On a mathematical justification of the penalty method for the Stokes and Navier-Stokes equations

Norikazu YAMAGUCHI

University of Toyama, JAPAN

November 28, 2011 4th Japan-Germany Workshop on Mathematical Fluid Dynamics, Waseda University, Tokyo, Japan

Navier-Stokes equation

Navier-Stokes equation (NS)

$$\partial_t \mathbf{u} - \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \mathbf{p} = 0,$$

$$x \in \Omega, t > 0,$$
 (1a)

$$\operatorname{div} \boldsymbol{u} = 0.$$

$$x \in \Omega, t > 0.$$

$$u(x,0) = u_0(x),$$

$$x \in \Omega$$
.

$$\Omega \subseteq \mathbb{R}^d \ (d \ge 2)$$
 (if $\partial \Omega \ne \emptyset$ some boundary condition is imposed). $u = (u^1, \dots, u^d)$: velocity, p : pressure (unknown).

Navier-Stokes equation

Navier-Stokes equation (NS)

$$\partial_t \mathbf{u} - \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \mathbf{p} = 0,$$

$$x \in \Omega, t > 0,$$
 (1a)

$$\operatorname{div} \mathbf{u} = 0.$$

$$x \in \Omega, t > 0$$
.

$$\boldsymbol{u}(x,0) = \boldsymbol{u}_0(x),$$

$$x \in \Omega$$
. (1c)

$$\Omega \subseteq \mathbb{R}^d \ (d \ge 2)$$
 (if $\partial \Omega \ne \emptyset$ some boundary condition is imposed). $u = (u^1, \dots, u^d)$: velocity, p : pressure (unknown).

Main difficulties of (NS)

- The pressure has **no** time evolution (1a)
- Divergence free constraint (1b)

- $T > 0, N \in \mathbb{N}$. h = T/N (time step size)
- $U^n(x) \approx u(x,t_n)$, $P^n(x) \approx p(x,t_n)$ ($t_n = nh$): difference approximation of (NS) at $t = t_n$.

- $T > 0, N \in \mathbb{N}. h = T/N$ (time step size)
- $U^n(x) \approx u(x,t_n)$, $P^n(x) \approx p(x,t_n)$ ($t_n = nh$): difference approximation of (NS) at $t = t_n$.

Time discretization of (NS): Direct method

$$\frac{U^{n+1} - U^n}{h} - \Delta U^n + U^n \cdot \nabla U^n + \nabla P^n = 0, \quad n = 0, 1, \dots, N - 1,$$

$$\operatorname{div} U^n = 0.$$

- $T > 0, N \in \mathbb{N}. h = T/N$ (time step size)
- $U^n(x) \approx u(x,t_n)$, $P^n(x) \approx p(x,t_n)$ ($t_n = nh$): difference approximation of (NS) at $t = t_n$.

Time discretization of (NS): Direct method

$$\frac{U^{n+1} - U^n}{h} - \Delta U^n + U^n \cdot \nabla U^n + \nabla P^n = 0, \quad n = 0, 1, \dots, N - 1,$$

$$\operatorname{div} U^n = 0.$$

Solving the above difference eq. w.r.t U^{n+1} we have

$$U^{n+1} = U^n + h\Delta U^n - hU^n \cdot \nabla U^n - h\nabla P^n, \quad n = 0, 1, ..., N-1,$$

 $\text{div } U^n = 0, \quad n = 0, 1, ..., N.$

Time discretization of (NS): Direct method

$$U^{n+1} = U^n + h(\Delta U^n - U^n \cdot \nabla U^n - \nabla P^n), \quad n = 0, 1, ..., N - 1,$$

 $\text{div } U^n = 0, \quad n = 0, 1, ..., N.$

■ To obtain U^{n+1} , we need not only U^n , but also P^n .

Time discretization of (NS): Direct method

$$U^{n+1} = U^n + h(\Delta U^n - U^n \cdot \nabla U^n - \nabla P^n), \quad n = 0, 1, \dots, N-1,$$

$$\operatorname{div} U^n = 0, \quad n = 0, 1, \dots, N.$$

■ To obtain U^{n+1} , we need not only U^n , but also P^n .

Since $\operatorname{div} U^n = 0$, we have

$$-\Delta P^n = \operatorname{div}(U^n \cdot \nabla U^n), \quad x \in \Omega, \tag{NLP}$$

Time discretization of (NS): Direct method

$$U^{n+1} = U^n + h(\Delta U^n - U^n \cdot \nabla U^n - \nabla P^n), \quad n = 0, 1, ..., N - 1,$$

 $\text{div } U^n = 0, \quad n = 0, 1, ..., N.$

■ To obtain U^{n+1} , we need not only U^n , but also P^n .

Since $\operatorname{div} U^n = 0$, we have

$$-\Delta P^n = \operatorname{div}(U^n \cdot \nabla U^n), \quad x \in \Omega, \tag{NLP}$$

- P^n is represented by U^n . Formally, $P^n = (-\Delta_{\Omega})^{-1} \operatorname{div}(U^n \cdot \nabla U^n)$. This representation is **non-local**.
- Boundary condition for P^n ?
- Does div $U^n = 0$ hold for any $n \ge 1$, if we apply some space discretization?

Time discretization of (NS): Direct method

$$U^{n+1} = U^n + h(\Delta U^n - U^n \cdot \nabla U^n - \nabla P^n), \quad n = 0, 1, ..., N - 1,$$

 $\text{div } U^n = 0, \quad n = 0, 1, ..., N.$

■ To obtain U^{n+1} , we need not only U^n , but also P^n .

Since $\operatorname{div} U^n = 0$, we have

$$-\Delta P^n = \operatorname{div}(U^n \cdot \nabla U^n), \quad x \in \Omega, \tag{NLP}$$

- P^n is represented by U^n . Formally, $P^n = (-\Delta_{\Omega})^{-1} \operatorname{div}(U^n \cdot \nabla U^n)$. This representation is **non-local**.
- Boundary condition for P^n ?
- Does div $U^n = 0$ hold for any $n \ge 1$, if we apply some space discretization?

Pressure makes *direct* numerical computation of (NS) complicate.

Penalty method

One of the standard ways to eliminate the pressure from (NS) is **penalty method** (Temam (1968)):

Penalty method

One of the standard ways to eliminate the pressure from (NS) is **penalty method** (Temam (1968)):

Replacing $\operatorname{div} \mathbf{u} = 0$ by

$$\operatorname{div} \mathbf{u} = -p/\eta \quad (\eta > 0), \tag{PEN}$$

Penalty method

One of the standard ways to eliminate the pressure from (NS) is **penalty method** (Temam (1968)):

Replacing $\operatorname{div} \mathbf{u} = 0$ by

$$\operatorname{div} \boldsymbol{u} = -p/\eta \quad (\eta > 0), \tag{PEN}$$

and substituting $p = -\eta \operatorname{div} \boldsymbol{u}$ into (1a), we have a penalized (NS).

Penalized (NS)

$$\partial_t \mathbf{u}^{\eta} - \Delta \mathbf{u}^{\eta} + \mathbf{u}^{\eta} \cdot \nabla \mathbf{u}^{\eta} - \eta \nabla \operatorname{div} \mathbf{u}^{\eta} = 0.$$
 (NS) _{η}

- (NS) $_{\eta}$ does not include the pressure p
- Formally $\eta \to +\infty$, (PEN) becomes div $\mathbf{u}^{\eta} = 0$
- Since we do not need to solve Poisson equation (NLP), Penalty method is *indirect* method.

