Stochastic and Variational Approach to the Lax-Friedrichs Scheme

Kohei Soga (Waseda University)

The 4th Japanese-German International Workshop on Mathematical Fluid Dynamics 2011.12.1

1. Introduction

Let $c, h(c) \in \mathbb{R}$ be given constants.

(HJ)
$$\begin{cases} v_t + H(x, t, c + v_x) = h(c) \text{ in } \mathbb{T} \times (0, T], \\ v(x, 0) = v^0(x) \in Lip(\mathbb{T}) \text{ on } \mathbb{T} := \mathbb{R}/\mathbb{Z}, \end{cases}$$
(CL)
$$\begin{cases} u_t + H(x, t, c + u)_x = 0 \text{ in } \mathbb{T} \times (0, T], \\ u(x, 0) = u^0(x) \in L^{\infty}(\mathbb{T}) \text{ on } \mathbb{T}. \end{cases}$$

Suppose that $u^0 = v_x^0$. Then

 $\exists / v \in Lip$: viscosity sol.

 $\exists / u \in C^0((0,T];L^\infty)$: entropy sol. s.t. $v_x = u$.

Consider the variational problems

$$\inf_{\gamma \in AC, \gamma(t) = x} \left[\int_0^t \{ L^c(\gamma(s), s, \gamma'(s)) \} ds + v^0(\gamma(0)) \right] + h(c)t,$$

where $L(x,t,\cdot):=H^*(x,t,\cdot)$ and $L^c(x,t,\xi):=L(x,t,\xi)-c\xi$. Then $\forall\,(x,t)\in\mathbb{T}\times(0,T],\,\exists\,V(x,t)$: infimum and γ^* : minimizer.

Variational characterization of (HJ) and (CL):

- (1) v(x,t) = V(x,t).
- (2) (x,t): regular point of v (i.e. $\exists v_x(x,t)$) and γ^* : minimizer

$$\Rightarrow u(x,t) = \int_0^t L_x^c(\gamma^*(s), s, \gamma^{*\prime}(s)) ds + u^0(\gamma^*(0)).$$

* Lax, Hopf, Conway, Krushkov, Crandall, Lions, etc.

Variational characterization of (HJ) and (CL) is a powerful tool for:

- ullet Investigation of detailed properties of v,u.
- Application of (HJ) and (CL) to dynamical systems (weak KAM).
- ullet Approximation theories of v,u.

Vanishing viscosity method: Fleming ('69)

Finite difference method: Soga ('11)

Consider discretization of (HJ) and (CL) by the Lax-Friedrichs scheme

(HJ)
$$_{\Delta}$$

$$\begin{cases} D_{t}v_{m}^{k+1} + H(x_{m}, t_{k}, c + D_{x}v_{m+1}^{k}) = h(c) \\ v_{m+1\pm 2N}^{k} = v_{m+1}^{k}, v_{m+1}^{0} = v_{\Delta}^{0}(x_{m+1}). \end{cases}$$
(CL) $_{\Delta}$
$$\begin{cases} D_{t}u_{m+1}^{k+1} + D_{x}H(x_{m+2}, t_{k}, c + u_{m+2}^{k}) = 0 \\ u_{m\pm 2N}^{k} = v_{m}^{k}, u_{m}^{0} = u_{\Delta}^{0}(x_{m}). \end{cases}$$

$$D_t v_m^{k+1} := \frac{v_m^{k+1} - \frac{v_{m-1}^k + v_{m+1}^k}{2}}{\Delta t}, D_x v_{m+1}^k := \frac{v_{m+1}^k - v_{m-1}^l}{2\Delta x}$$
 (Lax-Friedrichs scheme)

 $(HJ)_{\Delta}$ and $(CL)_{\Delta}$ are equivalent: $u_m^k = D_x v_{m+1}^k$, if $u^0 = v_x^0$.

Problem.

- Find variational problems for $(HJ)_{\Delta}$ and $(CL)_{\Delta}$.
 - Stochastic calculus of variations with random walks.
- Prove convergence of approximation.
 - → Scaling limit of random walks (the law of large numbers).

2. Idea and Results

The values of solutions at the red point are determine by

(HC),(CL): Information on a minimizing curve.

 $(HC)_{\Delta}$, $(CL)_{\Delta}$: Information on all the points of the blue triangle.

Idea.

- Introduce random walks in the triangle starting from the red point.
- Formulate stochastic and variational structure of the scheme.
- Prove concentration of the probability on a minimizing curve as $\Delta x, \Delta t \to 0$ under hyperbolic scaling $0 < \lambda_0 \le \lambda := \frac{\Delta t}{\Delta x} < \lambda_1$.

Results.

- Formulation of stochastic calculus of variations, equivalent to $(HJ)_{\Delta}$ and $(CL)_{\Delta}$.
- Uniform convergence of $v_{m+1}^k \to v$ with an error estimate.
- Uniform convergence of $u_m^k \to u$, except "small nbhd." of shocks.
- Approximation of u, v up to an arbitrarily large (0, T].
- Approximation of characteristic curves as well.
- Simpler proofs for convergence of approximation.

