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Navier-Stokes equation

Navier-Stokes equation (NS)

diu—Au+ (u-V)u+Vp =0, x €, t>0, (1a)
divu = 0, xeQ,t>0., (1b)
u(x,0) = uo(x), x € Q. (1c)

Q S RY (d > 2) (if 9Q # @ some boundary condition is imposed).
u= u',...,u?): velocity, p: pressure (unknown).
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Navier-Stokes equation

Navier-Stokes equation (NS)

diu—Au+ (u-V)u+Vp =0, x €, t>0, (1a)
divu = 0, xeQ,t>0., (1b)
u(x,0) = uo(x), x € Q. (1c)

Q S RY (d > 2) (if 9Q # @ some boundary condition is imposed).
u= u',...,u?): velocity, p: pressure (unknown).

Main difficulties of (NS)

m The pressure has no time evolution (1a)
m Divergence free constraint (1b)
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Difficulties in numerical computation

m7T>0,NeN h=T/N (time step size)
m U"(x) ~ u(x,t), P"(x) ~ p(x,t,) (t, = nh): difference
approximation of (NS) att = t,,.
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Difficulties in numerical computation

m7T>0,NeN h=T/N (time step size)
m U"(x) ~ u(x,t), P"(x) ~ p(x,t,) (t, = nh): difference
approximation of (NS) att = t,,.

Time discretization of (NS): Direct method

Un+1_Un
?—AU"—{—Un-VUn—l-VPn:O, n=0,1,...,N—1,
divU"™ = 0.
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Difficulties in numerical computation

m7T>0,NeN h=T/N (time step size)
m U"(x) ~ u(x,t), P"(x) ~ p(x,t,) (t, = nh): difference
approximation of (NS) att = t,,.

Time discretization of (NS): Direct method

Un+1_Un
?—AU"—{—Un-VUn—l-VPn:O, n=0,1,...,N—1,
divU"™ = 0.

Solving the above difference eq. w.r.t U" 1! we have

U"tl = U* + hAU" — hU" -VU" —hVP", n=0,1,....N —1,
divU" =0, n=0,1,...,N.
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Difficulties in numerical computation

Time discretization of (NS): Direct method

vt =" + h(AU" —U" -VU" —=VP"), n=0,1,...,N —1,
divU" =0, n=0,1,...,N.

m To obtain U"*!, we need not only U”, but also P".
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Difficulties in numerical computation

Time discretization of (NS): Direct method

vt =" + h(AU" —U" -VU" —=VP"), n=0,1,...,N —1,
divU" =0, n=0,1,...,N.

m To obtain U"*!, we need not only U”, but also P".
Since div U™ = 0, we have

—AP" = div(U" -VU"), xeQ, (NLP)
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Difficulties in numerical computation

Time discretization of (NS): Direct method

vt =" + h(AU" —U" -VU" —=VP"), n=0,1,...,N —1,
divU" =0, n=0,1,...,N.

m To obtain U"*!, we need not only U”, but also P".

Since div U™ = 0, we have

—AP" = div(U" -VU"), xeQ, (NLP)

m P"is represented by U". Formally, P = (—Agq)~ ! div(U" - VU™).
This representation is non-local.

m Boundary condition for P" ?

m Does div U"” = 0 hold for any n > 1, if we apply some space
discretization ?
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Difficulties in numerical computation

Time discretization of (NS): Direct method

vt =" + h(AU" —U" -VU" —=VP"), n=0,1,...,N —1,
divU" =0, n=0,1,...,N.

m To obtain U"*!, we need not only U”, but also P".

Since div U™ = 0, we have

—AP" = div(U" -VU"), xeQ, (NLP)

m P"is represented by U". Formally, P = (—Agq)~ ! div(U" - VU™).
This representation is non-local.

m Boundary condition for P" ?

m Does div U"” = 0 hold for any n > 1, if we apply some space
discretization ?