Penalized (NS)

$$\partial_t \mathbf{u}^{\eta} - \Delta \mathbf{u}^{\eta} + \mathbf{u}^{\eta} \cdot \nabla \mathbf{u}^{\eta} - \eta \nabla \operatorname{div} \mathbf{u}^{\eta} = 0.$$
 (NS)_{\eta}

 $(NS)_{\eta}$: approximate problem of (NS).

Penalized (NS)

$$\partial_t \mathbf{u}^{\eta} - \Delta \mathbf{u}^{\eta} + \mathbf{u}^{\eta} \cdot \nabla \mathbf{u}^{\eta} - \eta \nabla \operatorname{div} \mathbf{u}^{\eta} = 0.$$
 (NS)_{\eta}

 $(NS)_{\eta}$: approximate problem of (NS).

Question

$$\eta \to \infty \Longrightarrow (\mathbf{u}^{\eta}, p^{\eta}) \to (\mathbf{u}, p)$$
?

Penalized (NS)

$$\partial_t \boldsymbol{u}^{\eta} - \Delta \boldsymbol{u}^{\eta} + \boldsymbol{u}^{\eta} \cdot \nabla \boldsymbol{u}^{\eta} - \eta \nabla \operatorname{div} \boldsymbol{u}^{\eta} = 0.$$
 (NS)_{\eta}

 $(NS)_{\eta}$: approximate problem of (NS).

Question

$$\eta \to \infty \Longrightarrow (\mathbf{u}^{\eta}, p^{\eta}) \to (\mathbf{u}, p)$$
?

To answer this question, it is worthwhile well to get *error* estimates between (u^{η}, p^{η}) and (u, p).

Penalized (NS)

$$\partial_t u^{\eta} - \Delta u^{\eta} + u^{\eta} \cdot \nabla u^{\eta} - \eta \nabla \operatorname{div} u^{\eta} = 0.$$
 (NS)_{\eta}

 $(NS)_{\eta}$: approximate problem of (NS).

Question

$$\eta \to \infty \Longrightarrow (\mathbf{u}^{\eta}, p^{\eta}) \to (\mathbf{u}, p)$$
?

To answer this question, it is worthwhile well to get *error* estimates between $(\mathbf{u}^{\eta}, p^{\eta})$ and (\mathbf{u}, p) .

Known results

- Temam (1968): error estimate for stationary Stokes and Navier-Stokes in bounded domain (L^2 theory)
- Shen (1995): error estimate for nonstationary Stokes and Navier-Stokes in bounded domain (L^2 theory)

Penalized (NS)

$$\partial_t u^{\eta} - \Delta u^{\eta} + u^{\eta} \cdot \nabla u^{\eta} - \eta \nabla \operatorname{div} u^{\eta} = 0.$$
 (NS)_{\eta}

 $(NS)_{\eta}$: approximate problem of (NS).

Question

$$\eta \to \infty \Longrightarrow (\mathbf{u}^{\eta}, p^{\eta}) \to (\mathbf{u}, p)$$
?

To answer this question, it is worthwhile well to get *error* estimates between $(\mathbf{u}^{\eta}, p^{\eta})$ and (\mathbf{u}, p) .

Known results

- Temam (1968): error estimate for stationary Stokes and Navier-Stokes in bounded domain (L^2 theory)
- Shen (1995): error estimate for nonstationary Stokes and Navier-Stokes in bounded domain (L^2 theory)
- Y. Saito (2010): error estimate for Stokes resolvent problem in \mathbb{R}^d (L^r theory)

Main topic

Topic:

- \blacksquare η -dependence of solution to penalized system
- Error estimate between solutions to original problem and penalized problem.

Main topic

Topic:

- \blacksquare η -dependence of solution to penalized system
- Error estimate between solutions to original problem and penalized problem.

Contents

- **1** Estimate solution to penalized **Stokes** equation which is linearized problem of $(NS)_{\eta}$
- Error estimate for the Stokes equation case
- **3** Error estimate for the mild solution of $(NS)_{\eta}$. In particular, we are going to show that

$$\lim_{\eta \to \infty} \| \boldsymbol{u}^{\eta}(t) - \boldsymbol{u}(t) \|_{d} \le C(\boldsymbol{u}_{0}, \boldsymbol{u}_{0}^{\eta}).$$

Stokes equation

Let $d \ge 2$. We consider the Cauchy problems.

Stokes equation (ST)

$$\partial_t \mathbf{u} - \Delta \mathbf{u} + \nabla p = 0,$$

$$x \in \mathbb{R}^d, t > 0,$$

$$\operatorname{div} \boldsymbol{u} = 0$$
,

$$x \in \mathbb{R}^d, t > 0, \tag{2b}$$

$$\boldsymbol{u}(x,0)=\boldsymbol{u_0},$$

$$x \in \mathbb{R}^d$$
.

(2a)

(2c)

Stokes equation

Let $d \geq 2$. We consider the Cauchy problems.

Stokes equation (ST)

$$\partial_t \mathbf{u} - \Delta \mathbf{u} + \nabla p = 0,$$

$$x \in \mathbb{R}^d, t > 0, \tag{2a}$$

$$\operatorname{div} \boldsymbol{u} = 0$$
,

$$x \in \mathbb{R}^d, t > 0, \tag{2b}$$

$$\boldsymbol{u}(x,0)=\boldsymbol{u_0},$$

$$x \in \mathbb{R}^d$$
.

Applying penalty method to (ST) we have

Penalized Stokes equation $(PST)_{\eta}$

$$\partial_t \mathbf{u}^{\eta} - \Delta \mathbf{u}^{\eta} - \eta \nabla \operatorname{div} \mathbf{u}^{\eta} = 0,$$

$$x \in \mathbb{R}^d, t > 0,$$

$$p^{\eta} = -\eta \operatorname{div} \boldsymbol{u}^{\eta},$$

$$x \in \mathbb{R}^d, t > 0,$$

$$\boldsymbol{u}^{\eta}(x,0) = \boldsymbol{u}_{0}^{\eta},$$

$$x \in \mathbb{R}^d$$
.

Helmholtz decomposition for $L^r(\mathbb{R}^d)$

To reformulate $(PST)_{\eta}$, we use the Helmholtz decomposition.

Helmholtz decomposition for $L^r(\mathbb{R}^d)$

To reformulate $(PST)_{\eta}$, we use the Helmholtz decomposition.

