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Prey-Predator model (PO)

fut = Au+u(A—u— be\QO(az)v) in 2 x (0,00),

vi = Av 4+ v(u 4+ cu — v) in 2\ x (0, 00),
Onu = O on 912 x (0, c0),
Opv =0 on 9(2\29) x (0, c0).

2, 2 : bounded domains in RN (25 C 2, N > 1).
0§2,0(2p : smooth boundaries of 2, {2;.

w(x,t) : population density of a prey species.
v(x,t) : population density of a predator species.
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Fig.1. Protection zone (2.

The prey species v can enter and leave (g freely.

The predator species v can not enter (2;.



Prey-Predator model (PO)
(ut = Au+u(A—u— bXQ\QO(a:)fU) in 2 x (0,00),

v = Av + v(pu + cu — v) in 2\ x (0, 00),
Opu = 0 on 052 x (0, 00),
Onv =0 on 9(2\2g) x (0, c0).

A > 0:growth rate of the prey species.
1 € R:growth rate of the predator species.

b> 0,c> 0:interaction coefficients.

1 (z € 2\),

On = 0/0n.
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Stationary problem (SPO)

Au+u(h —u— by g, (2)v) =0 in 2,
Av+v(p+cu—v) =0 in 2\,
<c?nu =0 on 02,

O =0 on 9(£2\(2p).

positive solution of (SPO)
(u>0in 2, v>0in 2\2)

= coexistence state of two species.



Known results of (SPO)

Def.
{)\?(QO) . 1st eigenvalue of —A in 29 (Dirichlet). }

- Proposition (Du-Shi '06, O. '11) )
(i) Let u > 0.

(SP0) has a positive solution < A > IA*(u, £2p),
where 1im ;oo M* (i1, 20) = M (£20).

(i) Let u < O.

(SP0) has a positive solution < A > —u/ec.

N J

A > 0:growth rate of the prey species.
n € R :growth rate of the predator species.



Remark
{A?(QO) . threshold prey growth rate for survival.
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Coexistence regioncof (SPO)
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C
Coexistence region of (SP0) without a protection zone (25 = 0)

A= -E
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Known results of (SPO)

Def.
{)\?(QO) . 1st eigenvalue of —A in 29 (Dirichlet). }

- Proposition (Du-Shi '06, O. '11) )
(i) Let u > 0.

(SP0) has a positive solution < A > IA*(u, £2p),
where 1im ;oo M* (i1, 20) = M (£20).

(i) Let u < O.

(SP0) has a positive solution < A > —u/ec.

N J

A > 0:growth rate of the prey species.
n € R :growth rate of the predator species.



A three species prey-predator model (P)

rut = Au+u(\ —u— be\QO(:p)v — dx g, (z)w)

v = Av +v(u 4 cu — v)

wr = Aw + w(v + eu — w)

anu =0
871’0 =0
\anw =0

in 2 x (0,00),

in 2\2g x (0, 00),

in 25 x (0, 00),

on 952 x (0, 00),

on 8(£2\2) x (0,00),
on 9f2g x (0, 00).

w(xz,t) : population density of another predator species.

d>0,v>0,e>0



Stationary problem (SP)

Av+v(p+cu—v) =0

Aw+wlv+euw—w) =0

afn,u =0
&ﬂ) =0
\anw =0

positive solution of (SP)
(u>0in 2, v>0in 2\2g, w > 0 in 2g)

= coexistence state of three species.

Au + w(A —u — bXQ\_QO(ZE)’U — dx,(x)w) = 0 in £,

in 2\,

in (2o,

on 0f2,

on 9($2\12g),
on df2g.
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Existence of positive solutions of (SP)

Def.
{)\le(q, (2) : 1st eigenvalue of —A+q in (2 (Neumann).}

-~ T heorem 1 N

(SP) has a positive solution
SA> A7 (bXQ\QO(CU)M + dx g, (z)v, 2)

where Y (bxmgo(:p)u—l- dx 0, (2)V, Q) is continuous and
strictly increasing with respect to u satisfying
lim A7 (bXQ\QO(CU)M + dx o, (z)v, Q) = A7 (20) + dv.