Pressure makes direct numerical computation of (NS) complicate.
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Penalty method

One of the standard ways to eliminate the pressure from (NS) is penalty
method (Temam (1968)):
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Penalty method

One of the standard ways to eliminate the pressure from (NS) is penalty
method (Temam (1968)):
Replacing divu = 0 by

divu =—p/n (n>0), (PEN)
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Penalty method

One of the standard ways to eliminate the pressure from (NS) is penalty
method (Temam (1968)):
Replacing divu = 0 by

divu =—p/n (n>0), (PEN)

and substituting p = —ndivu into (1a), we have a penalized (NS).

Penalized (NS)

0" — Au" +u" - Vu" —nVdivu" = 0. (NS),

m (NS), does not include the pressure p
m Formally n — 400, (PEN) becomes divu” = 0

m Since we do not need to solve Poisson equation (NLP), Penalty method
is indirect method.
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Topics and Known results

Penalized (NS)

dum — Au" +u" -Vu" — nVdivu" = 0. (NS),

(NS),: approximate problem of (NS).
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Topics and Known results

Penalized (NS)

" — Au +u" - Vu" —nVdivu" = 0. (NS),

(NS),: approximate problem of (NS).

n—oo= (", p") — (u, p)?
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Topics and Known results

Penalized (NS)

" — Au +u" - Vu" —nVdivu" = 0. (NS),

(NS),: approximate problem of (NS).

n—oo= (", p") — (u, p)?

To answer this question, it is worthwhile well to get error estimates between
(u, p") and (u, p).
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Topics and Known results

Penalized (NS)

" — Au +u" - Vu" —nVdivu" = 0. (NS)
1

(NS),: approximate problem of (NS).

n—oo= (", p") — (u, p)?

To answer this question, it is worthwhile well to get error estimates between

(u”, p™) and (u, p).
Known results

m Temam (1968): error estimate for stationary Stokes and Navier-Stokes
in bounded domain (L? theory)

m Shen (1995): error estimate for nonstationary Stokes and Navier-Stokes
in bounded domain (L? theory)
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Topics and Known results

Penalized (NS)

" — Au +u" - Vu" —nVdivu" = 0. (NS),

(NS),: approximate problem of (NS).

n—oo= (", p") — (u, p)?

To answer this question, it is worthwhile well to get error estimates between

(u”, p™) and (u, p).
Known results

m Temam (1968): error estimate for stationary Stokes and Navier-Stokes
in bounded domain (L? theory)

m Shen (1995): error estimate for nonstationary Stokes and Navier-Stokes
in bounded domain (L? theory)

m Y. Saito (2010): error estimate for Stokes resolvent problem in RY (L”

theory)
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Topic:
m 71-dependence of solution to penalized system

m Error estimate between solutions to original problem and penalized
problem.
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Topic:
m 71-dependence of solution to penalized system

m Error estimate between solutions to original problem and penalized
problem.

Estimate solution to penalized Stokes equation which is linearized
problem of (NS);,

Error estimate for the Stokes equation case

Error estimate for the mild solution of (NS),. In particular, we are going
to show that

lim (|u”(t) —u(t)|la < C(uo, ug).
n—00
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Stokes equation

Let d > 2. We consider the Cauchy problems.

Stokes equation (ST)

diu—Au+Vp =0, xeR? >0, (2a)
diva = 0, xeRy 1 >0, (2b)
u(x,0) = uo, x e R4, (2¢)
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Stokes equation

Let d > 2. We consider the Cauchy problems.

Stokes equation (ST)

diu—Au+Vp =0, xeR? >0, (2a)
divu = 0, xeRy 1 >0, (2b)
u(x,0) = uo, x e R4, (2¢)

Applying penalty method to (ST) we have

Penalized Stokes equation (PST),,

;" — Au" — nVdiva" =0, xeR? >0, (3a)
p" = —ndiva, xeR? >0, (3b)

u"(x,0) = ug, x e R4, (3c)
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Helmbholtz decomposition for L’ (R¢)

To reformulate (PST),), we use the Helmholtz decomposition.
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Helmbholtz decomposition for L’ (R¢)

To reformulate (PST),), we use the Helmholtz decomposition.