Helmholtz decomposition in \mathbb{R}^d

Let
$$1 < r < \infty \Longrightarrow L^r(\mathbb{R}^d) = L^r_\sigma(\mathbb{R}^d) \oplus G^r(\mathbb{R}^d)$$
, where
$$L^r_\sigma(\mathbb{R}^d) = \{ \pmb{u} \in L^r(\mathbb{R}^d) \mid \operatorname{div} \pmb{u} = 0 \},$$

$$G^r(\mathbb{R}^d) = \{ \nabla \phi \mid \phi \in \hat{W}^{1,r}(\mathbb{R}^d) \},$$

$$\hat{W}^{1,r}(\mathbb{R}^d) = \{ \phi \in L^1_{\operatorname{loc}}(\mathbb{R}^d) \mid \nabla \phi \in L^r(\mathbb{R}^d) \}.$$

- $ightharpoonup P = P_r: L^r(\mathbb{R}^d) o L^r_{\sigma}(\mathbb{R}^d)$: solenoidal projection

Reformulation of $(PST)_{\eta}$

Applying P and Q to $(PST)_{\eta}$ we have the following equations for $v^{\eta} = Pu^{\eta}$ and $w^{\eta} = Qu^{\eta}$.

Reformulation of $(PST)_{\eta}$

Applying P and Q to $(PST)_{\eta}$ we have the following equations for $v^{\eta} = Pu^{\eta}$ and $w^{\eta} = Qu^{\eta}$.

Eq. for solenoidal part

$$\partial_t \mathbf{v}^{\eta} - \Delta \mathbf{v}^{\eta} = 0, \quad \text{div } \mathbf{v}^{\eta} = 0, \qquad x \in \mathbb{R}^d, t > 0,$$

 $\mathbf{v}^{\eta}|_{t=0} = \mathbf{v}_0^{\eta} =: P \mathbf{u}^{\eta}$

Reformulation of (PST) $_{\eta}$

Applying P and Q to $(PST)_{\eta}$ we have the following equations for $v^{\eta} = Pu^{\eta}$ and $w^{\eta} = Qu^{\eta}$.

Eq. for solenoidal part

$$\partial_t \mathbf{v}^{\eta} - \Delta \mathbf{v}^{\eta} = 0, \quad \text{div } \mathbf{v}^{\eta} = 0, \qquad x \in \mathbb{R}^d, t > 0,$$

 $\mathbf{v}^{\eta}|_{t=0} = \mathbf{v}_0^{\eta} =: P \mathbf{u}^{\eta}$

and

Eq. for scalar potential part

$$\partial_t \boldsymbol{w}^{\eta} - (1 + \eta) \Delta \boldsymbol{w}^{\eta} = 0, \quad \boldsymbol{w}^{\eta} = \nabla \varphi^{\eta} \qquad x \in \mathbb{R}^d, t > 0,$$

 $\boldsymbol{w}^{\eta}|_{t=0} = \boldsymbol{w}_0^{\eta} =: Q \boldsymbol{u}_0^{\eta}$

Note:

$$-\Delta \mathbf{w} - \eta \nabla \operatorname{div} \mathbf{w} = -\Delta \nabla \varphi - \eta \nabla \operatorname{div} \nabla \varphi = -(1 + \eta) \Delta \nabla \varphi = -(1 + \eta) \mathbf{w}.$$

Linear heat equation

Linear heat eq.

$$\partial_t z - \mathbf{v} \Delta z = 0, \quad x \in \mathbb{R}^d, t > 0,$$

 $z(x,0) = z_0(x), \quad x \in \mathbb{R}^d.$

 $\nu > 0$: heat diffusivity.

Linear heat equation

Linear heat eq.

$$\partial_t z - \nu \Delta z = 0, \quad x \in \mathbb{R}^d, t > 0,$$

 $z(x,0) = z_0(x), \quad x \in \mathbb{R}^d.$

 $\nu > 0$: heat diffusivity.

$$z(x,t;\nu) = e^{\nu t \Delta} z_0 := \frac{1}{4\pi \nu t} \int_{\mathbb{R}^d} \exp\left(\frac{|x-\xi|^2}{4\nu t}\right) z_0(\xi) d\xi$$

Linear heat equation

Linear heat eq.

$$\partial_t z - \mathbf{v} \Delta z = 0, \quad x \in \mathbb{R}^d, t > 0,$$

 $z(x,0) = z_0(x), \quad x \in \mathbb{R}^d.$

 $\nu > 0$: heat diffusivity.

$$z(x,t;\nu) = e^{\nu t \Delta} z_0 := \frac{1}{4\pi \nu t} \int_{\mathbb{R}^d} \exp\left(\frac{|x-\xi|^2}{4\nu t}\right) z_0(\xi) d\xi$$

Lemma (L^r - L^q estimate)

Let $\nu>0,$ $1\leq r\leq q\leq\infty,$ $j\in\mathbb{N}_0,$ $\alpha\in\mathbb{N}_0^d$. Then the following estimate holds for any t>0.

$$\|\partial_t^j \partial_x^{\alpha} z(\cdot, t; \nu)\|_q \le C_{q, r, \alpha, j} \nu^{-\frac{d}{2} \left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2} t} t^{-\frac{d}{2} \left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2} - j} \|z_0\|_r$$

Let
$$\pmb{u}_0^\eta \in L^r(\mathbb{R}^d)$$
 $(1 < r < \infty)$ and set $\pmb{v}_0^\eta := P \pmb{u}_0^\eta \in L_\sigma^r$ and $\pmb{w}_0^\eta := Q \pmb{u}_0^\eta \in G^r \Longrightarrow$

- $\mathbf{v}^{\eta}(t) = e^{t\Delta} \mathbf{v}_0^{\eta}$
- $\mathbf{w}^{\eta}(t) = e^{(1+\eta)t\Delta} \mathbf{w}_0^{\eta}$

Let
$$\pmb{u}_0^{\eta} \in L^r(\mathbb{R}^d)$$
 $(1 < r < \infty)$ and set $\pmb{v}_0^{\eta} := P \pmb{u}_0^{\eta} \in L_{\sigma}^r$ and $\pmb{w}_0^{\eta} := Q \pmb{u}_0^{\eta} \in G^r \Longrightarrow$

- $v^{\eta}(t) = e^{t\Delta} v_0^{\eta}$
- $\mathbf{w}^{\eta}(t) = e^{(1+\eta)t\Delta} \mathbf{w}_0^{\eta}$

As a consequence of Lemma (L^r - L^q estimate), we have

$$\begin{split} \|\partial_t^j \partial_x^{\alpha} \boldsymbol{v}^{\eta}(t)\|_q &\leq C_{q,r} t^{-\frac{d}{2} \left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2} - j} \|\boldsymbol{v}_0^{\eta}\|_r, \\ \|\partial_t^j \partial_x^{\alpha} \boldsymbol{w}^{\eta}(t)\|_q &\leq C_{q,r} (1 + \eta)^{-\frac{d}{2} \left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2}} t^{-\frac{d}{2} \left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2} - j} \|\boldsymbol{v}_0^{\eta}\|_r \end{split}$$

for
$$1 < r \le q \le \infty \ (r \ne \infty), t > 0, j \in \mathbb{N}_0, \alpha \in \mathbb{N}_0^d$$
.

