Analytical Aspects of Complex Fluids

Matthias Geissert

Techn. Universitat Darmstadt/Univ. of Hannover
Germany

The 5th Japanese-German International Workshop on
Mathematical Fluid Dynamics
Jun. 2012



Outline

@ Introduction

@ Preliminaries

The Helmholtz decomposition
The Stokes operator
Generalized Newtonian Fluids
Embeddings

Transport Equation

Q Main Results



Introduction

The problem (NS)

Consider

p(Ou+ (u-Vu) =f+divT(u)—Vr inJxQ,

divu =0 inJ x Q,
u =0, onJ x 09,
u(0) =up inQ,

Here:
@ u velocity of the fluid, = pressure of the fluid,
@ uy initial velocity of the fluid, f extra body force,
@ pdensity, J = (0,7), Q C R” domain.
@ T(u) = extra stress tensor.
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Newtonian Fluids/Navier-Stokes equations

We set
T(u) := Ty(u) = uDu
Then,
div T(u) = Au.
Here:

@ 1 > 0 viscosity,
@ Du=1%(Vu+ (Vu)').
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Generalized Newtonian Fluids

We set
T(u) := Ton(u) = (| Dul3)Du

Here,
@ u viscosity function.
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Generalized Newtonian Fluids

We set
T(u) := Ton(u) = (| Dul3)Du

Here,
@ u viscosity function.

Examples:
d
2

@ Power-Law: pu(|Diil3) = po(1 + |Diil3)2 ", o > 0,d > 1.
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Generalized Viscoelastic Fluids

We set
T(u) == Ton(u) + 7,
where
ot + (u-V)r +br =g(Vu, 1) inJ x Q,
7(0) =190 in Q.
Here:

@ 7: elastic part of the stress,
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Examples

@ Oldroyd-B fluids: . > 0,
g(Vu, ) = BDu — 7Wu + Wut + a(Dut + 7Du)

for >0, -1 <a<1and Wu= 1(Vu—vul),
@ Generalized Oldroyd-B: Replace constant 3 by 3(|Du/?),
o White-Metzner. > 0, b =0, and

g(Vu,7) = B(|Du*)Du +~(|Dul*)7 — 7Wu + Wut + a(Dur + 7Du)

for some functions 5 and ~.
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The Helmholtz decomposition

The Helmholtz projection

@ Letl < g < o0, QCR"be adomain.
@ We say that the Helmholtz decomposition exists if

L1(Q)" = LL(Q) & G4(Q),
where
Gy(Q) : = {g € LY(Q)" : Th € W'4(Q) such that g = Vi),
LL(Q) : = {p € C(Q)" : divp = 0@

—{ferQ) /Q [V =0, o WH(Q)

In this case there exists the Helmholtz projection

P, LI(Q)" — LL(Q).
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The Helmholtz decomposition

Existence of the Helmholtz projection

@ Let 1 < g < oo. Then the Helmholtz projection exists on
L1(Q2)", where

Q=R",Q=R",

Q bounded with smooth boundary,

Q exterior domain with smooth boundary,

Q layer,

o ...
@ The Helmholtz projection exists L4(Q2)" N L2(Q)",
2 < g <oo,0r L4(Q)" + L*(Q)", 1 < g <2, Q uniform C'.

Contributors: Farwig, Fujiwara, Kozono, Miyakawa, Morimoto,
Simader, Sohr, Thater, von Wahl, Weyl, ...



Preliminaries
ooe

The Helmholtz decomposition

Existence of the Helmholtz projection I

The Helmholtz projection exists on L7(Q2)", where

@ Q C R", bounded Lipschitz domainand g € (3 —¢,3 +¢),
Fabes, Mendez and Mitrea.
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The Helmholtz decomposition

Existence of the Helmholtz projection I

The Helmholtz projection exists on L7(Q2)", where

@ Q C R", bounded Lipschitz domainand g € (3 —¢,3 +¢),
Fabes, Mendez and Mitrea.

@ Q C R?’unbounded wedge’ (smooth and non smooth), ¢
depends on angle, Bogovskii.

