxy,
5(0) = [69{(8.2 - al)(dl -+ dz) —+ (bz - bl)(dz — dl)}]/2

Boundary condition at x3 = 0, oo and a slope condition:
Ue =0 = (a1, b1, 0), Oelixs=0) = Cu,

Iimx3—>oo UE(X3) - (aZ’ b27 0)7
dQE/dX3 = Co.



Our Ekman layer
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Main theorem I(Existence of a weak solution)
Set M := /(a1 — @2)? + (b1 — by)2. Assume that
(Uo — Ug, 0 — QE) S LOZ_(R?'_) X LZ(Ri) If

(c; +N*)@ > 0 and <1---(R),

2M
VVQd3
then there exists at least one global weak solution (u, 6, p) of (S)
with the initial datum (uo, 6), satisfying the strong energy
inequality. Moreover, the solution (u, 6, p) satisfies

T+1
. 2 2 —
i [ (1) = Vel )+ 16(0) Gl ot = 0
Furthermore, assume that there exists an another weak solution
(u,6,p) of (S) with the initial datum (uo, 6p). If (U — ug, 0 — Og)
belongs to the class LP*(0, T; LP2(R3)) with 2/py +3/pz = 1for
somep,>3andT >0,thenu=uandd=6on[0,T).



Main theorem llI(Existence of a strong solution)

Assume that the initial datum
(Uo - UE,HO — QE) € Hé,o_(Ri) X Hé(Ri) If

lup — Ugllur + 6o — Oellyr << 1,

then there exists a unique global-in-time strong solution (u, 6, p) of
(S) with initial datum (uo, 6p) such that

lim (1(8) = Uell s, + 16(t) = 6l xe2)) = O

where p is a pressure associated with (u, 6).



Corollary (Smoothness of weak solutions)

If a weak solution of (S) satisfies the strong energy inequality, then
the weak solution is smooth with respect to time when time is
sufficiently large. Moreover, the weak solution satisfies

lim ((1u(t) — ellozges) + 10() — Gelzgez)) = O.



Known results (NS)

@ H. Fujita and T. Kato, '62 '64:

Existence of a unique global-in-time strong solution of (NS)
when the initial datum is sufficiently small.

@ K. Masuda, 84: If a weak solution of (NS) satisfies the strong
energy inequality, then the weak solution has the asymptotic
stability. Moreover, he studied the uniqueness of weak
solutions.

@ T. Miyakawa and H. Sohr, 88:The existence of weak solution of
(NS) satisfying the strong energy inequality. Moreover, they
showed that the weak solution is smooth with respect to time
when time is sufficiently large.



Notations and function spaces

6 = (615 629 63’ 0)’
Co = Cgo,(RY) = {f = (.1, 1%) e [CP(R3)]% V- f =0},

— —~ {IllLp
LP :=LP(RY) := Cg, X Cy(R2)

(=L x LP(RY)),

Il

Hao = Ho(R3) :=C& xCL(RY) ",Cq, == Cq x C(RY)
Gp = Gp(R3) := {f € [LP(R®)]%; f = Vg, g e L (R3)),

GgP =Gy P(RY) := (f e Wy P(RY)]’; f = Vg, g € Wy (R))
for 1 < p < oo and m € N with the norms

(Ifllwme = Z IDfllLe and [If[l42 := [Ifllwa2,

O<|al<m

IfllL~ := ess. sup{[f(X)I}, ) := (- )Le.

3
X€R+



Formulation near the station ar solution
Setw := (w,w?, w3 w*) := (u - ug, N2+C (6 —6g)) and
q :=p — pe. The function (w, q) satisfies

(0S) 0tw+ﬂw+SW+BEW+(W V)w + Vg =0,
V W = 0’ Wlt:O - WO’ W|6]R:jr - 0’

with Wo := (Uo — Ue, 4/fee; (6o — 0¢)), Ue := (ug, u2,0,0),
BEW = (UE,Fﬁ)W + W3(93UE,
A =diag{—vA, —vA, —vA, —kA},