100

AP (£20) + dv : threshold prey growth rate.
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A bifurcation parameter.
A branch of positive solutions of (SP) bifurcates from (u,v,w) = (O, u,v)

at A = A (bx o\, (@) + dx gy (@), 2).

Y A=A (bxan g, (@)p + dx o, (z)v, 2)
A .

U1 AN(dxg, (z)v, 2) AP(020) + dv
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Proof of Iim )\1 (bXQ\QO($)/L + dx o, (z)v, Q) — >\ (£20) + dv

=00

Let ¢4 satisfy
—Adw = NP (20)d+ in 20, ¢« =0 on 82, / $2dr = 1

and define ¢« € H1 () by

~

Then
A (bx o 00 (2)1 + dxag(2)v, 2)
2 2 2
inf (/Q|v¢| dm—l—b,u/g\gogb da;+du/%¢ dm)

{¢€H1(9) [pllo=1}
</ o [V3s[dz + by /Q\QO 22dx + dv /QO F2dx

=\ (20) + dv.
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For any sequence {u;}:2 1 with lim;_,, u; = oo, let ¢; > 0 satisfy
—Adi + (bxon o, (@) + dxay (@)v) i = MY (bxo\ oy (@i + dx, (2)v, 2) ¢ in 2,
Onp; = 0 on 012, /Q gbizdm = 1.
Then
| 1VeilPdz < M (bxay g @)hi + dxay(@)v, @) [ 67dw < AP (20) + dv.
So there exist a subsequence {u;} and ¢ € H1(£) such that
1im ¢; = ¢oo > 0 weakly in H1(£2), strongly in L?(£2), /Q 2. dr = 1.

1— 00

14



For any sequence {u;}:2 1 with lim;_,, u; = oo, let ¢; > 0 satisfy
—Adi + (bxon o, (@) + dxay (@)v) i = MY (bxo\ oy (@i + dx, (2)v, 2) ¢ in 2,
Onp; = 0 on 012, /Q gbizdm = 1.
Then
| 1VeilPdz < M (bxay g @)hi + dxay(@)v, @) [ 67dw < AP (20) + dv.
So there exist a subsequence {u;} and ¢ € H1(£) such that
1im ¢; = ¢oo > 0 weakly in H1(£2), strongly in L?(£2), /Q 2. dr = 1.

11— 0
Moreover,

12 . 2 27, — IV :
[ 1VoilPdatn [ d2detay [ 6= 2 (bxon g (e + dxay(@)v. 2).

By letting i - , 2 de = 0.
\'4 gz—>oo(,uz—>oo) Q\Qo¢oox

Thus ¢oo = 0 a.e. in 2\20 and ¢ooln, € HE(20).
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For any sequence {u;}:2 1 with lim;_,, u; = oo, let ¢; > 0 satisfy

—A¢; + (bxo o (@i + dxoy(@)v) i = MY (bxoy oy ()i + dxay (2)v, 2) ¢ in £2,
Onp; = 0 on 012, /Q gbizdm = 1.
Then
/ VilPda < A (bxo oo (@) + dxoy()v, 2) / p7dr < NP (920) + dv.

So there exist a subsequence {u;} and ¢ € H1(£) such that
1im ¢; = ¢oo > 0 weakly in H1(£2), strongly in L?(£2), /Q 2. dr = 1.

11— 0
Moreover,

12 . 2 27, — IV :
[ 1VoilPdatn [ d2detay [ 6= 2 (bxon g (e + dxay(@)v. 2).

By letting i - , 2 de = 0.
\'4 gz—>oo(,uz—>oo) Q\Qo¢oox

Thus ¢oo = 0 a.e. in 2\2g and ¢ooln, € HF($20). This yields

—Adoot+dvdeo = lim AN (bXQ\QO(a:)u+dXQO(a;)u, Q) boo IN 20, oo =0 0N 9.

f1—00

Therefore, lim, oo )\]1\7 (bxg\go(aj),u + dx o, (z)v, Q) = AlD(QO) + dv.
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