Analytical Aspects of Complex Fluids

Matthias Geissert

Techn. Universität Darmstadt/Univ. of Hannover Germany

The 5th Japanese-German International Workshop on Mathematical Fluid Dynamics Jun. 2012

Outline

- Introduction
- Preliminaries
 - The Helmholtz decomposition
 - The Stokes operator
 - Generalized Newtonian Fluids
 - Embeddings
 - Transport Equation
- Main Results

The problem (NS)

Consider

$$\rho(\partial_t u + (u \cdot \nabla)u) = f + \operatorname{div} T(u) - \nabla \pi \quad \text{in } J \times \Omega,$$

$$\operatorname{div} u = 0 \quad \text{in } J \times \Omega,$$

$$u = 0, \quad \text{on } J \times \partial \Omega,$$

$$u(0) = u_0 \quad \text{in } \Omega,$$

Here:

- u velocity of the fluid, π pressure of the fluid,
- u_0 initial velocity of the fluid, f extra body force,
- ρ density, J = (0, T), $\Omega \subset \mathbb{R}^n$ domain.
- T(u) = extra stress tensor.

Newtonian Fluids/Navier-Stokes equations

We set

$$T(u) := T_N(u) = \mu Du$$

Then,

$$\operatorname{div} T(u) = \Delta u.$$

Here:

- $\mu > 0$ viscosity,
- $Du = \frac{1}{2} (\nabla u + (\nabla u)^T).$

Generalized Newtonian Fluids

We set

$$T(u) := T_{GN}(u) = \mu(|Du|_2^2)Du$$

Here,

 \bullet μ viscosity function.

Examples

• Power-Law: $\mu(|D\tilde{u}|_2^2) = \mu_0(1+|D\tilde{u}|_2^2)^{\frac{d}{2}-1}, \, \mu_0 > 0, \, d \ge 1.$

Generalized Newtonian Fluids

We set

$$T(u) := T_{GN}(u) = \mu(|Du|_2^2)Du$$

Here,

 \bullet μ viscosity function.

Examples:

• Power-Law: $\mu(|D\tilde{u}|_2^2) = \mu_0(1+|D\tilde{u}|_2^2)^{\frac{d}{2}-1}, \, \mu_0 > 0, \, d \geq 1.$

Generalized Viscoelastic Fluids

We set

$$T(u) := T_{GN}(u) + \tau$$

where

$$\partial_t \tau + (u \cdot \nabla)\tau + b\tau = g(\nabla u, \tau)$$
 in $J \times \Omega$,
 $\tau(0) = \tau_0$ in Ω .

Here:

• τ : elastic part of the stress,

Examples

• Oldroyd-B fluids: $\mu > 0$,

$$g(\nabla u, \tau) = \beta Du - \tau Wu + Wu\tau + a(Du\tau + \tau Du)$$

for
$$\beta > 0$$
, $-1 \le a \le 1$ and $Wu = \frac{1}{2}(\nabla u - \nabla u^T)$,

- Generalized Oldroyd-B: Replace constant β by $\beta(|Du|^2)$,
- White-Metzner: $\mu > 0$, b = 0, and

$$g(\nabla u, \tau) = \beta(|Du|^2)Du + \gamma(|Du|^2)\tau - \tau Wu + Wu\tau + a(Du\tau + \tau Du)$$

for some functions β and γ .