0 -Qds Qd, 0
o |08 o —Qd, 0
o —de le 0 - (N2+C2)g '

0 0 (N2 +c,)G 0



Constructing an energy inequality
@ Let w be a solution of (OS). Since
(Sw,w) = (W, V)w,w) = ((Ug, V)w,w) = (Vq,w) = 0,
we test (OS) by w to obtain
1d

Eallw(t)llfz FVIVW ()11, + «lIVWA ()IIF, + (widste,w) = O,

where w := (w',w?, w3).
Lemma
Lleta>0,8>0andu e Wé’p(Rg for1 <p < co. Then

5. 1 = ip .,
”(.)ae BUU(')”U’(RQ < W [F(a, p)] P ||U ||LP(R+)

with T(a, p) == fooo zPetP-le2gz,




Constructing an energy inequality

Using the above lemma and integrating with respect to time,
t —
lIw (t)IIF. + CEf VW (7)IIF.d7 < [Iw(s)II?: < [IwollF-
S

fort > s > 0 with Cg := 2min{y — V26 M, «}.
Under the restrictions

(c; +N?)G > 0and <1---(R),

2M
VVng

we see that Cg > 0.



Define operators
P: the Helmholtz projection from [LP(R2)]® to Ly (R ) for some
1 < p < . Define the extended Helmholtz projection P as follows:

E::(P 1).

Applying P to (OS), we obtain the abstract system:

OV + Lepv = —P(v,V)v,
V=0 = Vo = Pwp

with the linear operator Lg  in fﬁ defined by

{LE,pv =P(A+S+ Be)v,
D(Lep) = [W>P(RII N [WoP (R3] NLI(RS).



Adjoint operator

In particular, we define Lg := Lg,, and it is easy to see that its
adjoint operator L is defined by
D(L{) = D(Lg) and Liv = P(A + S* + B )v

with BLv := —(Ug, V)v + BFv, 8" .= ST,

D
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It is easy to check that

(LeVvi, Vo) = vy, LEV2> (V1,V2 € D(LE))-



Definition of Weak solutions

Letwg € fﬁ. We call a vector-valued function

(w,q)(= (wt,w?, w3 ,w? q)) a weak solution of (OS) with the initial
datum wy, if forall T > 0 and for all s,t, & > 0 such that

0 <s <e<t<T the following six properties hold:

(i)(function class)

weL>(0,T;L3) NL30,T;H3, ),
Vg e [L2(s T [L2(RY)P) @ L¥(s, T; [L¥4(RY)P)] x {0},



Definition of Weak solutions

(i) w : [0, T] = L2 is weakly continuous,
(iii ) (an energy inequality)

t
Iw(t)II?, + Ce f IV (7)IIF.d T < [IWolIF
0

with Ce := 2min{y — V26 M, «}, where 6§ = V2v/Qd; and
M= \/(al - a2)2 + (bl - bz)z,




Definition of Weak solutions

(iv)(weak form 1)
T T _ T
f (W, p)/'dr — v f (VW, Voydt — k f (VW*, Vot yydr
0 0 0
T T . T
_ f (Sw, pyydr - f (Ge, V)W, gyt - f (W3dsTe, pyd
0 0 0
T —~
- f (W, F)w, yudr = —(wo, ) (0)

holds for all ¢ = (¢*, ¢?, *, ¢*) € 'H‘é’(r and all ¢ € C*([0, T]; R) with
¥(T) =0, where (-,-) = (-, ")z, ¥’ = dy/dr,
w = (whw?w®)(=u-ue), and ¢ = (¢*, ¢% ¢°),



Definition of Weak solutions

(v)(weak form II)
f(w, ®ydt — vfstww, Vo)dr — Kf:<vw4, vohdr
_ fst<SW’¢>dT_ Lt((ﬁE,§)w,¢>dT— £t<w383UE,¢>dT
_ f (W, Dy — (L), D) — w(s), B(s))

holds for all & = (%, ®2, &%, &%) € C([s,t]; HY ), where
¢’ = 9®/dr and w(0) = wy,



