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We study u = u(t, x) = (u1(t, x), u2(t, x)), t ≥ 0, x = (x1, x2) and

the pressure term p = p(t, x) on a two-dimensional torus T2 :

∂u

∂t
+ (u · ∇)u+

√
2µ∇u · Ḃ(t)− µ∆u+∇p = 0, t > 0, x ∈ T2, (1)

with the incompressibility condition:

divu = 0, t > 0, x ∈ T2, (2)

under the initial condition:

u(0, x) = u0(x), x ∈ T2, (3)

where µ > 0 is a constant and Ḃ(t) = d
dtB(t) is a formal derivative

of the two dimensional Brownian motion B(t) = (B1(t), B2(t)).
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1. Introduction

Background :

Inoue, A., Funaki, T., On a new derivation of the Navier-Stokes

equation. Comm. Math. Phys. 65 (1979).

Variational problem;

Diff(Rn) : the set of volume preserving diffeomorphisms of Rn.

{Φ(t)}t∈[0,1] : 1-parameter group with values in Diff(Rn).

Let Ψ0 and Ψ1 ∈ Diff(Rn) be given and

Φ(t, x) = (Φ1(t, x), · · · ,Φn(t, x)), t ∈ [0,1],

be an integral curve which takes values in Diff(Rn). A stationary

point Φ̃ of the following action functional J:

J(Φ) :=
n∑

j=1

∫ 1

0

∫
Rn
|
∂Φj

∂t
(t, x)|2dx dt,

satisfying Φ(0) = Ψ0 and Φ(1) = Ψ1.
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Stationary point of J:

Φ̃(t, x) := (Φ̃1(t, x), · · · , Φ̃n(t, x)),

Velocity field u defined by

(u1(t, Φ̃(t, x)), · · · , un(t, Φ̃(t, x))) = (
∂Φ̃1

∂t
(t, x), · · · ,

∂Φ̃n

∂t
(t, x)),

that is,

(u1(t, x), · · · , un(t, x)) = (
∂Φ̃1

∂t
(t, Φ̃−1(x)), · · · ,

∂Φ̃n

∂t
(t, Φ̃−1(x))),

Then, u satisfies the Euler equation:
∂u

∂t
+ (u · ∇)u+∇p = 0 t > 0, x ∈ Rn,

divu = 0, t > 0, x ∈ Rn.
(4)
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The case where a fluctuation is added to the ”Euler flow” Φ(t):

Φ(t, x) =⇒Φ(t, x) +
√
2µB(t, ω) ”← random force”,

Let us consider the following Random action functional:

JB(Φ)(ω) =
∫
Rn

∫ 1

0

n∑
j=1

|
∂Φj

∂t
(t, x) +

√
2µ

dBj

dt
(t, ω)|2dxdt,

where µ > 0, Φ(0) = Ψ0(ω) and Φ(1) = Ψ1(ω) and B = (B1, · · · , Bn)

is an n-dimensional Brownian motion defined on some probability

space.

Remark 1. JB(Φ) is formally defined for each ω. Bt is not differen-

tiable at any t > 0.

5



Stationary point of JB (for each ω) Φ̄B(t, x, ω) is related by

Φ̃(t, x, ω) = Φ̄B(t, x, ω) +
√
2µB(t, ω),

where Φ̃ is the stationary point of the ”Euler flow”.

Φ̄B(t, x, ω) = Φ̃(t, x, ω)−
√
2µB(t, ω),

Set x = Φ̃−1(t, y). Then,

Φ̄B(t, Φ̃−1(t, x), ω) = Φ̃(t, Φ̃−1(t, x), ω)−
√
2µB(t, ω),

Thus, random velocity field is defined by

ū(t, x, ω) :=
d

dt
Φ̄B(t, Φ̃−1(t, x), ω)

= u(t, x)−
√
2µḂ(t, ω),

where u is the solution of the Euler equation.