The Helmholtz projection

- Let $1 < q < \infty$, $\Omega \subset \mathbb{R}^n$ be a domain.
- We say that the Helmholtz decomposition exists if

$$L^q(\Omega)^n = L^q_\sigma(\Omega) \oplus G_q(\Omega),$$

where

$$G_q(\Omega):=\{g\in L^q(\Omega)^n:\exists h\in \widehat{W}^{1,q}(\Omega) ext{ such that } g=
abla h\}, \ L^q_\sigma(\Omega):=\{arphi\in C^\infty_c(\Omega)^n: div\,arphi=0\}^{\|\cdot\|_{L^q(\Omega)}} \ =\{f\in L^q(\Omega)^n:\int_\Omega f
abla arphi=0,\;arphi\in \widehat{W}^{1,q'}(\Omega)\}$$

In this case there exists the Helmholtz projection

$$P_a: L^q(\Omega)^n \to L^q_\sigma(\Omega).$$

Existence of the Helmholtz projection

- Let $1 < q < \infty$. Then the Helmholtz projection exists on $L^q(\Omega)^n$, where
 - $\Omega = \mathbb{R}^n$, $\Omega = \mathbb{R}^n_+$,
 - Ω bounded with smooth boundary,
 - Ω exterior domain with smooth boundary,
 - Ω layer,
 - ...
- The Helmholtz projection exists $L^q(\Omega)^n \cap L^2(\Omega)^n$, $2 < q < \infty$, or $L^q(\Omega)^n + L^2(\Omega)^n$, 1 < q < 2, Ω uniform C^1 .

Contributors: Farwig, Fujiwara, Kozono, Miyakawa, Morimoto, Simader, Sohr, Thäter, von Wahl, Weyl, ...

Existence of the Helmholtz projection II

The Helmholtz projection exists on $L^q(\Omega)^n$, where

- $\Omega \subset \mathbb{R}^n$, bounded Lipschitz domain and $q \in (\frac{3}{2} \varepsilon, 3 + \varepsilon)$, Fabes, Mendez and Mitrea.
- Ω ⊂ ℝ² 'unbounded wedge' (smooth and non smooth), q depends on angle, Bogovskii.

Remark

The results above are sharp

Existence of the Helmholtz projection II

The Helmholtz projection exists on $L^q(\Omega)^n$, where

- $\Omega \subset \mathbb{R}^n$, bounded Lipschitz domain and $q \in (\frac{3}{2} \varepsilon, 3 + \varepsilon)$, Fabes, Mendez and Mitrea.
- $\Omega \subset \mathbb{R}^2$ 'unbounded wedge' (smooth and non smooth), q depends on angle, Bogovskii.

Remark

The results above are sharp.

The Stokes operator

Let $1 < q < \infty$ and $\Omega \subset \mathbb{R}^n$ be a domain such that the Helmholtz projection exists. Set

$$D(A_q) = W^{2,q}(\Omega) \cap W_0^{1,q}(\Omega) \cap L^q_\sigma(\Omega)$$

and define the Stokes operator

$$A_q: \left\{ \begin{array}{ccc} D(A_q) & \to & L^q_\sigma(\Omega), \\ u & \mapsto & P_q \Delta u. \end{array} \right.$$

Maximal Regularity

We say that A_q has maximal L^p -regularity in $L^q_\sigma(\Omega)$ if for

$$f \in L^p(J; L^q_\sigma(\Omega))$$

there exists a unique

$$u \in W^{1,p}(J; L^q_\sigma(\Omega)) \cap L^p(J; D(A_q))$$

satisfying

$$u'(t) - A_q u(t) = f(t), \quad t \in J,$$

$$u(0) = 0.$$

Known results on the Stokes operator

- Let $1 < p, q < \infty$. Then A_q has maximal L^p -regularity in $L^q_\sigma(\Omega)$, where
 - $\Omega = \mathbb{R}^n$, $\Omega = \mathbb{R}^n_+$,
 - Ω bounded with smooth boundary,
 - Ω exterior domain with smooth boundary,
 - Ω layer,
 - ...
- A_q has maximal L^p -regularity on $L^q_{\sigma}(\Omega) \cap L^2_{\sigma}(\Omega)$, $2 < q < \infty$, or $L^q \sigma(\Omega) + L^2_{\sigma}(\Omega)$, 1 < q < 2, uniform C^2 .
- Helmholtz exists +(suitable decomposition of pressure) \Rightarrow A_q has maximal L^p -regularity on $L^q_\sigma(\Omega)$

Contributors: Amann, Abels, Borchers, Desch, Farwig, Fujita, Fujiwara, Galdi, Giga, Grubb, Hieber, Hishida, Kato, Masuda, Miyakawa, Morimoto, Prüss, Shibata, Shimizu, Simader, Sohr, Solonnikov, Ukai, Varnhorn, Wiegner...