Definition of Weak solutions

(vi) the function (w, q) satisfies the following identity:

t t t
f (Sw, Wydr + f ((Te, V)w, Wydr + f (W3d3Ug, V)dT

t t
+f<(w,€)w,w>d1+f<€a,w>d7:o

for all W = (W1, W2 W3 W*) e C([e,t]; GZ* x {0}), where
GZ? = {f e [W;?(R3)]%; f = Vg, geWZZ(R3)}



Strong energy inequality

Let wo € L2 and (w, G)(= (w*, w2 w3 w*,q)) be a weak solution of
(OS) with the initial datum wy. We say that (w, q) satisfies the
strong energy inequality if

t t
Iw (I +21/f IIVWIIﬁszvLZKf IVw?|?.d7
S S

t
+2 f (W33Ug, w)dT < [lw(s)II%,
S

holds for a.e. s > 0, includings = 0, and all t > s, where
w(0) = wo.



Strong energy equality

Analogously, one can define the strong energy equality:

t t
||w(t)||fz+2vf ||VW||52dT+2Kf [Vw?|?,d7
S S
t
42 f (W3dslic, w)dr = [w(s)|P
S

forall's,t > 0(s <t), where w(0) = wp.



Main results

Let v,k >0, Q,N,a;,a,,by,by,¢c1,60 €R, G € R\ {0}, and

d = (dy,d,, d3) € S? with the restrictions (R). Then the following
seven assertions hold:

(1) For every w, € L2 there exists at least one weak solution of
(OS) with the initial datum wy, which satisfies the strong energy
inequality.

(2) Letwp € L2 and s;,t; > Osuchthat0 <s; <t;. Let (w,q) be a
weak solution of (OS) with the initial datum wo. Assume that w
belongs to the class LP(sy, ty; [LP?(R3)]*) with 2/py + 3/p, = 1 for
some p, > 3. Then the solution (w, q) satisfies the strong energy
equality forallsand t (s; <s <t <t;).



Main results

(3) Let T > 0and wo € L2. Let (w,q;) and (v, G,) be two weak
solutions of (OS) with the same initial datum wy. Assume that the
solution (w, q) satisfies the strong energy inequality. If

v € LPY(0,T;[LP2(R3)]*) with p, > 3 and 2/p; + 3/p, = 1, then
w=vonl0,T).

(4) Letwp € L2 and (w,q) be a weak solution of (OS) with the initial
datum wy. If the solution (w, q) satisfies the strong energy
inequality, then

T4+1
Iimf lw(t)][Z.dt = 0.
T

T >0



Main results

(5) Let wo € L2. Assume that

le™=woll.2 = O(t™?) as t — oo,

IVe™ €|l ;2 < CtH2, 1> 0

with a positive constant C independent of t. Then there exists at
least one weak solution (w, q) of (OS) with the initial datum wq
such that

Iw(t)ll.. = O(t™*) ast — co.

Here e & is a Cy-semigroup whose generator is the operator —Lg
and e e is a Co-semigroup with the generator -Lg.



Main results

(6) Let wq € ﬁclw. There is a positive number ¢, independent of
[[Woll42 such that if [[woll4: < 0o then there exists a unique
global-in-time strong solution (w, q) of (OS) with the initial datum
Wy, satisfying the strong energy equality and

lim [fw(t)]l.2 = 0.

Here

w € C([0,0); H3,) N C((0,0); D(Le)) N C*((0,0); L2),
Vg € C((0,); G, x {0}),

and q is a pressure associated with w.



Main results

(7) Letwo € L2 and (w, q) be a weak solution of (OS) with the initial
datum wp. If the weak solution (w, q) satisfies the strong energy
inequality, then there exists a positive number T, such that

w € C([To, o0); L2).
Moreover, the weak solution satisfies

lim [w(t)]l.2 = .