Thus, we arrive at
∂(ū(t, x) +

√
2µḂt)

∂t
+∇ū(t, x) ◦ (ū(t, x) +

√
2µḂt) +∇p(t, x) = 0,

div ū(t, x) = 0,

where ◦ means the Storatonovich sense.
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Stratonovich integral
For f ∈ Cb(R) and {Bϵ}ϵ>0 the family of smooth approximation of B,
(e.g. Bϵ(t) = (B ∗ ρϵ)(t),

∫∞
0 ρϵdt = 1, ρϵ ≥ 0, suppρϵ ⊂ (t− ϵ, t+ ϵ)).∫ t

0
f(Bϵ(s))Ḃϵ(s)ds→

∫ t

0
f(B(s)) ◦ dB(s), uniformly in t ∈ [0, T ]

in L2(Ω) as ϵ→ 0.

The term of B̈(t)
For ϕ ∈ Cσ,0(Rn;Rn),∫

Rn

√
2µB̈(t) · ϕ(x)dx

=
∫
Rn

√
2µ∇(x · B̈(t)) · ϕ(x)dx = −

∫
Rn

√
2µ(x · B̈(t))div ϕ(x)dx = 0,

Thus the term
√
2µB̈(t) is disregarded. In consequence,

∂ū(t, x)

∂t
+ (ū(t, x) · ∇)ū(t, x) +

√
2µ∇ū(t, x) ◦ Ḃt +∇p(t, x) = 0,

div ū(t, x) = 0,

(5)
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From a Stratonovich integral to an Itô integral∫ t

0

∂u

∂xj
(s) ◦ dBj(s)︸ ︷︷ ︸

Stratonivich

=
∫ t

0

∂u

∂xj
(s)dBj(s)︸ ︷︷ ︸

Itô, (martingale)

+
1

2
⟨⟨M ∂u

∂xj

, Bj⟩⟩(t), j = 1, · · · , n,

where M ∂u
∂xj

denotes the martingale part determined uniquely by the

decomposition of the process ∂u
∂xj

and ⟨⟨M ∂u
∂xj

, Bj⟩⟩ the quadratic vari-

ation of M ∂u
∂xj

and Bj. Integral form of (5):

ū(t, x) = ū(0, x)−
∫ t

0
(ū(s, x) · ∇)ū(s, x)ds

−
√
2µ

∫ t

0
∇ū(s, x) ◦ dBs −

∫ t

0
∇p(t, x)ds,

= ū(0, x)−
∫ t

0
(ū(s, x) · ∇)ū(s, x)ds

−
√
2µ

∫ t

0
∇ū(s, x) · dBs︸ ︷︷ ︸
Mū(t)

−
√
2µ

2
⟨⟨M∇ū, B⟩⟩(t)−

∫ t

0
∇p(t, x)ds,
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M∇ū(t) = −
√
2µ

∫ t

0
△ū(s, x) · dBs,

Note that dBi
sdB

j
s = δijdt. Thus,

⟨⟨M∇ū, B⟩⟩(t) = −
√
2µ

∫ t

0
△ū(s, x)ds,

We arrive at the following stochastic Navier-Stokes equation:
∂ū

∂t
+

n∑
j=1

(
ūj

∂ū

∂xj
+
√
2µ

∂ū

∂xj
Ḃ

j
t

)
− µ∆ū+∇p(t, x) = 0,

div ū = 0.

(6)

Assume that the existence of the solution ū is shown.
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Reynolds equation

Let us set ⟨ū⟩(t, x) =
∫
Ω ū(t, x, ω)P (dω). Then ⟨ū⟩ satisfies the

Reynolds equation:
∂⟨ū⟩
∂t

+ (⟨ū⟩ · ∇)⟨ū⟩ − µ∆⟨ū⟩+∇⟨p⟩ = −⟨(ū− ⟨ū⟩) · ∇(ū− ⟨ū⟩)⟩,
div ⟨ū⟩ = 0.

This is easily shown by using the fact that the term of the Ito

stochastic integral is martingale, that is, its expectation is equal

to zero. However, the existence of the weak solution of (6) is not

shown in [I-F].