Let
$$\pmb{u}_0^\eta \in L^r(\mathbb{R}^d)$$
 $(1 < r < \infty)$ and set $\pmb{v}_0^\eta := P \pmb{u}_0^\eta \in L_\sigma^r$ and $\pmb{w}_0^\eta := Q \pmb{u}_0^\eta \in G^r \Longrightarrow$

- $v^{\eta}(t) = e^{t\Delta} v_0^{\eta}$
- $\mathbf{w}^{\eta}(t) = e^{(1+\eta)t\Delta} \mathbf{w}_0^{\eta}$

As a consequence of Lemma (L^r - L^q estimate), we have

$$\begin{split} \|\partial_t^j \partial_x^\alpha \boldsymbol{v}^\eta(t)\|_q &\leq C_{q,r} t^{-\frac{d}{2}\left(\frac{1}{r}-\frac{1}{q}\right)-\frac{|\alpha|}{2}-j} \|\boldsymbol{v}_0^\eta\|_r, \\ \|\partial_t^j \partial_x^\alpha \boldsymbol{w}^\eta(t)\|_q &\leq C_{q,r} (1+\eta)^{-\frac{d}{2}\left(\frac{1}{r}-\frac{1}{q}\right)-\frac{|\alpha|}{2}} t^{-\frac{d}{2}\left(\frac{1}{r}-\frac{1}{q}\right)-\frac{|\alpha|}{2}-j} \|\boldsymbol{v}_0^\eta\|_r \\ \text{for } 1 < r \leq q \leq \infty \ (r \neq \infty), \ t > 0, \ j \in \mathbb{N}_0, \alpha \in \mathbb{N}_0^d. \\ \text{In particular } q = r, \ j = 0, \alpha = (0,\dots,0) \Longrightarrow \end{split}$$

$$\|\boldsymbol{w}^{\eta}(t)\|_{r} \leq C_{q,r} \|\boldsymbol{w}_{0}^{\eta}\|_{r}.$$

Let
$$\pmb{u}_0^\eta \in L^r(\mathbb{R}^d)$$
 $(1 < r < \infty)$ and set $\pmb{v}_0^\eta := P \pmb{u}_0^\eta \in L_\sigma^r$ and $\pmb{w}_0^\eta := Q \pmb{u}_0^\eta \in G^r \Longrightarrow$

- $v^{\eta}(t) = e^{t\Delta} v_0^{\eta}$
- $\mathbf{w}^{\eta}(t) = e^{(1+\eta)t\Delta}\mathbf{w}_0^{\eta}$

As a consequence of Lemma (L^r - L^q estimate), we have

$$\begin{split} \|\partial_t^j \partial_x^\alpha \boldsymbol{v}^\eta(t)\|_q &\leq C_{q,r} t^{-\frac{d}{2}\left(\frac{1}{r}-\frac{1}{q}\right)-\frac{|\alpha|}{2}-j} \|\boldsymbol{v}_0^\eta\|_r, \\ \|\partial_t^j \partial_x^\alpha \boldsymbol{w}^\eta(t)\|_q &\leq C_{q,r} (1+\eta)^{-\frac{d}{2}\left(\frac{1}{r}-\frac{1}{q}\right)-\frac{|\alpha|}{2}} t^{-\frac{d}{2}\left(\frac{1}{r}-\frac{1}{q}\right)-\frac{|\alpha|}{2}-j} \|\boldsymbol{v}_0^\eta\|_r \\ \text{for } 1 < r \leq q \leq \infty \ (r \neq \infty), \ t > 0, \ j \in \mathbb{N}_0, \alpha \in \mathbb{N}_0^d. \\ \text{In particular } q = r, \ j = 0, \alpha = (0,\dots,0) \Longrightarrow \\ \|\boldsymbol{w}^\eta(t)\|_r < C_{q,r} \|\boldsymbol{w}_0^\eta\|_r. \end{split}$$

Remark

For any $\eta > 0$, $\|\boldsymbol{w}^{\eta}(t)\|_{r}$ is bounded, provided that $\boldsymbol{u}_{0}^{\eta} \in L^{r}(\mathbb{R}^{d})$.

Estimate for $\mathbf{w}^{\eta}(t)$

For
$$\boldsymbol{w}_0^{\eta} = Q_r \boldsymbol{u}_0^{\eta} \in G^r(\mathbb{R}^d)$$
, put $\boldsymbol{w}_0^{\eta} = \nabla \varphi_0^{\eta}, \varphi_0^{\eta} \in \hat{W}^{1,r}(\mathbb{R}^d)$.

Estimate for $\mathbf{w}^{\eta}(t)$

For
$$\boldsymbol{w}_0^{\eta} = Q_r \boldsymbol{u}_0^{\eta} \in G^r(\mathbb{R}^d)$$
, put $\boldsymbol{w}_0^{\eta} = \nabla \varphi_0^{\eta}, \varphi_0^{\eta} \in \hat{W}^{1,r}(\mathbb{R}^d)$.

Lemma

$$C_0^{\infty}(\mathbb{R}^d) \subset \hat{W}^{1,r}(\mathbb{R}^d)$$
: dense w.r.t $\|\nabla \cdot \|_r$.

For
$$\pmb{w}_0^\eta = Q_r \pmb{u}_0^\eta \in G^r(\mathbb{R}^d)$$
, put $\pmb{w}_0^\eta = \nabla \varphi_0^\eta, \varphi_0^\eta \in \hat{W}^{1,r}(\mathbb{R}^d)$.

Lemma

$$C_0^{\infty}(\mathbb{R}^d) \subset \hat{W}^{1,r}(\mathbb{R}^d)$$
: dense w.r.t $\|\nabla \cdot \|_r$.

For any $\varepsilon > 0$, there exists $\varphi_{0,\varepsilon} \in C_0^{\infty}(\mathbb{R}^d)$ such that

$$\|\boldsymbol{w}_0^{\eta} - \nabla \varphi_{0,\varepsilon}\|_r = \|\nabla \varphi_0 - \nabla \varphi_{0,\varepsilon}\|_r < \varepsilon.$$

For
$$\pmb{w}_0^\eta = Q_r \pmb{u}_0^\eta \in G^r(\mathbb{R}^d)$$
, put $\pmb{w}_0^\eta = \nabla \varphi_0^\eta, \varphi_0^\eta \in \hat{W}^{1,r}(\mathbb{R}^d)$.

Lemma

$$C_0^{\infty}(\mathbb{R}^d) \subset \hat{W}^{1,r}(\mathbb{R}^d)$$
: dense w.r.t $\|\nabla \cdot \|_r$.

For any $\varepsilon > 0$, there exists $\varphi_{0,\varepsilon} \in C_0^{\infty}(\mathbb{R}^d)$ such that

$$\|\boldsymbol{w}_0^{\eta} - \nabla \varphi_{0,\varepsilon}\|_r = \|\nabla \varphi_0 - \nabla \varphi_{0,\varepsilon}\|_r < \varepsilon.$$

By (13) and L^r - L^q estimate, we have

$$\|\boldsymbol{w}^{\eta}(t)\|_{r} = \|e^{t(1+\eta)\Delta}(\boldsymbol{w}_{0}^{\eta} - \nabla\varphi_{0,\varepsilon}^{\eta})\|_{r} + \|e^{(1+\eta)\Delta}\nabla\varphi_{0,\varepsilon}^{\eta}\|_{r}$$

$$\leq C_{r}\|\boldsymbol{w}_{0}^{\eta} - \nabla\varphi_{0,\varepsilon}^{\eta}\|_{r} + \|\nabla e^{(1+\eta)\Delta}\varphi_{0,\varepsilon}^{\eta}\|_{r}$$

$$\leq C_{r}\varepsilon + C_{r}(1+\eta)^{-\frac{d}{2}(\frac{1}{s}-\frac{1}{r})-\frac{1}{2}}t^{-\frac{d}{2}(\frac{1}{s}-\frac{1}{r})-\frac{1}{2}}\|\varphi_{0,\varepsilon}^{\eta}\|_{s}, (^{\exists}s \in [1,r])$$

$$\leq C_{r}\varepsilon + C_{r,t_{0},d}(1+\eta)^{-\frac{d}{2}(\frac{1}{s}-\frac{1}{r})-\frac{1}{2}}, \quad t \geq t_{0} > 0.$$