Maximal L^p-Regularity

In this case, for $f \in L^p(J; L^q(\Omega)^n)$ and $u_0 \in (L^q_\sigma(\Omega), D(A_q))_{1-\frac{1}{p},p}$ there exists a unique

$$(u,\pi)\in X_u(T)\times X_\pi(T),$$

satisfying

$$\partial_t u - \Delta u + \nabla \pi = f \quad \text{in } J \times \Omega,$$

$$\nabla \cdot u = 0 \quad \text{in } J \times \Omega,$$

$$u = 0 \quad \text{on } J \times \partial \Omega,$$

$$u(0, \cdot) = u_0 \quad \text{in } \Omega.$$

Here,

$$X_u(T) := W^{1,p}(J; L^q_{\sigma}(\Omega)) \cap L^p(J; W^{2,q}(\Omega)), \ X_{\pi}(T) := L^p(J; \widehat{W}^{1,q}(\Omega)).$$

The Stokes operator

Maximal L^p -Regularity

In this case, for $f \in L^p(J; L^q(\Omega)^n)$ and $u_0 \in (L^q_\sigma(\Omega), D(A_q))_{1-\frac{1}{p},p}$ there exists a unique

$$(u,\pi)\in X_u(T)\times X_\pi(T),$$

satisfying

$$\partial_t u - \Delta u + \nabla \pi = f \quad \text{in } J \times \Omega,$$

 $\nabla \cdot u = 0 \quad \text{in } J \times \Omega,$
 $u = 0 \quad \text{on } J \times \partial \Omega,$
 $u(0,\cdot) = u_0 \quad \text{in } \Omega.$

Moreover,

$$||u||_{X_u(T)} + ||\pi||_{Y_u(T)} \le C \left(||f||_{T,p,q} + ||u_0||_{(L^q_\sigma(\Omega),D(A_q))_{1-\frac{1}{n},p}} \right), T \in (0,T_0).$$

Proposition

Let

- $p, q, q' \in (1, < \infty)$ with $\frac{1}{q} + \frac{1}{q'} = 1$, $T \in (0, T_0)$,
- Ω uniformly C^2 -domain,
- $P_r: L_r(\Omega) \to L_{r,\sigma}(\Omega)$ exists for $r \in \{q, q'\}$,
- $\lambda + A_r \in BIP(\theta)$, $\theta < \pi/2$ for $r \in \{q, q'\}$ and for some $\lambda \ge 0$

Then for $u_0 = 0$ and $f = \operatorname{div} F$, $F \in L_p(0, T; H^1_q(\Omega))$ the unique solution $(u, \pi) \in X_u \times X_\pi$ satisfies

$$||u||_{Y_u(T)} \leq C||F||_{T,p,q},$$

where C > 0 is independent of F and T, $T \in (0, T_0)$.

Here:

$$Y_u(T) := H^{1/2,p}(0,T;L^q(\Omega)) \cap L^p(0,T;H^{1,q}(\Omega)).$$

Generalized Newtonian Fluids

Proposition

Let

- p > n + 2,
- $\Omega \subset \mathbb{R}^n$ bounded, class $C^{2,1}$.
- $\mu \in C^{1,1}(\mathbb{R}_+)$ satisfying

$$\mu(s) > 0, \qquad \mu(s) + 2s\mu'(s) > 0, \quad s \ge 0,$$

Then, for $f \in L^p(0, T, L^p(\Omega))$, $u_0 \in W^{2-2/p,p}(\Omega)$ satisfying div $u_0 = 0$ and u = 0 on $\partial \Omega$, there exists a unique solution $(u, \pi) \in X_u(T) \times Y_u(T)$ of (NS) with $T(u) = T_{GN(u)}$.