Helmholtz decomposition in R4

Let1 < r < oo = L"(R?) = L7 (RY) & G" (R?), where

LT (RY) = {u € L"(R?) | dive = 0},
G"(RY) = {V¢|p e WIT R},
Wi (RY) = {¢ € L, (RY) | V$ € L"(R?)}.

m P =P : L (RY — LL(R?) : solenoidal projection
n Q:Qr::I_Pr-
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Reformulation of (PST),

Applying P and Q to (PST), we have the following equations for v7 = Pu"
and w” = Qu".
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Reformulation of (PST),

Applying P and Q to (PST), we have the following equations for v7 = Pu"
and w” = Qu".

Eq. for solenoidal part

9,07 — Av" =0, dive” =0, xeR? ¢t >0,

vi=0 = vg =: Pu"
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Reformulation of (PST),

Applying P and Q to (PST), we have the following equations for v7 = Pu"
and w” = Qu".

Eq. for solenoidal part

9,07 — Av" =0, dive” =0, xeR? ¢t >0,

vi=0 = vg =: Pu"

and

Eq. for scalar potential part

drw” — (1+ mMAw? =0, w" = V" xeR% 1 >0,

w'|;—0 = w] =: Qu{

Note:

—Aw —nVdivw = —AVe —nVdivVep = —(1 + n)AVp = —(1 + n)w.
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Linear heat equation

Linear heat eq.

d0;z —vAz =0, xeRd,t > 0,
z(x,0) = zp(x), x € R4,

v > 0: heat diffusivity.
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Linear heat equation

Linear heat eq.

d0;z —vAz =0, xeRd,t > 0,
z(x,0) = zp(x), x € R4,

v > 0: heat diffusivity.

2
z(x,1;0) = eV Bzg = ! [dexp(| x — ¢l )Z(é‘)dé
R

dvt 4vt
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Linear heat equation

Linear heat eq.

d0;z —vAz =0, xeRd,t > 0,
z(x,0) = zp(x), x € R4,

v > 0: heat diffusivity.

2
z(x,1;0) = eV Bzg = ! [dexp(| i )Z (&) dé&
R

dvt 4vt

Lemma (L"-L4 estimate)

Letv > 0,1 <r <qg<o00,j € Ng,x € Ng. Then the following estimate
holds for any r > 0.

' - ~Jj
197 0%z ¢, :v)llg < Cqrajv Izoll-
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Estimates for v"(¢) and w"(¢)

Letu] € L"(R9) (1 < r < o0) and set v} := Pug € L and
wg = ng e =

mv7(t) = e'Bov]

m w’(t) = (IFMayl
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Estimates for v"(¢) and w"(¢)

Letu] € L"(R9) (1 < r < oo) and set v :
wg = ng e =

m V(1) = etPo]

m w’(t) = (IFMayl

= Pu) € L! and

As a consequence of Lemma (L"-L9 estimate), we have
; _d(1_1\_lal_;
197 0% (1) lg < Cort™ 2 G051
; _d(1_1)_lal
oW ()l < Cor1 ) 005
forl <r <g <oo(r#o0)t>0,j eNo,aeNg.

[N}
—
~ |
|
Q=
S—"
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Estimates for v"(¢) and w"(¢)

Letu] € L"(R9) (1 < r < oo) and set v :
wg = ng e =

m V(1) = etPo]

m w’(t) = (IFMayl

= Pu) € L! and

As a consequence of Lemma (L"-L9 estimate), we have
; _d(1_1\_lal_;

197 0% (1) lg < Cort™ 2 G051

8102w (1) g < Cpr (1 4 ) 20 0) 78

[0 X w" (D)llg < Cqr (1 + 1) !

for1<r§q§oo(r7éoo),t>0,jeNo,aeNg.
In particularg =r,j =0, = (0, ..