By density argument, we obtained

$$\| \boldsymbol{w}^{\eta}(t) \|_{r} \le C_{r} \varepsilon + C_{r,t_{0},d} (1+\eta)^{-\frac{1}{2}}, \quad t \ge t_{0} > 0 \quad (s=r, \text{for simplicity}).$$

For each $t \ge t_0 > 0$, we have

$$\lim_{\eta \to \infty} \|\boldsymbol{w}^{\eta}(t)\|_{r} = 0.$$

By density argument, we obtained

$$\|\boldsymbol{w}^{\eta}(t)\|_{r} \leq C_{r}\varepsilon + C_{r,t_{0},d}(1+\eta)^{-\frac{1}{2}}, \quad t \geq t_{0} > 0 \quad (s=r, \text{for simplicity}).$$

For each $t \ge t_0 > 0$, we have

$$\lim_{\eta \to \infty} \|\boldsymbol{w}^{\eta}(t)\|_{r} = 0.$$

- Since $p^{\eta}(t) = -\eta \operatorname{div} \boldsymbol{u}^{\eta}(t) = -\eta \operatorname{div} \boldsymbol{w}^{\eta}(t)$ (because $\operatorname{div} \boldsymbol{v}^{\eta}(t) = 0$), it suffices to estimate $\eta \nabla^2 \boldsymbol{w}^{\eta}(t)$.
- To get estimate for the pressure p^{η} , the above estimate plays an essential role.

Error estimates

Let $1 < r < \infty$ and

- (u(t), p(t)): solution to Stokes equation with initial data $u_0 \in L^r_\sigma(\mathbb{R}^d)$ (compatibility condition)
- $m{u}^{\eta}(t)$: solution to penalized Stokes equation with initial data $m{u}^{\eta}_0 \in L^r(\mathbb{R}^d)$

Set

$$U^{\eta}(t) := u^{\eta}(t) - u(t), \quad \Pi^{\eta}(t) := p^{\eta}(t) - p(t).$$

 (\boldsymbol{U},P) satisfies

$$\partial_t U^{\eta} - \Delta U^{\eta} + \nabla \Pi = 0, \qquad x \in \mathbb{R}^d, t > 0,$$

$$\operatorname{div} U^{\eta} = -p^{\eta}/\eta, \qquad x \in \mathbb{R}^d, t > 0,$$

$$U^{\eta}|_{t=0} = U =: u_0^{\eta} - u_0, \qquad x \in \mathbb{R}^d.$$

Error estimates

By Helmholtz projection P_r and $Q_r:=I-P_r$, equation for U^η,Π^η is decomposed into

$$\partial_t(\boldsymbol{v}^{\eta} - \boldsymbol{u}) - \Delta(\boldsymbol{v}^{\eta} - \boldsymbol{u}) = 0, \quad \operatorname{div}(\boldsymbol{v}^{\eta} - \boldsymbol{u}) = 0, \quad x \in \mathbb{R}^d, t > 0,$$
$$(\boldsymbol{v}^{\eta} - \boldsymbol{u})|_{t=0} = (v_0^{\eta} - \boldsymbol{u}_0) \in L_{\sigma}^r(\mathbb{R}^d).$$

and

$$\partial_t \mathbf{w}^{\eta} - (1+\eta)\Delta \mathbf{w}^{\eta} = 0, \qquad x \in \mathbb{R}^d, t > 0,$$

$$\mathbf{w}^{\eta}|_t = 0 = \mathbf{w}_0^{\eta} \in G^r(\mathbb{R}^d).$$

Here we have used the fact that $\nabla p = 0$ in G^r .

Since

- $||U^{\eta}(t)|| \le ||v^{\eta}(t) u(t)|| + ||w^{\eta}(t)||$
- $\blacksquare \|\nabla \Pi^{\eta}(t)\| = \|\nabla p^{\eta}(t)\|$

we have by previous estimate,

Theorem 1 (Error estimate).

(i) Let $1 < r \le q \le \infty$ $(r \ne \infty)$. Then for any $\varepsilon > 0$, $\exists \varphi_{0,\varepsilon} \in C_0^{\infty}(\mathbb{R}^d)$ such that the following estimate holds for any $\eta > 0, t > 0$.

$$\begin{split} \|\partial_t^j \partial_x^\alpha U^\eta(t)\|_q &\leq C_{q,r} t^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2} - j} \|v_0^\eta - u_0\|_r \\ &+ C_{q,r} \varepsilon t^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2} - j} (1 + \eta)^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2}} \\ &+ C_{q,r} t^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha| + 1}{2} - j} (1 + \eta)^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha| + 1}{2}} \|\varphi_{0,\varepsilon}^\eta\|_r \end{split}$$

Since

- $||U^{\eta}(t)|| \le ||v^{\eta}(t) u(t)|| + ||w^{\eta}(t)||$
- $\blacksquare \|\nabla \Pi^{\eta}(t)\| = \|\nabla p^{\eta}(t)\|$

we have by previous estimate,

Theorem 1 (Error estimate).

(i) Let $1 < r \le q \le \infty$ $(r \ne \infty)$. Then for any $\varepsilon > 0$, ${}^{\exists} \varphi_{0,\varepsilon} \in C_0^{\infty}(\mathbb{R}^d)$ such that the following estimate holds for any $\eta > 0$, t > 0.

$$\begin{split} \|\partial_t^j \partial_x^\alpha U^\eta(t)\|_q &\leq C_{q,r} t^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2} - j} \|v_0^\eta - u_0\|_r \\ &+ C_{q,r} \varepsilon t^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2} - j} (1 + \eta)^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|}{2}} \\ &+ C_{q,r} t^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|+1}{2} - j} (1 + \eta)^{-\frac{d}{2}\left(\frac{1}{r} - \frac{1}{q}\right) - \frac{|\alpha|+1}{2}} \|\varphi_{0,\varepsilon}^\eta\|_r \end{split}$$

(ii) In particular
$$q = r$$
, $j = 0$, $\alpha = (0, \dots, 0)$,

$$\limsup_{n \to \infty} \|U^{\eta}(t)\|_{r} \le C_{r} \|v_{0}^{\eta} - u_{0}\|_{r}, \quad t \ge t_{0} > 0,$$

$$\limsup_{n \to \infty} \|\Pi^{\eta}(t)\|_{r} = 0, \quad t \ge t_0 > 0$$

Remarks on Theorem 1

- If $\|\boldsymbol{v}_0^{\eta} \boldsymbol{u}_0\|_r \ll 1$, $\eta \gg 1 \Longrightarrow \|\boldsymbol{U}^{\eta}(t)\|_r \ll 1$. In particular if $\boldsymbol{u}_0 = \boldsymbol{v}_0^{\eta}$, error is managed by only $\boldsymbol{w}^{\eta}(t)$.
- If $\boldsymbol{u}_0^{\eta} = \boldsymbol{u}_0 \in L_{\sigma}^r \Longrightarrow \boldsymbol{w}_0^{\eta} = 0$. Hence, there is **no** error.
- We have used the fact that P_r and ∂_{x_j} commute each other. Our argument does not work in $\Omega \neq \mathbb{R}^d$.
- Our argument deeply depends on explicit formula of $e^{\nu \Delta t}$.