Usual functional analytic approach with a priori estimates:

- Convergence of $u_m^k \to u$ is in the L^1 -norm.
- ullet Approximation of u up to an arbitrarily large (0,T] is hard.
- There is no way to approximate characteristic curves.

3. Random walks for the Lax-Friedrichs scheme

Fix arbitrary T > 0. Take $\Delta x, \Delta t > 0$.

Take $K = K(T) \in \mathbb{N}$ so that $t_K := K\Delta t \in (T - \Delta t, T]$.

Consider backward random walk for $0 \le k \le l + 1 \le K$

$$\gamma^{l+1} = x_n$$
, $\gamma^k = \gamma^{k+1} \pm \Delta x$ with a transition probability $\bar{\rho}$, $\bar{\rho}$.

Each step takes time Δt and we consider γ^k in $(\Delta x \mathbb{Z}) \times (\Delta t \mathbb{Z}_{>0})$.

More precisely

 $G := \text{set of all } (x_m, t_k) \text{ in the blue triangle for } 0 < k \le l + 1,$

$$\xi: G \ni (x_m, t_k) \mapsto \xi_m^k \in [-\lambda^{-1}, \lambda^{-1}], \quad \lambda = \Delta t / \Delta x,$$

$$\bar{\bar{\rho}}:G\ni(x_m,t_k)\mapsto\bar{\bar{\rho}}_m^k:=\frac{1}{2}-\frac{1}{2}\lambda\xi_m^k\in[0,1],\ \bar{\bar{\rho}}:=1-\bar{\bar{\rho}},$$

 $\gamma: \{0, 1, 2 \cdots, l+1\} \ni k \mapsto \gamma^k \in \Delta x \mathbb{Z}, \ \gamma^{l+1} = x_n, \ \gamma^k - \gamma^{k+1} = \pm \Delta x,$

 Ω : the family of all γ ,

 $\mu(\gamma)=\mu(\gamma;\xi)$: the product of transition probabilities $\bar{\rho},\bar{\rho}$ along $\gamma,$ $\operatorname{Prob}(A):=\sum_{\gamma\in A}\mu(\gamma),\ A\subset\Omega$ is a probability measure of $\Omega,$

$$\eta^k(\gamma) := x_n + \sum_{k < k' < l+1} \xi_{m(\gamma^{k'})}^{k'} \Delta t \text{ for } \gamma \in \Omega.$$

Scaling limit for $\Delta x, \Delta t \to 0$ under $0 < \lambda_0 \le \lambda = \Delta t/\Delta x < \lambda_1$.

Thm. Set
$$\tilde{\sigma}^k := E_{\mu(\cdot;\xi)}[|\gamma^k - \eta^k(\gamma)|^2] := \sum_{\gamma \in \Omega} \mu(\gamma;\xi)|\gamma^k - \eta^k(\gamma)|^2$$
.

Then for $\forall \xi$

- 1. $\tilde{\sigma}^{k-1} = \tilde{\sigma}^k + 4E_{\mu(\cdot;\xi)} \left[\bar{\bar{\rho}}_{m(\gamma^k)}^k \bar{\bar{\rho}}_{m(\gamma^k)}^k\right] \Delta x^2$.
- $2. \quad \tilde{\sigma}^k \le \frac{t_{l+1} t_k}{\lambda} \Delta x \le \frac{T}{\lambda} \Delta x.$
- 3. $\tilde{\sigma}^k \to 0$ for each $0 \le k \le l+1 \le K$ as $\Delta x, \Delta t \to 0$.

4. Stochastic and variational approach

Suppose that the C^2 -flux function $H(x,t,p): \mathbb{T}^2 \times \mathbb{R} \to \mathbb{R}$ satisfies

$$H_{pp} > 0$$
, $\lim_{|p| \to \infty} \frac{H(x, t, p)}{p} = \infty$, $|L_x| \le \alpha (1 + |L|)$ $(L := H^*)$.

Consider the stochastic calculus of variations for each (x_n, t_{l+1})

(#)
$$\inf_{\xi} E_{\mu(\cdot;\xi)} \Big[\sum_{0 < k \le l+1} L^c(\gamma^k, t_{k-1}, \xi_{m(\gamma^k)}^k) \Delta t + v_{\Delta}^0(\gamma^0) \Big] + h(c) t_{l+1}.$$

Thm. For each T > 0, $\exists \lambda_1 > 0$ s.t. if $\lambda = \Delta t/\Delta x < \lambda_1$ then

- 1. (\sharp) has the infimum V_n^{l+1} w.r.t. $\xi: G \to [-\lambda^{-1}, \lambda^{-1}]$.
- 2. V_n^{l+1} is attained by $\xi^* : G \to (-\lambda_1^{-1}, \lambda_1^{-1}) \subset [-\lambda^{-1}, \lambda^{-1}].$
- 3. $\xi^{*k+1}_m = H_p(x_m, t_k, c + D_x V_{m+1}^k)$.
- 4. $v_m^{k+1} := V_m^{k+1}, \ v_{m+1}^0 := v_{\Delta}^0(x_{m+1})$ is the sol. of $(HJ)_{\Delta}$.
- 5. $u_{m+1}^{k+1} := D_x v_{m+2}^{k+1}$, $u_m^0 := u_\Delta^0(x_m)$ is the sol. of $(CL)_\Delta$ which satisfies the CFL-condition up to $k \le K(T)$.