[N}
—
~ |
|
Q=
S—"

L 0) =

”wn(t)”r = Cq,r”wg”r-
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Estimates for v"(7) and w"(7)

Letu] € L"(R9) (1 < r < o0) and set v} := Pug € L and
wg = ng e =

mv7(t) = e'Bov]

m w’(t) = (IFMayl
As a consequence of Lemma (L"-L9 estimate), we have

. d(1 1 .
—4(1-1)_ld_;
187 050" (t)lq < Cg,rt z(r q) 2 ||v8||r,

[N}

. _d(1_ _lal 1_1\_lal_ ;
197 0% ()l < Cpr(1 + 2 0) =5 =2 (=a) =57y

for1<r§q§oo(r7éoo),t>0,jeNo,aeNg.
In particularg =r,j =0, = (0,...,0) =

”wn(t)”r = Cq,r”wg”r-

Forany n > 0, |w"(¢)|| is bounded, provided that ug e L"(RY).
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Estimate for w'(¢)

For wg = Qrug € G"(RY), put wg = V(pg,wg € W”(Rd).
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Estimate for w'(¢)

For wg = Qrug € G"(RY), put wg = V(pg,wg € W”(Rd).

CS(RY) C WL (RY): dense w.rt ||V - ||,
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Estimate for w'(¢)

For wg = Qrug € G"(RY), put wg = V(pg,wg € W”(Rd).

CS(RY) C WL (RY): dense w.rt ||V - ||,

For any & > 0, there exists ¢g . € CS°(R¥) such that

||wg - V‘PO,»s”r = [[Vpo — v‘PO,a”r <é.
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Estimate for w'(¢)

For wg = Qrug € G"(RY), put wg = V(pg,wg € W”(Rd).

CS(RY) C WL (RY): dense w.rt ||V - ||,

For any & > 0, there exists ¢g . € CS°(R¥) such that

||wg —Vooellr = IVoo — Voelr <e.
By (13) and L"-L4 estimate, we have

lw?O)lly = lle" T P2 g — Vg )y + 1eMTPAVG I
< Crllwl = Vg - + Vel TPA00 |,
< Cre+ Cr(1+ ) 2 G275 Gl 5. Gs € [1.7])

<GCre+Crppall + n)_%(f_r’l')_%, t >ty >0.
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Estimate for w'(¢)

By density argument, we obtained

lw" (@), < Cre+ Crsy.a(l + n)’%, t>1 >0 (s =r, forsimplicity).
Foreacht > to > 0, we have

lim [w?()], = 0.
1n—>00
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Estimate for w'(¢)

By density argument, we obtained

lw" (@), < Cre+ Crsya(l +1) 5ot > to >0 (s = r,for simplicity).
Foreacht > to > 0, we have
Jm [lw? @)l = 0.
m Since p"(t) = —ndivu”(t) = —ndivw”(¢) (because divv™(¢) = 0), it

suffices to estimate nV2w" ().

m To get estimate for the pressure p", the above estimate plays an
essential role.
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Error estimates

Letl <r < ooand
m (u(z), p(t)): solution to Stokes equation with initial data ug € L[,(Rd)
(compatibility condition)
m u"(¢): solution to penalized Stokes equation with initial data
ul € L"(RY)
Set
U'(t) :==u"(t) —u(r), T"(t):= p"(t) — p(1).

(U, P) satisfies

3, U" — AU" 4+ VII = 0, xeR?t >0,
divU" = —p"/n, xeR%,t >0,
U= =U =: ug — uy, x eRY,
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Error estimates

By Helmholtz projection P, and Q, := I — P,, equation for U", I1" is
decomposed into

3" —u)— AW"—u) =0, divw"—u)=0, xeR? >0,
(" —w)li=0 = (vg —uo) € LL(RY).
and
drw"” — (1 +n)Aw” =0, xeR4t >0,
w’; =0 =w) € G"(RY).