Proposition

Let

- $p,q \in (1,\infty)$ satisfy $\frac{1}{p} + \frac{n}{2q} < \frac{1}{2}$, $T_0 > 0$,
- $\Omega \subset \mathbb{R}^n$ uniform C^2 -domain.

Then for $T \in (0, T_0)$

$$X_u(T) \hookrightarrow L_{\infty}(0,T;W_{\infty}^1(\Omega)) \cap L_{\infty}(0,T;L_q(\Omega))$$

 $Y_u(T) \hookrightarrow L_{\infty}(0,T;L_{\infty}(\Omega)).$

Moreover, if u(0) = 0

$$||u||_{L_{\infty}(0,T;W_{\infty}^{1}(\Omega))} + ||u||_{T,\infty,q} \le C||u||_{X_{u}(T)}, \quad T \in (0,T_{0}], \ u \in X_{u}(T),$$
$$||u||_{T,\infty,\infty} \le C||u||_{Y_{u}(T)}, \quad T \in (0,T_{0}], \ u \in Y_{u}(T).$$

Consider

$$\partial_t \tau + (u \cdot \nabla)\tau + b\tau = g \quad \text{in } J \times \Omega,$$

 $\tau(0) = \tau_0 \quad \text{in } \Omega.$ (1)

for

- 1
- $u \in X_u(T)$ such that $u \cdot \nu = 0$ on $\partial \Omega$, $b \ge 0$,
- $\Omega \subset \mathbb{R}^n$ a uniform C^2 -domain.

We set

$$X_{ au}(T) := L^{\infty}(0,T;H^{1,q}(\Omega)),$$

 $Y_{ au}(T) := L^{\infty}(0,T;L^{q}(\Omega)).$

Consider

$$\partial_t \tau + (u \cdot \nabla)\tau + b\tau = g \quad \text{in } J \times \Omega,$$

 $\tau(0) = \tau_0 \quad \text{in } \Omega.$ (1)

for

- 1
- $u \in X_u(T)$ such that $u \cdot \nu = 0$ on $\partial \Omega$, $b \ge 0$,
- $\Omega \subset \mathbb{R}^n$ a uniform C^2 -domain.

We set

$$X_{\tau}(T) := L^{\infty}(0, T; H^{1,q}(\Omega)),$$

$$Y_{\tau}(T) := L^{\infty}(0, T; L^{q}(\Omega)).$$

Proposition

For

• $g \in L^1(0,T;H^{1,q}(\Omega)) \cap L^{\infty}(0,T;L^q(\Omega))$, $\tau_0 \in H^{1,q}(\Omega)$ there exists a unique solution $\tau \in X_{\tau}(T) \cap W^{1,\infty}(0,T;L^q(\Omega))$ of (1) such that

$$\|\tau\|_{X_{\tau}(T)} \leq C_1 \left(\|\tau_0\|_{H^{1,q}(\Omega)} + \|g\|_{L^1(0,T;H^{1,q}(\Omega))} \right) e^{C_1 T^{1-1/p} \|u\|_{L^p(0,T;H^{2,q}(\Omega))}}$$

Moreover,

$$\|\tau\|_{Y_{\tau}(T)} \leq C_2 (\|\tau_0\|_q + \|g\|_{T,1,q}) e^{C_2 \|\operatorname{div} \tilde{u}\|_{L^1(0,T;H^{1,q}(\Omega))}}.$$

Here:

• C_1 , C_2 independent of g, τ_0 , u and $T \in (0, T_0)$,

Generalized Viscoelastic Fluids: Bounded Domains

Proposition

Let

- p > n + 2,
- $\Omega \subset \mathbb{R}^n$ bounded, class $C^{2,1}$.
- $\mu \in C^{1,1}(\mathbb{R}_+)$ satisfying

$$\mu(s) > 0, \qquad \mu(s) + 2s\mu'(s) > 0, \quad s \ge 0,$$

 \bullet $g \in C^1$.