=⇒ We want to prove the existence.
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The weak form of (6)∫
Rn

u(t, x) · ϕ(x)dx−
∫
Rn

u0(x) · ϕ(x)dx (7)

=
∫ t

0

∫
Rn

(u(s, x) · ∇)ϕ(x) · u(s, x)dsdx

+
√
2µ

∫ t

0

(∫
Rn

u(s, x) · ∇ϕ(x)dx
)
· dBs + µ

∫ t

0

∫
Rn

u(s, x) ·∆ϕ(x)dsdx,

for all ϕ ∈ C∞0,σ and t ≥ 0, where

C∞0,σ = {ϕ ∈ C∞0 (Rn;Rn) | divϕ = 0} .

Note that the term containing ∂p
∂xi

, i = 1, . . . , n vanishes because

n∑
i=1

∫
Rn

∂p

∂xi
(t, x)ϕi(x)dx = −

∫
Rn

p(t, x) div ϕ(x)dx = 0,

holds. However, it is difficult to show the existence of (6) if n ≥ 3.

In our case, T2 : 2-dimensional torus.
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2. Stochastic Navier-Stokes equation in T2.

Notations

C∞σ =
{
u ∈ C∞(T2;R2) | divu = 0,

∫
T2

udx = 0
}
,

H =
{
u ∈ L2(T2;R2) | divu = 0,

∫
T2

udx = 0
}
,

The inner product of H:

⟨u, v⟩ =
2∑

j=1

∫
T2

uj(x)vj(x)dx, u, v ∈ H,

and the norm of H: | · |H.

V = W1,2(T2;R2) ∩H.

The inner product of V:

⟨⟨u, v⟩⟩ =
2∑

j=1

⟨
∂u

∂xj
,
∂v

∂xj
⟩, u, v ∈ V,

and the norm of V: || · ||V.
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An abstract SDE{
du(t) + {Au(t) +B(u(t), u(t))} dt+Gu(t)dBt = 0, t > 0,
u(0) = u0,

(8)

D(A) = W2,2(T2;R2) ∩V such that

A : D(A)→ H, Au = −µP∆u,

where P is the Lelay projection, (λj)j=1,2,... its eigenvalues and

(ej)j=1,2,... the corresponding eigenfunctions. Note that ej ∈ C∞σ ,

∀j and 0 < λ1 ≤ λ2 ≤ · · · .

B : V ×V→ V′, B(v, w) = P(v · ∇)w,

where V′ is the dual space of V.

G : V→ LH.S(R2;H), Gv =
√
2µP∇v,

where LH.S(R2;H) denotes the family of Hilbert-Schmidt operators

from R2 to H.
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Definition 1. We say that {u(t), B(t)}t≥0 is a weak solution of the

stochastic Navier-Stokes equation (8) with the initial value u0 if

1. {u(t)}t≥0 is an adapted process defined on a probability space

(Ω,F , {Ft}t≥0, P ).

2. u ∈ L2(0, T ;V) ∩ L∞(0, T ;H), P -a.s. for T > 0.

3. {B(t), {Ft}}t≥0 is a two-dimensional Brownian motion on (Ω,F , P ).

4. For every T > 0 and ϕ ∈ C∞σ , P -a.s.,

⟨u(t), ϕ⟩ − ⟨u0, ϕ⟩ =

−
∫ t

0
⟨A∗ϕ, u(s)⟩ds+

∫ t

0
⟨B(u(s), ϕ), u(s)⟩ds−

∫ t

0
(Gu(s))∗ϕ dB(s),

holds for a.e.-t ∈ [0, T ].
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Weak solution means

1. weak form:
∫

u(t, x)ϕ(x)dx,

2. martingale solution: (Ω,F , P, (Ft)) is a part of the solution, that

is, ((Ω,F , P, (Ft)), u, B) is the solution:

(see G. Da Prato., J. Zabczyk, Stochastic equations in infinite

dimensions, 1992, Chapter 8.)
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Main result (Y. 2011)