Navier-Stokes equation

Penalized Navier-Stokes equation $(NS)_{\eta}$

$$\partial_t \mathbf{u}^{\eta} - \Delta \mathbf{u}^{\eta} - \eta \nabla \operatorname{div} \mathbf{u}^{\eta} + \mathbf{u}^{\eta} \cdot \nabla \mathbf{u}^{\eta} = 0, \qquad x \in \mathbb{R}^d, t > 0,$$
 (5a)

$$p^{\eta} = -\eta \operatorname{div} \boldsymbol{u}^{\eta}, \qquad x \in \mathbb{R}^{d}, t > 0,$$
 (5b)

$$\boldsymbol{u}^{\eta}(x,0) = \boldsymbol{u}_0^{\eta}, \qquad x \in \mathbb{R}^d. \tag{5c}$$

Navier-Stokes equation

Penalized Navier-Stokes equation $(NS)_{\eta}$

$$\partial_t \mathbf{u}^{\eta} - \Delta \mathbf{u}^{\eta} - \eta \nabla \operatorname{div} \mathbf{u}^{\eta} + \mathbf{u}^{\eta} \cdot \nabla \mathbf{u}^{\eta} = 0, \qquad x \in \mathbb{R}^d, t > 0,$$
 (5a)

$$p^{\eta} = -\eta \operatorname{div} \mathbf{u}^{\eta}, \qquad x \in \mathbb{R}^{d}, t > 0,$$
 (5b)

$$\boldsymbol{u}^{\eta}(x,0) = \boldsymbol{u}_0^{\eta}, \qquad x \in \mathbb{R}^d. \tag{5c}$$

Let $L_{r,\eta} \mathbf{u} := -\Delta \mathbf{u} - \eta \nabla \operatorname{div} \mathbf{u}$ $(1 < r < \infty)$. Then $-L_{r,\eta}$ generates an analytic semigroup $(e^{-tL_{r,\eta}})_{t \geq 0}$ on $L^r(\mathbb{R}^d)$ and the semigroup satisfies standard $L^r \cdot L^q$ type estimates. Therefore

Proposition

 $m{u}_0^\eta \in L^d(\mathbb{R}^d) \Longrightarrow \exists T>0 \text{ such that } m{u}^\eta(t) \in C([0,T);L^d(\mathbb{R}^d)) \text{: mild sol. to (NS)}_\eta \text{ uniquely exists.}$

In particular $\|\mathbf{u}_0^{\eta}\|_d \ll 1 \Longrightarrow$ mild solution exists globally in time.

 $\star L^d(\mathbb{R}^d)$ is scale invariant space of (NS) and (NS) $_{\eta}$.

Reformulation

Put
$$\mathbf{u}^{\eta} = \mathbf{v}^{\eta} + \mathbf{w}^{\eta}$$
, div $\mathbf{v}^{\eta} = 0$, $\mathbf{w}^{\eta} = \nabla \varphi^{\eta}$.

Abstract form of $(NS)_{\eta}$: $(ABS)_{\eta}$

$$\partial_t \mathbf{v}^{\eta} - \Delta \mathbf{v}^{\eta} + P(\mathbf{u} \cdot \nabla \mathbf{u}) = 0, \qquad x \in \mathbb{R}^d, t > 0,$$

$$\partial_t \mathbf{w}^{\eta} - (1 + \eta) \Delta \mathbf{w} + Q(\mathbf{u} \cdot \nabla \mathbf{u}) = 0, \qquad x \in \mathbb{R}^d, t > 0,$$

$$\mathbf{v}^{\eta}(x, 0) = \mathbf{v}_0^{\eta} =: P \mathbf{u}_0^{\eta}, \quad \mathbf{w}^{\eta}(x, 0) = \mathbf{w}_0^{\eta} =: Q \mathbf{u}_0^{\eta}.$$

Reformulation

Put
$$\mathbf{u}^{\eta} = \mathbf{v}^{\eta} + \mathbf{w}^{\eta}$$
, div $\mathbf{v}^{\eta} = 0$, $\mathbf{w}^{\eta} = \nabla \varphi^{\eta}$.

Abstract form of $(NS)_{\eta}$: $(ABS)_{\eta}$

$$\partial_t \mathbf{v}^{\eta} - \Delta \mathbf{v}^{\eta} + P(\mathbf{u} \cdot \nabla \mathbf{u}) = 0, \qquad x \in \mathbb{R}^d, t > 0,$$

$$\partial_t \mathbf{w}^{\eta} - (1 + \eta) \Delta \mathbf{w} + Q(\mathbf{u} \cdot \nabla \mathbf{u}) = 0, \qquad x \in \mathbb{R}^d, t > 0,$$

$$\mathbf{v}^{\eta}(x, 0) = \mathbf{v}_0^{\eta} =: P \mathbf{u}_0^{\eta}, \quad \mathbf{w}^{\eta}(x, 0) = \mathbf{w}_0^{\eta} =: Q \mathbf{u}_0^{\eta}.$$

Remark

In the Navier-Stokes equation, there are nonlinear interactions between v^{η} and w^{η} .

Mild formulation

By Duhamel's principle (ABS) $_{\eta}$ is converted into integral equations.

Integral equations $(INT)_{\eta}$

$$\mathbf{v}(t) = e^{t\Delta}\mathbf{v}_0 - \int_0^t e^{(t-s)\Delta}P(\mathbf{u}(s)\cdot\nabla\mathbf{u}(s)) ds =: \mathbf{v}^0(t) + N_1(\mathbf{u})(t),$$

$$\mathbf{w}(t) = e^{(1+\eta)t\Delta}\mathbf{w}_0 - \int_0^t e^{(1+\eta)t\Delta}Q(\mathbf{u}(s)\cdot\nabla\mathbf{u}(s)) ds$$

$$= \mathbf{w}^0(t) + N_2(\mathbf{u})(t).$$

Define mapping Φ by

$$\Phi(\mathbf{v}, \mathbf{w}) = \begin{pmatrix} \mathbf{v}^0(t) \\ \mathbf{w}^0(t) \end{pmatrix} + \begin{pmatrix} N_1(\mathbf{u})(t) \\ N_2(\mathbf{u})(t) \end{pmatrix}.$$

Task

Show Φ has a fixed point, provided that $\|(v_0, w_0)\|_d \leq \exists \delta$.

