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1. Overview - Introduction

There are several structures observed in viscous Incompress-
Ible flows, which exhibit typical behaviors of flows or persist
for a relatively long time. These structures are often described
In terms of vorticity fields.

e \ortex tubes in 3D flows:
.- - tube-like structures of intense vorticity fields

e ‘Inverse cascade’ in 2D flows:
.-+ tendency for small vortices to form larger vortices

e Boundary layer of flows at high Reynolds number:
.-+ vortex sheets or lines attached to the boundary



1. Overview - vorticity field

In this lecture we are interested in the vorticity filed of the
viscous incompressible flows.

u = (up, U, uz) : velocity field

( (92U3 — (93U2\
03Uy — 01Uz | : vorticity field in 3D
| O1Up — dbUy

w = VXU

w = Rotu = dy,u, — dy,u; : vorticity field in 2D



1. Overview - vorticity equations
e Navier-Stokes equations for viscous incompressible flows:

ou+ u-Vvu — vAu + Vp =0 V-u=0. (NS

The difficulty comes fronmonlinearityand also frormon-
local naturedue to the pressure term.

e \orticity equations for viscous incompressible flows:

Oow + U- Vo — w-VU — vAw = 0 in 3D. (V3)

0 in 2D. (Vo)

Oiw + U-Vw — vVAw



1. Overview - contents of this lecture

In view of the vorticity equations the vorticity Is a ‘local’
guantity, and useful to study local properties of the flow.

Topics:

. Inviscid limit for viscous incompressible flows &¢
- approach from the vorticity formulation -

Il. Stability of the Burgers vortex for 3D perturbations

I1l.  Stability of the Lamb-Oseen vortex in 2D exterior
domains

+ Firstly we will see overviews of each topic.
+ In this lecture the first topic will be more focused.



1-1. Overview of Topic I:
- behavior of NS flows at the inviscid limit -

By formally taking the limity — O of the NS equations

(9tUNS + UNS°VU|\|S — VAUNS + VpNS =0 V’UNS = O,
(NS)

we get the Euler equations

OiUg + Ug - VUg + VpE =0 V- U = 0. (E)

Boundary condition:
Uns = 0 (no-slip) «— n-ug =0 n: exterior unit normal

— boundary layer appears



1-1. Overview of Topic I:
- behavior of NS flows at the inviscid limit -

. Prandtl theory (1904)

(1) Outer region(the region away from the bouno

- The fluid motion will be described by tHeulereo

ary):
uations.

() Boundary layer regiorfthe region where the viscosity

effect essentially exists):

- The fluid motion will be described by therandtlequa-

tions. The formal boundary layer thicknesgi&/?)



1-1. Overview of Topic I:
- behavior of NS flows at the inviscid limit in R? -

Mathematically the above description corresponds with the
asymptotic expansion at— O:

Uns,(tX) = UE(t,X) + ud(t,X) + O02) in LS (1)

y X2, 1 X2
u(P)(t, X) = (Vpa(t, X1, ), vavpa(t, X1, ) )"
V2 V2
However, the rigorous verification of (1) is still widely open.

So far it is verified only forthe initial data with analytic regu-
larity: Asano ('88), Sammartino-Caflisch ('98).



1-1. Overview of Topic I:
- behavior of NS flows at the inviscid limit in R? -

a: initial velocity b = Rota: initial vorticity
- Main result in Topic | (M. preprint) -

Assume that ac LP(R?) for somel < p < oo and b ¢
WHL{R2) N W*4R2). Assume also thata 0 on6R? and

do = dist (OR?, suppb) > 0. (2)

Then the asymptotic expansi@h holds at least for a short
time T > 0, where T satisfies B cmin{dy, 1} with c > O
depending only ohb|ys1wez2.

e For the proof we use the vorticity formulation.