Theorem 1. There exists a weak solution {u(t), B(t)}t≥0 of the

stochastic Navier-Stokes equation (8) with the initial value u0 ∈ V.
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The properties of (6)

du(t) + {Au(t) +B(u(t), u(t))} dt+Gu(t)dBt = 0,

For a suitable bounded set D ⊂ Rn,

2⟨Au(t), u(t)⟩ − |Gu(t)|2
LH.S(Rn;L2(D)) = 0, n ≥ 2, (9)

holds. By Itô’s formula,

|u(t)|2
L2 − |u0|2L2 = 2

∫ t

0
⟨u(s), du(s)⟩ds+

∫ t

0
⟨du(s), du(s)⟩

=− 2
∫ t

0
⟨u(s), Au(s)⟩ds− 2

∫ t

0
⟨u(s), B(u(s), u(s))⟩ds

− 2⟨
∫ t

0
Gu(s) · dBs, u(s)⟩+

∫ t

0
|Gu(s)|2

LH.S(Rn;L2(D))ds.

Thus, if u0 ∈ L2(D), ∃C > 0,

E
{
|u(t)|2

L2

}
≤ C.

The condition (9) means that the term containing |u(t)|2
H1 vanishes.
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Difficulty

Let {un}n∈N be the sequence of solutions of equations by Galerkin’s

argument. {un}n∈N are bounded in L2(0, T ;L2(D)). It follows that

∃un(k)k∈N and u such that un → u weakly in L2(0, T ;L2(D)).

However,

E{
∫ t

0
⟨(un(k)(s) · ∇)ϕ, un(k)(s)⟩ds} → E{

∫ t

0
⟨(u(s) · ∇)ϕ, u(s)⟩ds}

is not true.

=⇒ The uniform estimate with respect to stronger topology such

as L2(0, T ;H1(D)) is needed.
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Coercivity condition

2⟨Au, u⟩ − |Gu|2
LH.S(Rn,L2(D) ≥ δ|∇u|2

L2(D),

for some δ ∈ (0,2], λ0 ≥ 0 and ρ ≥ 0.

There are several results about the existence of the weak solution

of equations satisfying the coercivity condition:

F. Flandoli and D. Gatarek, 1995.

bounded domain in Rn.

M. Capinski and S. Peszat, 2001

Rn(n = 2,3) or bounded domain with smooth G(·) and ||G(u(t))||LH.S
≤

C(1 + |u(t)|L2).

R. Mikulevicius and B.L. Rozovskii, 2005

Rn(n ≥ 2) or bounded domain,
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Z. Brezezniak and S. Peszat, 2001

n = 2. They assume for a certain c ∈ L1(0, T ) such that

|G(u)|LHS(Rn,H1) ≤ C(t)(1 + |∇u|2)

→ the case of G(u) = ∇u is not included.



3. Outline of the proof

Our storategy

1. Consider 2+δ
2 µ△ instead of µ△ and construct the strong solution

uδn, for each δ > 0 by Galerkin’s argument:

sup
n

{
E
{
|uδn(t)|2H

}
+ δµ

∫ t

0
E
{
||uδn(s)||2V

}
ds

}
< ∞.

2. Obtain the uniform estimate with respect to δ > 0, n ≥ 1

3. Construct uδ for each δ > 0.

4. Take δ → 0 and find the solution u.
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Step 1 : Finite dimensional equation,

Step 2 : A priori estimate,

Step 3 : tightness,

Step 4 : taking a limit.
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Step 1: Finite dimensional equation.

We can expand uδn(t) ∈ Hn(:= ΠnH) as uδn(t) =
∑n

j=1 u
δ,n
j (t)ej,

where u
δ,n
j (t) = ⟨uδn(t), ej⟩. Then,

u
δ,n
j (t) = ⟨Πnu0, ej⟩+

∫ t

0
F
δ,n
j (uδn(s))ds+

∫ t

0
σnj (u

δ
n(s)) dBs, 1 ≤ j ≤ n,

where F
δ,n
j (un) = −⟨Aδun+ΠnB(un, un), ej⟩ and σnj (un) = −(ΠnGun)∗ej

for un ∈ Hn. We have

|σnj (un)− σnj (vn)|R2 ≤ C1||un − vn||V,

|F δ,n
j (un)− F

δ,n
j (vn)| ≤ C1||un − vn||V,

for every un, vn ∈ Hn with some C1 = C1(δ, n) > 0. Therefore, for

any δ > 0, n ≥ 1 and T > 0, we see that there exists a unique strong

solution uδn ∈ C([0, T ];Hn), a.s.
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Step 2: A priori estimate.