Small data global existence

Theorem 4 (Small data global existence)

Let
$$(\boldsymbol{v}_0, \boldsymbol{w}_0) \in L^d_\sigma(\mathbb{R}^d) \times G^r(\mathbb{R}^d)$$
. Then $\exists \delta > 0$ s.t. if $\|(\boldsymbol{v}_0, \boldsymbol{w}_0)\| < \delta \Longrightarrow \exists 1 \ (\boldsymbol{v}(t), \boldsymbol{w}(t)) \in C([0, \infty); L^d_\sigma(\mathbb{R}^d) \times G^d(\mathbb{R}^d))$ which enjoys
$$\lim_{t \to +0} \|(\boldsymbol{v}(t), \boldsymbol{w}(t)) - (\boldsymbol{v}_0, \boldsymbol{w}_0)\|_d = 0,$$

$$\|(\boldsymbol{v}(t), \boldsymbol{w}(t))\|_r = O\big(t^{-\frac{1}{2} + \frac{d}{2r}}\big), \quad d \le r < \infty,$$

$$\|\nabla(\boldsymbol{v}(t), \boldsymbol{w}(t))\|_d = O\big(t^{-\frac{1}{2}}\big)$$

as $t \to \infty$ for any fixed $\eta > 0$.

Small data global existence

Theorem 4 (Small data global existence)

Let
$$(\boldsymbol{v}_0, \boldsymbol{w}_0) \in L^d_\sigma(\mathbb{R}^d) \times G^r(\mathbb{R}^d)$$
. Then $\exists \delta > 0$ s.t. if $\|(\boldsymbol{v}_0, \boldsymbol{w}_0)\| < \delta \Longrightarrow \exists 1 \ (\boldsymbol{v}(t), \boldsymbol{w}(t)) \in C([0, \infty); L^d_\sigma(\mathbb{R}^d) \times G^d(\mathbb{R}^d))$ which enjoys
$$\lim_{t \to +0} \|(\boldsymbol{v}(t), \boldsymbol{w}(t)) - (\boldsymbol{v}_0, \boldsymbol{w}_0)\|_d = 0,$$

$$\|(\boldsymbol{v}(t), \boldsymbol{w}(t))\|_r = O\big(t^{-\frac{1}{2} + \frac{d}{2r}}\big), \quad d \le r < \infty,$$

$$\|\nabla(\boldsymbol{v}(t), \boldsymbol{w}(t))\|_d = O\big(t^{-\frac{1}{2}}\big)$$

as $t \to \infty$ for any fixed $\eta > 0$.

Furthermore, the above mild solution satisfies

$$\|\boldsymbol{w}(t)\|_{r} = O(\eta^{-\frac{1}{2} + \frac{d}{2r}}), \quad d \le r < \infty$$

as $\eta \to +\infty$ for fixed $t > t_0 > 0$.

Kato's argument to $(INS)_{\eta}$

As an underlying space, set

$$X_{R} := \{ (\boldsymbol{v}(t), \boldsymbol{w}(t)) \in C([0, \infty); L_{\sigma}^{d}(\mathbb{R}^{d}) \times G^{r}(\mathbb{R}^{d})) \mid \lim_{t \to +0} \|\boldsymbol{v}(t) - \boldsymbol{v}_{0}\|_{d} = 0, \quad \lim_{t \to +0} \|\boldsymbol{w}(t) - \boldsymbol{w}_{0}\|_{d} = 0,$$

$$\lim_{t \to +0} |\boldsymbol{u}|_{\frac{1}{2} - \frac{d}{2r}, r, t} = 0, \quad \lim_{t \to +0} |\nabla \boldsymbol{u}|_{\frac{1}{2}, d, t} = 0,$$

$$\sup_{t > 0, \eta > 0} |||\Phi(\boldsymbol{v}, \boldsymbol{w})(t)||| \leq 2R \|(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})\|_{d} \}$$

where $r \in (d, \infty)$ and constant R > 0 will be determined later.

$$|u|_{\ell,q,t} := \sup_{0 < s \le t} s^{\ell} (||v(s)||_q + \sup_{\eta} (1 + \eta)^{\ell} ||w(s)||_q)$$

$$||u||_{t} := |u|_{0,d,t} + [u]_{t}$$

Estimates for Duhamel terms

Let r > d and 1/q = 1/r + 1/d. Then

$$||N_{1}(\boldsymbol{u})(t)||_{r} \leq \int_{0}^{t} ||e^{(t-s)\Delta}P(\boldsymbol{u}(s)\cdot\nabla\boldsymbol{u}(s))||_{r} ds$$

$$\leq C_{r,d} \int_{0}^{t} (t-s)^{-1/2} ||\boldsymbol{u}(s)||_{r} ||\nabla\boldsymbol{u}(s)||_{d} ds$$

$$\leq C_{r,d} \int_{0}^{t} (t-s)^{-1/2} s^{-1+d/2r} ds [\boldsymbol{u}]_{t}^{2}$$

$$\leq C_{r,d} t^{-1/2+d/2r} B(1/2, d/2r)[\boldsymbol{u}]_{t}^{2}$$

By similar manners,

$$||N_2(\mathbf{u})(t)||_d \le C_{r,d}[\mathbf{u}]_t^2, ||\nabla N_2(\mathbf{u})(t)||_d \le C_{r,d}t^{-1/2}[\mathbf{u}]_t^2$$

Let r > d and 1/q = 1/r + 1/d. Then

$$||N_{2}(\boldsymbol{u})(t)||_{r} \leq \int_{0}^{t} ||e^{(1+\eta)(t-s)\Delta}P(\boldsymbol{u}(s)\cdot\nabla\boldsymbol{u}(s))||_{r} ds$$

$$\leq C_{r,d}(1+\eta)^{-1/2} \int_{0}^{t} (t-s)^{-1/2} ||\boldsymbol{u}(s)||_{r} ||\nabla\boldsymbol{u}(s)||_{d} ds$$

$$\leq C_{r,d}(1+\eta)^{-1/2} \int_{0}^{t} (t-s)^{-1/2} s^{-1+d/2r} ds [\boldsymbol{u}]_{t}^{2}$$

$$\leq C_{r,d}(1+\eta)^{-1/2} t^{-1/2+d/2r} B(1/2,d/2r)[\boldsymbol{u}]_{t}^{2}$$

$$\leq C_{r,d}(1+\eta)^{-1/2+r/2d} [\boldsymbol{u}]_{t}^{2}$$

By similar manners,

$$||N_1(u)(t)||_d \le C_{r,d} (1+\eta)^{-d/2r} [u]_t^2 \le C_{r,d} [u]_t^2,$$

$$||\nabla N_1(u)(t)||_d \le C_{r,d} (1+\eta)^{-1/2-d/2r} t^{-1/2} [u]_t^2 \le C_{r,d} (1+\eta)^{-1/2} [u]_t^2$$

If
$$(v, w) \in X_R \Longrightarrow$$

$$|||\Phi(v, w)|||_t \le R ||(v_0, w_0)||_d + C[u]_t^2$$

$$\le R ||(v_0, w_0)||_d + 4CR^2 ||(v_0, w_0)||_d^2$$

for any t > 0, $\eta > 0$.

$$\mathsf{lf}\,(\pmb{v},\pmb{w})\in X_{\pmb{R}}\Longrightarrow$$

$$|||\Phi(\boldsymbol{v}, \boldsymbol{w})|||_{t} \leq R||(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})||_{d} + C[\boldsymbol{u}]_{t}^{2}$$

$$\leq R||(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})||_{d} + 4CR^{2}||(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})||_{d}^{2}$$

for any t > 0, $\eta > 0$. Choose $\delta > 0$ in such a way that $4CR\delta < 1$,

$$|||\Phi(\mathbf{v}, \mathbf{w})|||_t \le 2R||(\mathbf{v}_0, \mathbf{w}_0)||_d$$

for any t > 0, $\eta > 0$.