Outline of the proof

Properties of operators

Existence of a strong solution

Existence of weak solutions

Strong energy inequality and Uniqueness of weak solutions
Asymptotic stability

Smoothness on large time



Stokes-Laplace operators A,

Definition (Stokes-Laplace operators)

Letp > 1. We define A, in L? as follows:

D(Ap) = L& N [We (R3] n W2 (RY)]%,
AW =PAW, w e D(A,),

where A = diag {-vA, —vA, —vA, —kA} and P is the extended
Helmholtz operator. In particular, we write A := A,.

V. A. Solonnikov’ 77, S. Ukai’'87, Borchers-Miyakawa’88,
Desch-Hieber-Priiss’01, Denk-Hieber-Priiss’03.



Properties of the Stokes-Laplace operators A,

Lemma

Letp > 1. Then

(i) The operator —A, generates a bounded analytic semigroup on
LY.

(i) The operator A, has maximal L%regularity for each q > 1.

Lemma (Key facts)
Lett > 0. For all f € L2 N [H1(R3)]*

e_tAalfo = ale_tAfo, e_tAagfo = 62e_tAf0,
Paifo = 9,Pfo, Paoty = 9,Pf.




Maximal LP-regularity
Let X be a Banach space and T € (0, 0], J = (0,T). A linear
closed operator o7 : D(«/) — X in X is said to have maximal
LP-regularity for p > 1 on (0, T), if for each
(f,ug) € LP(J; X) x (X, D())1-1p,p there exists a unique function u
satisfying

u + /u=f,

u(0) = uo,

fora.e. t € J and

IW'lleaixy + l2?ulleea:x) < CIIfllLeaix) + Uoll(x.0())1spp)s

where C > 0 is independent of f and uo. Here (X,D(%))1-1/pp iS @
real interpolation space between function spaces X and D(</), and
Il llx.o())1-1,p 1S @ NOrm of the real interpolation space. In
particular, we say that .7 has maximal LP-regularity for p > 1 when
T = oo.



Difficulties

Since our Ekman layer has a special form,

@ The main operator Lg (= Lg ) is not selfadjoint in L?-space.

@ It is difficult to obtain an explicit expression of a solution to
the linearized system of (OS).

In other words, it is not easy to derive the desired resolvent
estimates for the Ekman operators Lg .

However,



Difficulties

Since our Ekman layer has a special form,
@ The main operator Lg (= Lg ) is not selfadjoint in L?-space.

@ It is difficult to obtain an explicit expression of a solution to
the linearized system of (OS).

In other words, it is not easy to derive the desired resolvent
estimates for the Ekman operators Lg .

However,
@ The operator —Lg , generates an analytic semigroup on L.

@ There exists i, > 0 such that (Lg , + 177,) has maximal
L9regularity 1 < q < oo.



Resolvent set p(—Lgp), [le™Er|| < Me?»!

.

N




Contraction Cy-semigroup

Letvy € L2 Setv := (vi,v?,v3,v?) = etey,.
Since —Lg generates an analytic semigroup on L2, we have

Vi + Lev =0,
V(O) = Vp.

An easy computation gives

%Ilv(t)llfz = fRB Ve (t) - V(t)dx +fR v(t) - Vi(t)dx

+

= {(=LgVv,V) + (v, —LgV).



Contraction Cy-semigroup

By integration by parts, we have
—||v .+ ZvZ V2, -+ 261V,

f@u(lv +vv)dx+f 93U2 (v2v® + v2v3)dx.
RS R

3
+ +

Applying a previous argument, we have

t
lIv(t)IIZ, + CEf Vv (D)1 d7 < lIv(s)IIZ
S
< Ivoll?, for all s,t > 0(s < t).

Remark that Ce > 0 under the restrictions (R).



Resolvent set p(—Lg) under the restrictions (R)

.




Properties of operators Lg

Lemma

Letp > 1. Then _

(i) The operator —Lg , generates an analytic semigroup on L.

(i) There exists a positive number 7, such that the operator

(Lep + 17p) has maximal L9-regularity for each q > 1.

(iii ) The operator —Lg generates a contraction Co-semigroup on LZ2.