1-2. Overview of Topic II:
- NS flows with a linear strain and the Burgers vortex -

It is believed that vortex tubes take place due to the interplay
of two mechanism:

(1) amplification of vorticity due to stretching
(1) diffusion through the action of viscosity

To study their typical interaction we consider the NS velocity
field V of the form
(_% 00)
V = Mx+ U M=| 0 -30][.
. 0 0 1)

U = (Uq, Uy, Us): unknown perturbation velocity



1-2. Overview of Topic II:
- NS flows with a linear strain and the Burgers vortex -

Let X = (X, X3) € R? x R and set

1 ( O\
IXpy|2
G=ge; Q(Xh)zzre_% es=| Of,
1)
[ —Xo U9(|Xn])
G _ g 2 d(r) — 1 —7
U=(Xp) =]  Xg u9(|Xn|<) u(r) —2—(1—e 9.
\ 0 ) ar

Burgers ('48): For eacha € R the velocity fieldVix + «U® is
a stationary solution tgqNS).

Problem: Stability of the Burgers vortexG for a given cir-
culation numbet?



1-2. Overview of Topic II:
- NS flows with a linear strain and the Burgers vortex -

Consider the initial vorticity of the form

wo(X) =

wo(X) =

Qo = aG + wo

wo,3(%h)
wo1(X) )
wo,2(X)

wo,3(X)

—

—

f 0,3 dXh = 0.
R2

Two dimensional perturbation

Three dimensional perturbation



1-2. Overview of Topic II:
- NS flows with a linear strain and the Burgers vortex -

Theorem (stablility in 2D). For anya € R the Burgers vortex
aG Is asymptotically stable with respect2® perturbations.

Giga-Kambe ('88)]|woallLr + | < 1
Carpio ('94):|al < 1
Gallay-Wayne ('05): without smallness g 3l|, 1, @

See also a book by Giga-Giga-Saal ('10).

- Main result in Topic Il (Gallay-M. ('11)) -

For anya € R the Burgers vortexeG Is asymptotically stable
with respect to smalBD perturbations.

cf. Gallay-Wayne (’06): smallness on bdthi and 3D perturbations



1-3. Overview of Topic lll: - stability of the Lamb-Oseen vortex

Through the self-similar transformation

£ = T = logt,

o | X

the 2D stability of the Burgers vortexxU® is equivalent with
the asymptotic convergencetats> oo of 2D NaV|er Stokes so-

lution u(t, x,) to the self-similar solutionvt™ 2UG( ) calledthe
Lamb-Oseen vortex.

The aim of Topic Il is to extend the above resultiA to the
case of the exterior domaixin R?.



1-3. Overview of Topic lll: - stability of the Lamb-Oseen vortex

e For finite kinetic energy solutionsf (NS) in 2D exterior
domains the temporal decay of their norms at co has been
well studied.

Masuda ('84), Borchers-Miyakawa ('92), Maremonti ('92),
Kozono-Ogawa ('93), Dan-Shibata ('99), Bae-Jin ('06)

e The object of research here is a special cas@®f >~ (Q)
solutionsto (NS) (with no-slip B.C.).

- Global solvability of (NS) in 2D exterior domains is proved by
Kozono-Yamazaki ('95) under the smallness condition on the local

singularity inL=>(Q).



1-3. Overview of Topic lll: - stability of the Lamb-Oseen vortex
Uo: initial velocity wo = Rotug: Initial vorticity
o = fwo(X) dx: circulation number
Q

- Main result in Topic Il (Gallay-M. preprint) -
Let LbeW&ﬁ(Q) forsome pes[1,2) and wg satisfies

f(l + [X[9)Mwo(X)| dX < oo forsomem> 1.
Q

Then thereise > 0 suchthatif |a| < € then the solution u
to (NS) satisfies

[ S S T , = 0.
m Ju(t) (1+t)%U ((1+t)%)”L 0

cf. Iftimie-Karch-Lacave (preprint): smallness hand|ug—aU®||, 2.