Here we have used the fact that Vp = 0in G”.
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Since
m [[UT@)] < [v7() —u@)| + [[w"(@)]|
m [VIT"()] = [[Vp" ()]l

we have by previous estimate,

Theorem 1 (Error estimate).
(fLet1 <r < g < oo (r # o0). Then forany & > 0, 3g . € C$°(R?) such
that the following estimate holds for any n > 0,7 > 0.
. _d(1_1\_lal_;
100207 )lly < Cart™ 2T o g,

lol

aF Cq,,gt_f(%_é)—i—j(l n n)_%(%_

)

)_Ioc\z-‘rl

Q=

1
q

N =

_d(1_1\_le|+1_ _d
AU gy 165 1
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Since
m [[UT@)] < [v7() —u@)| + [[w"(@)]|
m [VIT"()] = [[Vp" ()]l

we have by previous estimate,

Theorem 1 (Error estimate).
(fLet1 <r < g < oo (r # o0). Then forany & > 0, 3g . € C$°(R?) such
that the following estimate holds for any n > 0,7 > 0.
. _d(1_1\_lal_;
100207 )lly < Cart™ 2T o g,

lol

aF Cq,,gt_f(%_é)—i—j(l n n)_%(%_

)

)_Ioc\z-‘rl

Q=

1
q

N =

_d(1_1\_le|+1_ _d
G gy Il
(i) In particularg = r, j = 0, = (0,...,0),

limsup |[U" (1) || < Crllvg —uollr, ¢ >10 >0,
1n—>00

limsup | TT" ()|, =0, ¢t >1 >0

n—00
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Remarks on Theorem 1

mIf o —uoll < 17> 1= |U"()|l; < L. In particular if ug = v,
error is managed by only w () .

m fu) =uo € L7, = w] = 0. Hence, there is no error.

m We have used the fact that P, and axj commute each other.
Our argument does not work in © # R¢.

m Our argument deeply depends on explicit formula of e”A?.
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Navier-Stokes equation

Penalized Navier-Stokes equation (NS);

du" — Au" —pVdiva" +u"-Vu" =0, xeR? >0 (59
p" = —ndivu, xeR? >0, (5b)

u"(x,0) = u, x € RY. (5¢)
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Navier-Stokes equation

Penalized Navier-Stokes equation (NS);

du" — Au" —pVdiva" +u"-Vu" =0, xeR? >0 (59

p" = —ndivu, xeR? >0, (5b)
u"(x,0) = u, x € RY. (5¢)
Let L, yu := —Au—nVdivu (1 <r < oo). Then —L, , generates an

analytic semigroup (e ~*L7-7),5¢ on L" (R?) and the semigroup satisfies
standard L"-L? type estimates. Therefore

Proposition

ug € L4(R?Y) = 3T > 0 such that u”(¢) € C([0, T); L4 (R?)): mild sol.
to (NS), uniquely exists.
In particular ||ug la < 1 = mild solution exists globally in time.

x L4(R?) is scale invariant space of (NS) and (NS),,.
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Reformulation

Putu” = v + w”, dive” = 0, w" = V.

Abstract form of (NS),: (ABS),

9;07 — Av" + P(u-Vu) =0, xeR4t >0,
d;w” — (1 +nAw+ O(u-Vu) =0, xeR4,t >0,

v (x,0) = v =: Pu), w"(x,0)=w] =: Qu.
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Reformulation

Putu” = v + w”, dive” = 0, w" = V.

Abstract form of (NS),: (ABS),

9;07 — Av" + P(u-Vu) =0, xeR4t >0,
d;w” — (1 +nAw+ O(u-Vu) =0, xeR4,t >0,

v (x,0) = v =: Pu), w"(x,0)=w] =: Qu.