By applying Itô’s formula to ||uδn(t)||2V, we have

||uδn(t)||2V − ||u
δ
n(0)||2V (10)

≤ −δµ
2∑

k=1

∫ t

0

∣∣∣∣∣∣∂kuδn(s)∣∣∣∣∣∣2V ds− 2
∫ t

0
⟨⟨uδn(s),Πn(u

δ
n(s) · ∇uδn(s))⟩⟩ds

+ (martingale)

for any t ∈ [0, T ], a.s. for T > 0.

Note that

⟨⟨uδn(s),△uδn(s)⟩⟩ = −
2∑

k=1

∣∣∣∣∣∣∂kuδn(s)∣∣∣∣∣∣2V .

Furthermore,

⟨⟨uδn(s),Πn(u
δ
n(s) · ∇uδn(s))⟩⟩ = 0,

holds, This is shown by using the fact u is written to u = ∇⊥ϕ with ϕ

a scalar function in the case of T2, where ∇⊥ = (∂x2,−∂x1). Thus,
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if u0 ∈ V,

sup
n≥1,δ>0

EP
{
||uδn(t)||2V

}
<∞,

in particular,

sup
n≥1,δ>0

EP

{∫ T

0
||uδn(t)||2Vdt

}
<∞,

hold for each T > 0.



Step 3: tightness.

Chebyshev’s inequality:
Let (E, | · |) be a separable metric space and (Xn)n E-valued random
variables. Then,

P(Xn ∈ (BR)
c) ≤

1

R
E{|Xn|}.

holds, where BR = {x : |x| < R}.

tightness:
A sequence of the probability law of (Xn)n is tight if, for any ϵ > 0,
there exists a compact set Kϵ ⊂ E such that

P(Xn ∈ K) ≥ 1− ϵ.

Prohorov’s theorem:
A family of the probability law of (Xn)n, which is devoted by {L(Xn)}n
is tight if and only if {L(Xn)}n is relatively compact, ( ∃{L(Xn(k))}k,
µ̄ s.t. ⟨f,L(Xn(k))⟩ → ⟨f, µ̄⟩ for any continuous and bounded f .)
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compactness:

Let E1 ⊂⊂ E ⊂ E2 and E1, E2 be reflective Banach space. α ∈
(0,1) and p > 1 given. Then, any bounded set in L2(0, T ;E1) ∩
Wα,p(0, T ;E2) is relative compact in L2(0, T ;E).

We need to estimate

E{
∫ T

0
||uδn(s)||2Vds},

E{||uδn||Wα,2(0,T ;V′)},

where uδn is the unique strong solution of the finite dimensional SDE

and Wα,2(0, T ;E) the fractional Sobolev space.

=⇒ We obtain the tightness in L2(0, T ;H).
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Step 4: taking a limit.

Skorohod embedding theorem:

Set ΩT = L2(0, T ;V)∩Wα,2([0, T ];V′), the cordinate process ξ(t, w) =

w(t), w ∈ ΩT . There exist another probability space (Ω̃, F̃ , P̃)

L2(0, T ;H)-valued random variables {Xk}k∈N, X such that L(uδk) =

L(Xk), µ̄ = L(X) and P̃-a.s., Xk → X in L2(0, T ;H) holds.
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The unbounded case.

∂u

∂t
+ (u · ∇)u+

√
2µ∇u · Ḃ(t)− µ∆u+∇p = 0, t > 0, x ∈ R2,

divu = 0, t > 0, x ∈ R2,

u(0, x) = u0(x), x ∈ R2,

Let us set

H(R2) = {u ∈ L2(R2;R2) |div u = 0},
V(R2) = W1,2(R2;R2) ∩H(R2).

Theorem 2. (W.Stannat, Y, 2011) There exists a weak solution

with the initial value u0 ∈ V(R2) with compact support.

• an a priori estimate for a sequence of periodic solutions defined

on [−l, l]2, l ∈ N,

• the cutoff argument
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Thank you for listening.
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