The results above are sharp.
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The Stokes operator

The Stokes operator

Let 1 < ¢ < oo and Q C R" be a domain such that the
Helmholtz projection exists. Set

D(Ag) = WH(Q) N Wy () N LE(Q)
and define the Stokes operator

A . D(Aq) - LZ(Q)7
7 u — PyAu.
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The Stokes operator

Maximal Regularity

We say that A, has maximal L’ -regularity in L%.(Q) if for
[ e P(J; LE(%2))
there exists a unique
ue€ WH(J; LL(Q)) N LF(J; D(A,))
satisfying

u'(t) —Au(t) = f(t), tel,
u(0) 0.
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The Stokes operator

Known results on the Stokes operator

@ Let1 < p,g < oo. Then A, has maximal LP-regularity in
LL(Q), where

Q=R", Q=R",

Q bounded with smooth boundary,

Q exterior domain with smooth boundary,

Q layer,

@ A, has maximal LP-regularity on L%(Q) N L2(Q), 2 < g < o,
or L10(Q) + L2(R), 1 < g < 2, uniform C2.

@ Helmholtz exists +( suitable decomposition of pressure ) =
A, has maximal L’-regularity on LZ(Q)

Contributors: Amann, Abels, Borchers, Desch, Farwig, Fuijita,
Fujiwara, Galdi, Giga, Grubb, Hieber, Hishida, Kato, Masuda,
Miyakawa, Morimoto, Priss, Shibata, Shimizu, Simader, Sohr,
Solonnikov, Ukai, Varnhorn, Wiegner ...
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The Stokes operator

Maximal L”-Regularity

In this case, for f € L(J; L1(2)") and ug € (LI(Q2), D(A,))

lil’p
. . l)
there exists a unique

(u, ) € Xu(T) x Xr(T),

satisfying
Oou—Au+Vr = f inJxQ,
V-u = 0 inJxQ,
u = 0 onJxoAQ,
u(0,) = up inS.
Here,

X, (T) := WP (J; LL(Q)) N LP(J; WH(RQ)), Xo(T) == LP(J; WH(Q)).
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The Stokes operator

Maximal L”-Regularity

In this case, for f € L(J; L1(2)") and ug € (LI(Q2), D(A,))

lil’p
. . l)
there exists a unique

(u, ) € Xu(T) x X(T),

satisfying
ou—Au+Vr = f inJxQ,
V-u = 0 inJxQ,
u = 0 onJxodQ,
M(O, ) = U in Q.
Moreover,

Wl + Illvr < € (rv ) Te(.1)

Tpq + lwoll s )00,
P’
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The Stokes operator

Let

© p.g.q €(l,<co)withl+ L =1,T€(0,Tp),

@ Q uniformly C>-domain,

@ P :L(Q) — L ,(Q) exists forr € {q,q'},

@ \+A, € BIP(0), 0 < 7/2 forr e {q,q'} and forsome X\ > 0
Then foruy = 0 andf = divF, F € L,(0, T; Hy()) the unique
solution (u, ) € X, x X, satisfies

lully,(ry < ClIFl7p.q:

where C > 0 is independent of F and T, T € (0, Tp).

Here:

Yu(T) := H'>P(0,T; L1(Q)) N L7(0, T; H"(Q)).
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Generalized Newtonian Fluids

Generalized Newtonian Fluids

Let
@ p>n+2,
@ Q c R" bounded, class C*!.
@ u € CYY(R,) satisfying

p(s) >0, pls) +2sp/(s) >0, s=0,

Then, forf € LP(0,T,L(Q)), uy € W>=2/PP(Q) satisfying
div ug = 0 and u = 0 on 952, there exists a unique solution
(u, ) € Xu(T) x Y, (T) of (NS) with T(u) = Ten(u)-
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Embeddings

Let
@ p,ge(l,00) satisfy% + 55 < 1, Ty >0,
@ Q c R” uniform C*-domain.

Then forT € (0, Tp)

Xu(T) — Loo(0, T; W2 (Q)) N Loo (0, T; Ly(Q))
Yu(T) < Loo(0, T; Lo ().

