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1. Introduction

Let ¢, h(c) € R be given constants.

v+ H(x,t,c+ vy) = h(c) in T x (0,T],
(HJ) v(z,0) = v%(x) € Lip(T) on T :=R/Z,

ut + H(z,t,c+u); =0 in T x (0,T],
(CL) { w(z,0) = uO(x) € L>(T) on T.

Suppose that u® = 2. Then

3/ v € Lip: viscosity sol.
3/u € CO((0,T]; L®): entropy sol. s.t. vz = w.

Consider the variational problems
t
nt [ [ (L) 5.7/ (0)}ds + 2 (0))] + bt
YEACy(t)=z L JO
where L(x,t, ) := H*(x,t,-) and L%(x,t,£) := L(x,t,£) — c£. Then
V(x,t) € T x (0,7], 3V (x,t): infimum and ~*: minimizer.



p
Variational characterization of (HJ) and (CL):

(1) vz, t) =V(a,t).

(2)  (a,t): regular point of v (i.e. Jvz(x,t)) and ~*: minimizer

t
S u(a ) = / LE(v* (), 5,7 (5))ds + w0 (v*(0)).
\_ 0 J
x Lax, Hopf, Conway, Krushkov, Crandall, Lions, etc.

Variational characterization of (HJ) and (CL) is a powerful tool for:
e Investigation of detailed properties of v, u.
e Application of (HJ) and (CL) to dynamical systems (weak KAM).

e Approximation theories of v, u.
Vanishing viscosity method: Fleming ('69)
Finite difference method: Soga ('11)




Consider discretization of (HJ) and (CL) by the Lax-Friedrichs scheme

. <f Dot + H(xm, th, ¢ + Dqu’jﬁl) = h(c)
ok _ .k 0 —,0

A m—|—1:|:2N T Um—l—l’ vm—|—1 — UA(xm—I—l)-

\

Dtuk_l_l + Do H (242, tg, ¢ + um_|_2) =0

(CL) X
. uvl?niQN = v, Up, = UA(CBm)

\

k k
Skl Um—1Tm l

Dkt . =m YN Dﬂf”m-|—1 = m+21A’Um L (Lax-Friedrichs scheme)

(H)) A and (CL)a are equivalent: uf, = vaf;ﬁl, if uQ =00,

KProbIem.
e Find variational problems for (HJ)A and (CL)A.
—— Stochastic calculus of variations with random walks.

e Prove convergence of approximation.
—— Scaling limit of random walks (the law of large numbers)./

N




2. Idea and Results
The values of solutions at the red point are determine by

(HC),(CL): Information on a minimizing curve.
(HO)AL(CL) A Information on all the points of the blue triangle.

minimizer

Idea.

e Introduce random walks in the triangle starting from the red point.
e Formulate stochastic and variational structure of the scheme.
e Prove concentration of the probability on a minimizing curve

as Axz, At — 0 under hyperbolic scaling 0 < A\g < X\ = ﬁ—; < Aq.



Results.
e Formulation of stochastic calculus of variations,
equivalent to (HJ)A and (CL)A.
e Uniform convergence of v?’jﬁl — v With an error estimate.

e Uniform convergence of uf, — u, except “small nbhd.” of shocks.
e Approximation of u,v up to an arbitrarily large (0,T].
e Approximation of characteristic curves as well.

e Simpler proofs for convergence of approximation.

Usual functional analytic approach with a priori estimates:
e Convergence of uf — w is in the L-norm.
e Approximation of w up to an arbitrarily large (0,T] is hard.
e [hereis no way to approximate characteristic curves.



3. Random walks for the Lax-Friedrichs scheme
Fix arbitrary T'> 0. Take Az, At > 0.
Take K = K(T) € N so that tx := KAt € (T — At, T].

Consider backward random walk for O < k<I[I+ 1< K
AL =g, vF =~FT1 £ Az with a transition probability p, p.
Each step takes time At and we consider ~* in (AzZ) x (AtZ>g).