Key lemma
(i)Lett > 0. For all fo € L2 N [H(R; L2(R2))]

e e, fy = 0,671, e e, fy = d,eefy (Commutativity).
(i )For all fo € L2

tIim lle=fll.2 = O (Linear stability).




Proof of Commutativity
Recall that the operator Lg can be expressed as follows:

Le =A+B

with B := 58181 + 58282 + EBg,

uu 0 0 0 uu 0 0 O
o uw o0 o o uw o0 o
Bi=10 o ut o' B =0 o uz 0|
0 0 0 ul 0 0 0 u2
0 Qd3 —de—l—agué 0
B. — —Qd3 0 le—i‘agUé 0
71 Qd, -Qd, 0 (c; + NG|’
0 0 —+(c: +N?)gG 0

where A = Pdiag{-vA, —vA, —vA, —kA}.



Proof of Commutativity

Let ¢ € Egjr and T > 0. We consider the following two systems:

Ui+ (Le + n)u =10, t € (0, T],
Uli=o = ¢o,

Vi + (Le +7)v =0, t € (0,T],
V=0 = 0160
for some n > 0.

Since —(Lg + 77) generates an analytic semigroup on Eﬁ, we write
u(t) = ettetng, and v(t) = ettetg; g,
Now we show v(t) = d;u(t) for each t € (0, T].



Proof of Commutativity

Set —
X = {f € C([0, T];HL, )i Ifllx, < oo}

with
Ifllx, == sup {lIf(t)ll2 + IAYZF(t)lI.z).

0<t<T

We now consider the following approximate solutions:

uy(t) == ey,

Unyp(t) := et B FD gy — ft g =AtnNBy (s)ds (m=1,2,3,...),
0

vi(t) == e Ay, o,

t
Vi (t) = €A, 40 — f g =AMy (s)ds (m=1,2,3,...).
0



Proof of Commutativity

It is easy to check that
Vl(t) = e‘t(A+'7)(91¢0 = 81e_t(A+’7)¢0 = Olul(t)

and

t
Vz(t) :e_t(A+n)al¢o —f e_(t_s)(A+n)B(91U1dS
0

t
:al (e—t(A+n)¢0 - f e_(t_s)(AJrn)BUldS)
0
:61u2(t).

By induction, we see that v,, = d,u,, for each m € N.



Proof of Commutativity

We first choose 7 sufficiently large, then we use a fixed point
theorem and semigroup theory to obtain

a unique strong solution u € C([0, T]; FHV&U) NC((0,T]; D(Lg)) of
[u; + (Le +77)u = 0, u(0) = ¢] and

a unique strong solution v € C([0, T]; ﬁgﬁ) NC((0,T]; D(Lg)) of
[Vi + (Le + n)v = 0, v(0) = d1¢0] such that

lum — ullx, =0asm — oo,
[IVm = Vl[x, = 0as m — oo.

Since vy, = d1Um, we conclude that v(t) = d,u(t) for each t € (0, T],
that is, e‘t"581¢0 = 8le_tLE¢Q.



Proof of Linear stability
Define the tangential operator 9, as follows:

g 0 0 O
N
0 0 0 &
and
D(01) = L2 n [HM(®; L2(R3))]".
Lemma

()91 : D(81) — L2,
(i )R(A,) is dense in L2(R3).




Proof of Linear stability

We first assume that a € R(;). Since et is a contraction
Co-semigroup, we use the Cauchy-Schwarz inequality to obtain

1/2
1 (" 1(

le™<all.: < = f ||e-sLEa||dessﬁ( f le=alf.ds | .
0 0

Since a € R(d;), 3b € D(4;) s.t. a = d;b. The energy inequality =

t t
—-sL, 2 —sL, 2 -1 2
f le”*=allf.ds —f [91e7°bl[ . ds < CEIbIIZ.
0 0

Thus,
le™eall < t™2C 2 [blle — O (t — o).

Since R(d;) is dense in L2, we see the linear stability.