If
$$(\boldsymbol{v}, \boldsymbol{w}) \in X_R \Longrightarrow$$

$$|||\Phi(\boldsymbol{v}, \boldsymbol{w})|||_{t} \leq R||(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})||_{d} + C[\boldsymbol{u}]_{t}^{2}$$

$$\leq R||(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})||_{d} + 4CR^{2}||(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})||_{d}^{2}$$

for any t > 0, $\eta > 0$. Choose $\delta > 0$ in such a way that $4CR\delta < 1$,

$$|||\Phi(\mathbf{v}, \mathbf{w})|||_t \le 2R||(\mathbf{v_0}, \mathbf{w_0})||_d$$

for any t > 0, $\eta > 0$.

Summing up the above, we have

Lemma

 $\Phi(\boldsymbol{v}, \boldsymbol{w}) \in X_R$, provided $(\boldsymbol{v}, \boldsymbol{w}) \in X_R$.

If
$$(\boldsymbol{v}, \boldsymbol{w}) \in X_R \Longrightarrow$$

$$|||\Phi(\boldsymbol{v}, \boldsymbol{w})|||_{t} \leq R||(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})||_{d} + C[\boldsymbol{u}]_{t}^{2}$$

$$\leq R||(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})||_{d} + 4CR^{2}||(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})||_{d}^{2}$$

for any t > 0, $\eta > 0$. Choose $\delta > 0$ in such a way that $4CR\delta < 1$,

$$|||\Phi(\boldsymbol{v}, \boldsymbol{w})|||_t \le 2R||(\boldsymbol{v}_0, \boldsymbol{w}_0)||_d$$

for any t > 0, $\eta > 0$.

Summing up the above, we have

Lemma

 $\Phi(\boldsymbol{v}, \boldsymbol{w}) \in X_R$, provided $(\boldsymbol{v}, \boldsymbol{w}) \in X_R$.

Since a similar arguments works well for the difference $\Phi(v_1, w_1) - \Phi(v_2, w_2)$, we have Φ : contraction mapping on X_R into itself.

Estimate of $\|\boldsymbol{w}(t)\|_d$

Claim

$$\lim_{\eta \to \infty} \|\boldsymbol{w}(t)\|_d = 0, \quad t \ge t_0 > 0.$$

Estimate of $\|\boldsymbol{w}(t)\|_d$

Claim

$$\lim_{\eta \to \infty} \| \boldsymbol{w}(t) \|_{d} = 0, \quad t \ge t_0 > 0.$$

We first show the above claim for $(v_0, w_0) \in C_{0,\sigma}^{\infty}(\mathbb{R}^d) \times C_0^{\infty}(\mathbb{R}^d)$. Take $q \in (d/2, d)$ and set $\sigma = d/2q - 1/2$ (i.e., $0 < \sigma < 1/2$). By small data global existence result, $L^q - L^d$ est. and $L^{d/2} - L^d$ est. we have,

$$\|\boldsymbol{w}(t)\|_{d} \leq C t^{-\sigma} (1+\eta)^{-\sigma} \|\boldsymbol{w}_{0}\|_{q}$$

$$+ C (1+\eta)^{-1/2} \int_{0}^{t} (t-s)^{-\frac{1}{2}} \|\boldsymbol{u}(s)\|_{d} \|\nabla \boldsymbol{u}(s)\|_{d} ds$$

$$\leq C t^{-\sigma} (1+\eta)^{-\sigma} (\|\boldsymbol{w}_{0}\|_{q} + \tilde{C}[\boldsymbol{u}]_{\sigma,d,t} \|(\boldsymbol{v}_{0}, \boldsymbol{w}_{0})\|_{d})$$

Take initial data in such a way that $\tilde{C} \| (v_0, w_0) \|_d < 1/2$

$$\sup_{0 < s \le t} s^{\sigma} \left(\| \boldsymbol{v}(s) \|_{d} + \sup_{\eta > 0} (1 + \eta)^{\sigma} \| \boldsymbol{w}(s) \|_{d} \right) \le 2C \| (\boldsymbol{v}_{0}, \boldsymbol{w}_{0}) \|_{d}.$$

This implies that the previous Claim for t > 0.

For general initial data Claim follows from density argument.

Remark

The above proof also refines the decay rate as $t \to \infty$.

Error estimate

- u(t): global mild sol. of (NS) with $u_0 \in L^d_\sigma(\mathbb{R}^d)$, $\|u_0\|_d \ll 1$
- $v^{\eta}(t)$ and $w^{\eta}(t)$: global mild solution of (NS) $_{\eta}$ with initial data $\|v_0^{\eta}\|_d + \|w_0^{\eta}\|_d \ll 1$.

Set
$$\mathcal{E}^{\eta}(t) := \boldsymbol{v}^{\eta}(t) - \boldsymbol{u}(t)$$
.

Claim

 $\limsup_{\eta \to \infty} \|\mathcal{E}^{\eta}(t)\|_{d} \to 0 \text{ (for any } t \ge t_0 > 0).$

$$\mathcal{E}(t) := \mathbf{v}^{\eta}(t) - \mathbf{u}(t)$$
 satisfies

$$\mathcal{E}(t) = e^{t\Delta} \mathcal{E}_0 - \int_0^t e^{(t-s)\Delta} P(\mathcal{E} \cdot \nabla \boldsymbol{u} + \boldsymbol{v}^{\eta} \cdot \nabla \mathcal{E})(s) \, ds$$
$$- \int_0^t e^{(t-s)\Delta} P(\boldsymbol{w}^{\eta} \cdot \nabla \boldsymbol{v}^{\eta} + \boldsymbol{v}^{\eta} \cdot \nabla \boldsymbol{w}^{\eta} + \boldsymbol{w}^{\eta} + \nabla \boldsymbol{w}^{\eta})(s) \, ds$$

Since \mathcal{E} , u, v^{η} are solenoidal,

$$\mathcal{E}(t) = e^{t\Delta} \mathcal{E}_0 - \int_0^t e^{(t-s)\Delta} P(\operatorname{div}(\mathcal{E} \otimes \boldsymbol{u}) + \operatorname{div}(\boldsymbol{v}^{\eta} \otimes \mathcal{E}))(s) \, ds$$
$$- \int_0^t e^{(t-s)\Delta} P(\boldsymbol{w}^{\eta} \cdot \nabla \boldsymbol{v}^{\eta} + \boldsymbol{v}^{\eta} \cdot \nabla \boldsymbol{w}^{\eta} + \boldsymbol{w}^{\eta} + \nabla \boldsymbol{w}^{\eta})(s) \, ds.$$

If we choose $\|u_0\|_d$ and $\|v_0^{\eta}\|_d$ small enough (if necessary), we have by estimate for $w^{\eta}(t)$,

$$\|\mathcal{E}^{\eta}(t)\|_{d} \leq C \|\mathcal{E}_{0}\|_{d} + C(1+\eta)^{-\frac{1}{2} + \frac{d}{2r}}.$$

This implies the Claim.