Then, for $f \in L^p(0, T, L^p(\Omega))$, $u_0 \in W^{2-2/p,p}(\Omega)$ satisfying div $u_0 = 0$ and u = 0 on $\partial \Omega$, $\tau_0 \in W^{1,p}(\Omega)$ there exists a unique solution

$$(u,\pi,\tau)\in X_u(T)\times Y_u(T)\times (X_\tau(T)\cap W^{1,\infty}(0,T;L^q(\Omega)))$$

Idea of Proof

Use Schauder's fixed point theorem.

Main Results: \mathcal{H}^{∞} -Calculus

Theorem (M.G., P. Kunstmann)

Assume that

- $\Omega \subset \mathbb{R}^n$ has uniform C^3 -boundary,
- (WNP_q) is uniquely solvable for some $q \in (1, \infty)$.

Then the Stokes operator $\lambda_0 - A_q$ has a bounded \mathcal{H}^{∞} -calculus for some $\lambda_0 > 0$.

Idea of Proof: \mathcal{H}^{∞} -Calculus

Proposition (N.J. Kalton, P. Kunstmann, L. Weis)

Assume that

- (X₀, X₁) interpolation couple of reflexive and B-convex spaces,
- P_j: X_j → Y_j compatible surjections with compatible right inverses J_j: Y_j → X_j, j = 0, 1,
- A_j has an \mathcal{H}^{∞} -calculus in X_j , B_j \mathcal{R} -sectorial on Y_j , for $\alpha < 0 < \beta$

$$P_0((X_0)_{\alpha,A_0}) = (Y_0)_{\alpha,B_0}, \quad P_1((X_1)_{\beta,A_1}) = (Y_1)_{\beta,B_1},$$

$$J_0((Y_0)_{\alpha,B_0}) = (X_0)_{\alpha,A_0}, \quad J_1((Y_1)_{\beta,B_1}) = (X_1)_{\beta,A_1},$$

Then, B_{θ} has \mathcal{H}^{∞} -calculus on $Y_{\theta} = [Y_0, Y_1]_{\theta}$, $\theta \in (0, 1)$.

Sketch of Proof

Road map:

- transform problem to a fixed domain
- show maximal regularity estimates for suitable linearized problem in a layer
 - consider model problems in the halfspace
 - apply localization procedure
- apply a fixed point argument

Idea of proof (TSCP)

We rewrite (TSCP) as the fixed point problem

$$\Phi = K(\Phi) := L^{-1}((N(\Phi) + f), 0, u_0, h_0).$$

- $\bullet \Phi = (u, \pi, h).$
- $f = (f_1, 0, 0, 0, 0)$ with

$$f_1(t,(x,y)) := \chi_R \omega \times (\omega \times (x,y)).$$

The nonlinear operator N is given by

$$N(\Phi) = (F_1(\Phi), F_d(u, h), G^+(\Phi), H(u, h), G^-(u, h)).$$

 L is the linear operator representing the left hand side of (TSCP).

Idea of proof (TSCP)

- Show N(0)=0 and DN(0)=0: Basically we show $N:\mathbb{E}(J,D)\to\mathbb{F}(J,D)$ and use that all appearing terms are of second order or higher.
- Ensure that $||f_1||_{\mathbb{F}_1(J,D)}$ is small either by choosing T>0 small or by choosing $\omega>0$ small.

Related results

Non-Newtonian - Fixed domain:

- Amann '94,
- Bothe and Prüss '07.

Non-Newtonian – Free Boundary:

- Plotnikov '93,
- Abels '07.