Moreover, if u(0) = 0
lull Lo 0,r:wi (@)) + NUllT,00,4 < Cllullx, ), T € (0,T0], u € Xu(T),
[ull7,00,00 < Cllully,(ry, T € (0,To], u € Yu(T).
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Transport Equation

Consider

T+ u-V)r+br=g inJ x Q,
7’(0):7’0 in Q.

for
@ l<p<oo,n<g<oo,Te(0,Tp),
@ uecX,(T)suchthatu-v=00n09%Q,b >0,
@ Q c R” a uniform C2-domain.
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Transport Equation

Consider

T+ u-V)r+br=g inJ x Q,
7’(0):7’0 in Q.

for
@ l<p<oo,n<g<oo,Te(0,Tp),
@ uecX,(T)suchthatu-v=00n09%Q,b >0,
@ Q c R” a uniform C2-domain.

We set

X, (T) := L®(0,T; H"(Q)),
Y, (T) := L>(0, T; LY(Q)).
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Transport Equation

For

@ gc L'(0,T; HY(Q)) N L>(0,T; LI(Q)) , 70 € H"(Q)
there exists a unique solution T € X, (T) N W'>(0, T; L4(Q)) of
(1) such that

C1Tlil/p“u”LP(O,T;Hzﬁq(Q)

7l < €1 (Iollanaga) + gl sy ) €

Moreover,

Call div ll 1 o, 7,p1.0(0))

1Tl (ry < Ca(ll7ollg + llgllz.14) €

Here:
@ Cy, C; independent of g, 7o, u and T € (0, Tp),
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Generalized Viscoelastic Fluids: Bounded Domains

Let
@p>n+2,
@ Q c R" bounded, class C*!.
@ € CH(R,) satisfying

p(s) >0, pls) +2sp/(s) >0, s=0,

@ gcCl
Then, forf € L7(0, T, LP(R)), uy € W>=2/P»(Q) satisfying
div ugp = 0 andu = 0 on 9Q, 7o € W' (Q) there exists a unique
solution

(u, 70, 7) € X,(T) x Y, (T) x (X-(T) N W2 (0, T; L1(Q))




Main Results

Idea of Proof

Use Schauder’s fixed point theorem.
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Main Results: H*°-Calculus

Theorem (M.G., P. Kunstmann)
Assume that
@ Q C R" has uniform C3-boundary,
@ (WNP,) is uniquely solvable for some q € (1, c0).

Then the Stokes operator \o — A, has a bounded H*>-calculus
for some Ay > 0.




Idea of Proof: H>-Calculus

Proposition (N.J. Kalton, P. Kunstmann, L. Weis)
Assume that
@ (Xo, X)) interpolation couple of reflexive and B-convex
spaces,
@ P;: X; — Y; compatible surjections with compatible right
inverses J;: Y; — X;, j = 0,1,
@ A; has an 'H*°-calculus in X;, B; R-sectorial onY;, for
a<0<p

Po((X0)an,) = (Y0)am,» P1((X1)sa,) = (Y1)a5,
Jo((Y0)a8,) = (X0)any J1((Y1)35,) = (X1)34,;

Then, By has H>-calculus on Yy = [Yy, Y1)y, 6 € (0, 1).

Main Results
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Sketch of Proof

Road map:

@ transform problem to a fixed domain

@ show maximal regularity estimates for suitable linearized
problem in a layer
e consider model problems in the halfspace
e apply localization procedure

@ apply a fixed point argument
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Idea of proof (TSCP)

We rewrite (TSCP) as the fixed point problem

® = K(®) := L~ ((N(®) +£),0, u0, ho).

@ &= (u,m, h).
e f = (1,0,0,0,0) with

fl(t7 ()C,y)) = XRW X (w X ()C,y))-
@ The nonlinear operator N is given by
N(®) = (Fi(®), Fa(u, h),G*(®), H(u, h), G (u, h)).

@ L is the linear operator representing the left hand side of
(TSCP).
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Idea of proof (TSCP)

@ Show N(0) = 0 and DN(0) = 0: Basically we show
N :E(J,D) — F(J, D) and use that all appearing terms are
of second order or higher.

@ Ensure that [|f[|,s,p) is small either by choosing 7 > 0
small or by choosing w > 0 small.
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Related results

Non-Newtonian — Fixed domain:
@ Amann '94,
@ Bothe and Prlss "07.
Non-Newtonian — Free Boundary:
@ Plotnikov ’93,
@ Abels '07.
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