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§1. Introduction Navier-Stokes equations in R3:

(NS)



ut − ∆u + (u,∇)u + ∇p =0 in R3×(0,T ),

∇ · u =0 in R3×(0,T ),

u|t=0 = u0 in R3.

u =(u1(x,t), u2(x,t), u3(x,t)) velocity (unknown),

p = p(x, t) pressure (unknown),

u0 =(u1
0(x), u

2
0(x), u

3
0(x)) initial velocity (given).

¶ ³
Aim: Ill-posedness of (NS) in C([0, T ]; Ḃ−1

∞,∞(R3)).
µ ´
Besides, the heat equation is well-posed in Ḃ−1

∞,∞.
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Ḃ−1
∞,∞ ; Bourgain-Pavlovic

B−α
p,∞ for

0 ≤ α < 1 − n/p

and n < p ≤ ∞; S.

Ḃ0
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Ḃ−1
∞,∞ ; Bourgain-Pavlovic

B−α
p,∞ for

0 ≤ α < 1 − n/p

and n < p ≤ ∞; S.

Ḃ0
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Ḣn/2−1; Kato-PonceLn; Kato,

Giga-Miyakawa

Lp for n ≤ p < ∞; Giga

L∞; Cannone
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The function spaces are wider and wider:

Ln ⊂ Ḃ−1+n/p
p,∞ ⊂ BMO−1 = Ḟ−1

∞,2 ⊂ Ḟ−1
∞,∞ = Ḃ−1

∞,∞.

They are scaling invariant spaces under the scaling

of self-similar solutions u = uλ, where uλ(x, t) :=

λu(λx, λ2t) for λ > 0. Indeed, ‖λu0(λ·)‖Ln = ‖u0‖Ln.
¶ ³
Def. The Besov space Ḃ−1

∞,∞ is defined by

Ḃ−1
∞,∞ :=

{
f ∈ S ′; ‖f‖

Ḃ−1∞,∞
< ∞

}
,

where ‖f‖
Ḃ−1∞,∞

:= ‖f‖ := sup
ρ>0

√
ρ‖eρ∆f‖L∞.

µ ´

‖f‖'sup
j∈Z

j−1‖φj∗f‖L∞, Ḃ−1
∞,∞≈∇L∞, ‖f‖≈‖∇−1f‖L∞.
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Ln ⊂ Ḃ−1+n/p
p,∞ ⊂ BMO−1 = Ḟ−1
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∞,2 ⊂ Ḟ−1
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Successive Approximation When u0∈H
n
2−1(Rn),

we use Fujita-Kato’s strategy to solve (NS).

Let u1(t) := et∆u0 and uj+1(t) := u1(t) − B(uj).

Here et∆ :=Gt∗, Gt(x):=(4πt)−
n
2 exp

{
−|x|2/4t

}
,

P := (δij + RiRj)1≤i,j≤n, Ri := ∂i(−∆)−1/2,

B(v,w):=
∫ t

0
e(t−τ)∆P(v(τ),∇)w(τ)dτ, B(v):=B(v,v).

We thus obtain ∃1 mild solution u = u1 − B(u)

in the class C([0, T ];H
n
2−1) as the limit of a (sub)-

sequence {uj}∞j=1 and small T . Put p =
∑

RiRju
iuj.
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§2. Main Results
¶ ³
Th.1 [Bourgain-Pavlovic] ∀δ, ∀T ∈ (0,1), ∃u0 ∈
Ḃ−1
∞,∞(R3) s.t. ‖u0‖ < δ, ∇ · u0 = 0, ∃u: a mild

solution in C([0, T ]; Ḃ−1
∞,∞) and ‖u(T )‖ > 1/δ.

µ ´

Rem. (1) Mild solutions do not depend continu-

ously on the initial data ⇒ ill-posed.

(2) It seems to be difficult to obtain the global

solutions for small data. Uniqueness is not known.
¶ ³
Th.2 [S.] ∀T >0, ∃u0 s.t.

{
‖uj(T )‖

}∞
j=1 diverges.

µ ´
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Ḃ−1
∞,∞(R3) s.t. ‖u0‖ < δ, ∇ · u0 = 0, ∃u: a mild

solution in C([0, T ]; Ḃ−1
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§3. Proof We use the norm-inflation argument.

Let v1 := u1 and vk+1 := uk+1 − uk for k ≥ 1,

then uj =
∑ j

k=1 vk and u =
∑ ∞

k=1 vk .

For 0 < δ << 1 and T , find u0 such that

‖u0‖ < δ, ‖v1(T )‖ << 1, ‖v2(T )‖ >
2

δ
, ‖v3(T )‖ << 1,

v4(T ) ∼ −Kv2(T ), v5(T ) ∼ −Kv3(T ), v6∼K2v2, . . . .

Thus, ‖u(T )‖ ≥ ‖v2(T )‖ − ‖v1(T )‖ −
∞∑

k=3
‖vk(T )‖

≥ ‖v2(T )‖ − ‖v2(T )‖
∞∑

k=1
Kk >

1

δ
provided K <

1

3
.
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Initial Velocity Fix u0 ∈ Ḃ−1
∞,∞ with ∇· u0 = 0 by

u0(x) =
(
0, u2

0(x1), u
3
0(x1, x2)

)

=

0,
Q
√

r

r∑
s=1

hs cos(hsx1),
Q
√

r

r∑
s=1

hs cos(hsx1−x2)



with parameters Q > 0 and r, γ, η ∈ N, where

hs := 2s(s−1)/2γs−1η for s ∈ N.

‖u0‖ = C
Q
√

r
→ 0 (< δ) as r → ∞.

‖v1(t)‖ ≤ ‖Gt‖L1‖u0‖ < δ << 1 for ∀ t > 0.
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Notes. (1) ‖u4j+2(T )‖ → ∞ as j → ∞, if K > 3.

(2) Ill-posedness also follows from [Bejenaru-Tao].

(3) The main idea is as follows. In the phase space,

û0: sum of “towers”. Interaction is Multiplication.

Control distance, height, number of towers.

(4) A blow-up does not occur. Indeed, ∇p = 0 ⇒

‖u(t)‖L∞ ≤ ‖u0‖L∞ by the maximal principle.

(5) u0 is smooth and periodic ⇒ 1
2‖u0‖2L2(T3) < ∞.

Thank you for your kind attention.
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