4

In the Navier-Stokes equation, there are nonlinear interactions between v”
and w'.
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Mild formulation

By Duhamel’s principle (ABS),, is converted into integral equations.

Integral equations (INT),,

v(1) = e Pvg — /t eTAPu(s) - Vu(s)) ds =: v°(1) + N1 (u)(0),
0

w(r) = UFMIBy, /t MR O (u(s) - Vu(s)) ds
0

= w’() + Na(u)(0).

Define mapping ® by
. v0(1) Ni(u)(1)
P = (wO(r)) ! (Nz(u)m)‘

Show @ has a fixed point, provided that || (vo, wo) s < 6.
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Small data global existence

Theorem 4 (Small data global existence)

Let (vo. wo) € LE(R?) x G"(RY). Then 3§ > 0 s.t. if || (vo, wo)|| < § =
31 (v(1), w(r)) € C([0,00); LE(R?) x G (R?)) which enjoys

Jim |[(0(0). (1)) = (vo. wo) ¢ = 0,
@), w)|, = 0~ 2%%), d <r < oo,
IV((0), w(t) g = O(r~3)

as t — oo for any fixed n > 0.

—_
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Small data global existence

Theorem 4 (Small data global existence)

Let (vo. wo) € LE(R?) x G"(RY). Then 3§ > 0 s.t. if || (vo, wo)|| < § =
31 (v(1), w(r)) € C([0,00); LE(R?) x G (R?)) which enjoys

Jim |[(0(0). (1)) = (vo. wo) ¢ = 0,
@), w)|, = 0~ 2%%), d <r < oo,
IV((0), w(t) g = O(r~3)

as t — oo for any fixed n > 0.
Furthermore, the above mild solution satisfies

—_

lw@)], = 00 27%), d<r<oo

as n — +oo forfixed t > 79 > 0.

N. Yamaguchi | Penalty method for Stokes and Navier-Stokes equations




Kato’s argument to (INS),

As an underlying space, set

Xg = {(0(1), w(t)) € C([0,00); LL(R?) x G (RY)) |
Jim o) = volla =0.  lim f[w(®) ~wolla =0.

lim |u =0, lim |V =0,
t—1>+0| ll —$5nt t—>+0| u|%’d,t

sup |[|®(v, w)(@)|| < 2R|[[(vo, wo)la}
t>0,n>0

where r € (d, 0o0) and constant R > 0 will be determined later.

m ulg g, = wpsﬁwwwq+wm1+m%w@mw

0<s<t
m [u]; = |ulyj2—da/2rrs + |Vu|1/2,d,r
m ||[u]l|; := |ulo,q,; + [u]:
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Estimates for Duhamel terms

Letr >dand 1/qg = 1/r +1/d. Then
IN1@) ()] < /0 e Pus) - Vals)l ds
<Cra /0 (=5 ) Va5 g ds
< Cea [ =0T s
< Crqt ™22 B(1/2,d /2r)[u]}

By similar manners,

IN2(w) (1) |4 < Cr.alul?,
IVN2 (@) ()| g < Cr gt ™"/ ?[u)?
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Letr >dand 1/q = 1/r +1/d. Then
t
N2 @) @) < / 1e0HDE=9 p((s) - Vu(s))|, ds
0
t
< Cpg(l )2 /0 =)V u(s)] | Vals)la ds

t
< Cog(l )12 /0 (t — )"V~ 1+412r g [u]?

< Cpg(1 4 ) V271244120 B(1 /2 d /2r)[u]?
< Crg(1 ) V/2Hr/2d )2

By similar manners,

[Ny @) (@)]lg < Cra(1 4+ 02" W)? < Cp glul?,
IVN1@)(t) g < Cra (1 +m) V27427712012 < €,y (1 + 1)~ Y2 [w)?
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Proof of Theorem 4

If (v, w) € Xp =

@, w)|||s < R||(vo, wo)|la + Clu]?
< R||(vo, wo)|l4 + 4CR?|(vo, wo)|?

forany ¢t > 0,n > 0.
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Proof of Theorem 4

If (v, w) € Xp =

1@, w)lllr < Rll(vo, wo)lla + Clul?