More precisely

G .= set of all (zm,tr) in the blue triangle for 0 < k <[+ 1,
£:G3 (zm,ty) — &n € [-AHATH, A= At/Axz,
1 1
=k

PG 3 (wmty) = Py =5 — M €10,1], pr=1-p,



~v:140,1,2-- ,l4+ 1} 2 k—~* € AzZ, AT =g, vF — 4Tl = £ Ag,
€2 . the family of all ~,

w(y) = u(vy; €) : the product of transition probabilities p, p along ~,
Prob(A) = Z w(y), A C Q is a probability measure of €2,

veA
Koy - K
() i=wnt ), & At fory€Q
k<k'<l4+1
Scaling limit for Az, At — 0 under 0 < A\g < A = At/Ax < ).
4 N
Thm. Set " := E,.o[7" —n"(MI?] = > u( O —n"(0)°
yES2
Then for V&
sk—1 _ =k =k 2
b 4B Py Py | A
t — 1 T
2. 5k < l+1A EAr < XA:U.
3. 5k — 0 foreach 0<k<Il4+ 1<K as Az, At — 0.




4. Stochastic and variational approach
Suppose that the C2-flux function H(z,t,p) : T2 x R — R satisfies

H(x,t,p)

Hpp >0, lim 0o, |Lz| < a(l+|L) (L:= H*).

[p|—00 p

Consider the stochastic calculus of variations for each (zn,t;41)

(1)

nngu(.;g)[ > LG o1 €E )AL+ QO] + Aty
0<k<Ii+1

B
Thm. For each T >0, 3)\1 >0 s.t. if A= At/Azxz < Aq then

N

1.
2.

3.
4.

(#) has the infimum Vit wr.t. £:G— [-2"1 21
Vatlis attained by €*: G — (=A7LA7h) € [-AL A1)
el = Hy(om, ty, e+ D VE_ ).
ol . — yhtl Upaq ‘= VA (&m41) is the sol. of (HJ)a.
Frl .= Dol 40 .= uOA(a:m) is the sol. of (CL)a which

m+2> Um
satisfies the CFL-condition up to k& < K(T).

/




Convergence.
Let Ax, At — 0 under hyperbolic scaling 0 < A\g < A= At/Ax < \q.

a N
Thm. The linear interpolation v of vf |, satisfies

t
oA t) = () = inf [ [ {LEG(s), 5,7/ () Hs+ 0 (0)] +h(et,
v 0

lva(z,t)—v(x,t)| < AVAx on T x [0,T].
N

/Thm. Suppose that
(z,t) € T x [0,T]: regular point of v (i.e. Jvz(x,t)),
~* : [0,t] — R: minimizer for v(x,t),
Tn € [vr — 20z, 2 + 2Ax),t41 € [t — At t + At),
£*: minimizer for vf{"l,
wa(v): [0,t] — R: linear interpolation of v generated by &*.
Then

wa () — v* uniformly in probability. )
-

x Approximation of characteristic curves, as well as PDE-sol.




T hm. )

1. Let ¢*, £€* be the minimizer for vl+1, H_—|_12 Then ul":_ll satisfies

AR | c xk
Wt < Buen| Y L8OR 1,8 o)A o [+O(A
O0<k<i+1

| cr k =5k 0 |
W) '0<;;+1 L5 i1, 8 o)At o) |HO(A

2. Let ua be the linear interpolation of uffn ‘T hen for each regular
point (x,t)

l—|—1
n-l—l > b

t

ua(z,t) — ulz,t) = /o LE(Y*(5), 5,7 (s))ds + u®(v*(0)).

3. Except any “small’ nbhd. of shockslD uan — uw uniformly.
\

x),



Comparison with the vanishing viscosity method (Fleming ('69))

v/ + H(x,t,c+v%) = h(c) +vvi, in T x (0,77,
oY (x,0) = v9(z) € Lip(T) on T.

VW —wvasv —0+4.

t
o/(z,t) = inf B| / LE(v" (), 5,€(7"(s), 8))ds + vo(77(0))]
¢cCl 0
1% . v - 14 174 —_
~Y o sol. of dvY(s) = £(vY(s),s)ds + V2uvdB(t — s), 7Y (t) = =,
B Brownian motion,
E . expectation w.r.t. Wiener measure.

Key. Stochastic process n: n'(s) = £(v¥(s),s), n(t) = = satisfies
(») E[7(s) = n(s)|]] = V2vE[|B(t — s)|], Vs € [0,1].

+ (b)) corresponds to V&F = \/Eu(-;ﬁ)[wk — k(3] < BV Az
This yields v¥ — v with |vY(x,t) — v(x,t)| < ay/v on T x [0,T].