Convergence.

Let $\Delta x, \Delta t \to 0$ under hyperbolic scaling $0 < \lambda_0 \le \lambda = \Delta t/\Delta x < \lambda_1$.

Thm. The linear interpolation v_{Δ} of v_{m+1}^k satisfies

$$v_{\Delta}(x,t) \to v(x,t) = \inf_{\gamma} \left[\int_0^t \{ L^c(\gamma(s), s, \gamma'(s)) \} ds + v^{0}(\gamma(0)) \right] + h(c)t,$$
$$|v_{\Delta}(x,t) - v(x,t)| \le A\sqrt{\Delta x} \text{ on } \mathbb{T} \times [0,T].$$

Thm. Suppose that

 $(x,t) \in \mathbb{T} \times [0,T]$: regular point of v (i.e. $\exists v_x(x,t)$),

 $\gamma^*: [0,t] \to \mathbb{R}$: minimizer for v(x,t),

 $x_n \in [x - 2\Delta x, x + 2\Delta x), t_{l+1} \in [t - \Delta t, t + \Delta t),$

 ξ^* : minimizer for v_n^{l+1} ,

 $w_{\Delta}(\gamma)$: $[0,t] \to \mathbb{R}$: linear interpolation of γ generated by ξ^* .

Then

$$w_{\Delta}(\gamma) \to \gamma^*$$
 uniformly in probability.

* Approximation of characteristic curves, as well as PDE-sol.

Thm.

1. Let ξ^* , $\tilde{\xi}^*$ be the minimizer for v_n^{l+1}, v_{n+2}^{l+1} . Then u_{n+1}^{l+1} satisfies

$$u_{n+1}^{l+1} \leq E_{\mu(\cdot;\xi^*)} \Big[\sum_{0 < k \leq l+1} L_x^c(\gamma^k, t_{k-1}, \xi^{*k}_{m(\gamma^k)}) \Delta t + u_{m(\gamma^0)+1}^0 \Big] + O(\Delta x),$$

$$u_{n+1}^{l+1} \ge E_{\mu(\cdot;\tilde{\xi}^*)} \Big[\sum_{0 < k \le l+1} L_x^c(\gamma^k, t_{k-1}, \tilde{\xi}^{*k}_{m(\gamma^k)}) \Delta t + u_{m(\gamma^0)-1}^0 \Big] + O(\Delta x).$$

2. Let u_{Δ} be the linear interpolation of u_m^k . Then for each regular point (x,t)

$$u_{\Delta}(x,t) \to u(x,t) = \int_0^t L_x^c(\gamma^*(s), s, \gamma^{*\prime}(s)) ds + u^0(\gamma^*(0)).$$

3. Except any "small" nbhd. of shocks , $u_{\Delta} \rightarrow u$ uniformly.

Comparison with the vanishing viscosity method (Fleming ('69))

$$\begin{cases} v_t^{\nu} + H(x, t, c + v_x^{\nu}) = h(c) + \nu v_{xx}^{\nu} \text{ in } \mathbb{T} \times (0, T], \\ v^{\nu}(x, 0) = v^{0}(x) \in Lip(\mathbb{T}) \text{ on } \mathbb{T}. \end{cases}$$

 $v^{\nu} \rightarrow v$ as $\nu \rightarrow 0 + .$

$$v^{\nu}(x,t) = \inf_{\xi \in C^1} E \left[\int_0^t L^c(\gamma^{\nu}(s), s, \xi(\gamma^{\nu}(s), s)) ds + v_0(\gamma^{\nu}(0)) \right],$$

 γ^{ν} : sol. of $d\gamma^{\nu}(s) = \xi(\gamma^{\nu}(s), s)ds + \sqrt{2\nu}dB(t-s), \ \gamma^{\nu}(t) = x,$

B: Brownian motion,

E: expectation w.r.t. Wiener measure.

Key. Stochastic process η : $\eta'(s) = \xi(\gamma^{\nu}(s), s), \, \eta(t) = x$ satisfies

(b)
$$E[|\gamma^{\nu}(s) - \eta(s)|] = \sqrt{2\nu} E[|B(t-s)|], \ \forall s \in [0, t].$$

* (b) corresponds to $\sqrt{\tilde{\sigma}^k} = \sqrt{E_{\mu(\cdot;\xi)}[|\gamma^k - \eta^k(\gamma)|^2]} \le \beta \sqrt{\Delta x}$.

This yields $v^{\nu} \to v$ with $|v^{\nu}(x,t) - v(x,t)| \le a\sqrt{\nu}$ on $\mathbb{T} \times [0,T]$.