< R|(vo, wo)llg + 4CR?||(vo. wo)|3
forany ¢t > 0,7 > 0. Choose 6 > 0 in such a way that 4CR¢§ < 1,
[[|®(v, w)[|[s < 2R (vo, wo)lla

forany t > 0,n > 0.
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Proof of Theorem 4

If (v, w) € Xp =

1@, w)lllr < Rll(vo, wo)lla + Clul?

< R|(vo, wo)llg + 4CR?||(vo. wo)|3
forany ¢t > 0,7 > 0. Choose 6 > 0 in such a way that 4CR¢§ < 1,
[[|®(v, w)[|[s < 2R (vo, wo)lla

forany t > 0,n > 0.
Summing up the above, we have

®(v, w) € Xg, provided (v, w) € Xpg.
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Proof of Theorem 4

If (v, w) € Xp =

1@, w)lllr < Rll(vo, wo)lla + Clul?

< R|(vo, wo)llg + 4CR?||(vo. wo)|3
forany ¢t > 0,7 > 0. Choose 6 > 0 in such a way that 4CR¢§ < 1,
[[|®(v, w)[|[s < 2R (vo, wo)lla

forany t > 0,n > 0.
Summing up the above, we have

®(v, w) € Xg, provided (v, w) € Xpg.

Since a similar arguments works well for the difference
d(vy,wy) — P(va, wy), we have O: contraction mapping on Xy into itself.
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Estimate of |w(?)|4

lim |lw(@)|lg =0, ¢>1 >0.
n—>o0
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Estimate of |w(?)|4

lim |lw(@)|lg =0, ¢>1 >0.
n—>o0

We first show the above claim for (v, wo) € Cgy, (R?) x Cgo(Rd).
Take ¢ € (d/2,d) andseto =d/2¢g —1/2 (i.e.,0 <o < 1/2). By small
data global existence result, L9-19 est. and L9/2-1.9 est. we have,
[w®)lla <= Ct7(1 + 1) |lwollg
t
_ _1
+C(1+n) 1/2/0 (t—s) 2 |lu)allVu(s)lla ds

< Ct7(1+ ) (lwollg + Clu]s.a.: ] (0, wo)ll4)
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Take initial data in such a way that C || (vg, wo) |z < 1/2

0<s<t n>0

sup 57 (Ilv(S)lld + sup(l + 7])0”“’(5)”41) < 2C||(vo. wo)lla-

This implies that the previous Claim for ¢ > 0.
For general initial data Claim follows from density argument.

The above proof also refines the decay rate as t — oc. l
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Error estimate

m u(t): global mild sol. of (NS) with ug € Lg R, uollg < 1
m v7(¢) and w"(7): global mild solution of (NS), with initial data
lvglla + lwglla < 1.

Set &7(t) := v"(t) —u(t).

limsup ||"(¢)|lg — O (forany ¢ >ty > 0).

n—>00

&(t) := v"(¢t) — u(r) satisfies
t
6(1) = "2 & — / eUAP(E - Vu +v"-VE)(s)ds
0

t
_/ U= P . VuT 4+ 0" V' + w" + Vw')(s)ds
0
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Since &, u, v" are solenoidal,
t
6(1) = e'2&, —/ U2 P(div(E ® u) + div(v" ® 8))(s) ds
0
t
—/ eE™DA P . Vo + 3" - V" + w” + Vw")(s) ds.
0

If we choose |lug||z and ||vg||d small enough (if necessary), we have by
estimate for w (r),

_1l,4d
1E7(M)]la < Cll&olla + C(1 +m)~2F2r.

This implies the Claim.
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