Construction of a unique strong solution

Let T > 1. We consider the next system:

dw/dt + (Lg +n)w = —P(w, V)W + nw,
Wli—o = W € FI:I&C,

for some 1 > 0.
We consider the following approximate solutions (j = 1,2,---) by

Wl(t) :e_t(LEJrn)Wo,

t
w1 (t) =e ey, —f e (TP (w, V)w()d T
0

t
+7]f e_(t_T)(LE+”)Wj(T)dT.
0



Construction of a unique strong solution

Set —
Y1 :={f € C([0, T]; H5,.); IIfllx, < oo}

with

Iflly, := sup lI(Le + n)"f(7)ll2 + sup [tY4lI(Le + n)**f (7)lI.2).

0<7<T 0<7<T

We first choose 7 sufficiently small, then we take w, € ﬁé’o with
Iwo|l4: << 1 to obtain a unique strong solution

w e C([0,T]; Héﬂ) NC((0,T];D(Lg)) NC*((0,T]; L2).

The strong energy equality = a unique global-in-time strong
solution w € C([0, o); Hg ) N C((0,0); D(Lg)) N C*((0, «0); LZ).



Yosida approximation

Lemma (Yosida approximation)

For m € N, we set
Im=(1+m'Leg)™

Then Jr, has the following properties:
(i) Letp € N. Foreachw € L}

Iim || Tmw —w|p = 0.
m—oo

(i) For all w € L2
ITmwWllLz < lIwllz.

(iii ) There exists C(m) > 0 such that for all w € L2

|TmWllLs < C(m)lIwllz.




Construction of weak solutions

Fix m € N. We consider the next system:

Wr,'n + LEWm = _E(jmwm’ G)Wm,
Wm(o) - ijO,

where Jm = (L + m™Lg)™
We solve the following integral form:

t
Wi (t) = e Fwo + f g (t-s)te FmnWm(s)ds
0

with Frow := —P (Jmw, V)w, where wi, = (W, w2, w3, w?).



Construction of weak solutions

Let T > 0. Set
Zy = {f e C([0, T]; HE, )i lifllzy < oo}

with
Ifllz, = sup {lIf (t)ll.z + ILZ/*F(t)ll.2).

o<t<T
Fixed point theorem = a unique local-in-time strong solution
W € C([0,T.]; Hg,.) N C((0, T.]; D(Le)) N C*((0, T.]; LZ) for some
T, > 0.
Energy inequality = _
wn € C([0,T]; Hé’g) N C((0,T];D(Lg)) N C*((0,T]; L2) for each
fixed T > 0.



Construction of weak solutions

Energy inequality, Maximal LP-regularity, Real interpolation theory,
Cut-off functions
= a weak solution satisfying the strong energy inequality.

K. Masuda, 84 = the uniqueness of weak solutions.

More precisely, let (w,q;) and (v, q,) be two weak solutions.
Assume that the solution (w, q) satisfies the strong energy
inequality. If v e LP(0, T; [LP2(R3 )]*) with p, > 3 and
2/p1+3/p2=1,thenw =von[0,T).



Asymptotic stability

We follow the arguments of Masuda’84 and Miyakawa-Sohr’'88.

T+1
f Iw (t)]12clt
i

< (fTT+1||w(t)||§|ldt)l/3 (fTTH l(Le + 1)_1/4W(t)||fzdt)

T+1 2/3
< C(lwoll.2) (f I(Le + 1)‘1/4W(t)llf2dt) :
T

2/3

(1 + Le) ™ *w(t)ll,z

t
< lle™= (1 + L) HYAw(s)ll2 + Cf ||Vw(r)||f2dr.
S

By the linear stability and the strong energy inequality,
(1 + Le) ™ M*w(t)]le — Ot >> s >> 1).



Smoothness of weak solutions

As a result, if w satisfies the strong energy inequality, then

T+1
Iimf lw(t)][Z.dt = 0.
T

T >0

For an arbitrary number & > 0 we can take 7, > 0 such that
W(70) € Hy s [IW(T0)ll1 < &

The existence of a unique strong solution

and the unigueness of weak solutions, =

the weak solution is smooth with respect to time when time is
sufficiently large.
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