Topic |

Inviscid limit for viscous incompressible flows k¢
- approach from the vorticity formulation -

e \orticity boundary condition and vorticity formulation

e Inviscid limit when the initial vorticity is located away
from the boundary



I-1. Navier-Stokes equations in the half plane

OU+U-Vu—vAu+Vp=0 t>0 XxeR2,

V-u=0 t>0 xeR2,

< u=0 t>0 xedR2

K Uk—o = @ X € R2.
(NS)

u = u(t,x) = (uy(t, X), ux(t, X)); velocity field

p = p(t x); pressure field
v > 0; kinematic viscosity coefficient

R2 = {X= (X, X) € R?| 2> 0}



I-2. Vorticity boundary conditions

In the case of the half plane the vorticityis subject to the follow-
Ing boundary condition:

v (@2+ (09 w = —8x(—Ap) Hu-Vw)  t>0 xedR>
(3)

Heref = (—Ap)~th denote the solution to the Poisson equations:

Af = h  inR2
f =0  ondR2

The operator (-§)*/?is defined in terms of the Fourier transfogm
In the tangentialX;) direction:

(=022 (x1) = F Y I&a FLFIED (). (4)



I-2. Vorticity boundary condition: derivation

The condition (3) is derived from a simple mathematical considera-
tion using the Biot-Savart law iR?:

u(t) = V(=Ap) tw(t) VL = (85, —0). (5)

By (5) the conditionu,(t) = 0 on dR? is automatically satisfied.
We need uy(t) = 0 on dR?, thatis,

n(t.%1,0) = - Y wty)dy=0. (6

r2 (X1 —Y1)° + Y5

However,(6) is highly non-localnd difficult to adopt as a boundary
condition on the vorticity. Thus we impose the condition so (Bats
preserved under the evolution of the vorticityRn, i.e., the vorticity

equationsdiw + U- Vw — vAw = 0.




I-3. Initial boundary value problem for vorticity equations

The IBP for the vorticity equations iR? is described as

Oiw + U-Vw — vAw = 0 t>0 xeR?
< u = V+(-Ap)tw t>0 XxeR?
\ wli-o = b := Rota X € R2,

(V)

with the boundary conditions

v (@2 + (09w = —8x(—-Ap) U Vw) t>0 xedR2.
(BC)



I-4. Solution formula for linearized problem

Let us consider the linear problem

{ Oww — vVAw = f t>0 XERE, (LV)

Wli=o = b X € R_%,
subject to the boundary conditions

v (02 + (09w = g t>0 xedR2. (LBC)



I-4. Solution formula for linearized problem

Let G(t, X) be the Gauss kernel iR?, andE(x) be the Newton po-
tential inR?, i.e.,

1 |X|2 1
G(t,X) = 4_7rteXp(_Tt) E(X) = —Zlog|x|.

Thefollowing notations will be used:

[ ha(x - y)haty) .

RS
r\
R%

(hy = hp)(X) = y

(hy % h)(x) = hi(x=y)h(y)dy YV = (y1,—Y2),

y
hs (QHL)(9) = hx (@H5. )(0) = fR h( - V1, %) (y1) dys.



I-4. Solution formula for linearized problem

Then we set

D(t,x) = 2(8 + (=620, )(E * G(1))(),
éinf = G(t)« f + G(t)  f.

Remark. (i) 6(t) = €27 f definesthe solution to the heat equations
in R2 subject to the homogeneous Neumann B. C. with the initial

(00 — NG =0 t>0 xeR2,
dataf,i.e., : 90 = 0 t>0 xe€dR?,
k Olico = f X € R2.

(i) T©)* f := lmI(e)* f = 2 0% + (0278, )E x f satisfies

B2+ (0DLO)x f = 0  in RZ



I-4. Solution formula for linearized problem

Theorem. The integral representation for solutions to (LV)-
(LBC) is given by

t
wit) = @Bb - TO)xb + f e SB(f(s) - g(s)H, ) ds
0

t
- [ O (1(9)- g1, o) ds
Here e'® is defined by
eBf = &@Nf £ T(nt)  f.

Remark. For (NS) the solution formula is obtained by Solon-
nikov ('68) and Ukai ('87).



I-5. Note on the operator I'(0)x

[(0) x f = 2(0% + (—82)20,)E * f E(X) = —%T log|XI.

Thusthe operatol’'(0O)x does not possess a smoothirfieet
near the boundary. Bitis term does not appear in the vorticity
equations, due to the following cancellation property.

Proposition. If g = dx(—Ap)1f |x,—0 then
r0)x (f —gH: ) =0 in RZ. In particular, we have

I'(0)*xb=0in R? if 9x(~Ap) b =0 on dR?.

Note that the conditionda(—Ap)~tb = 0 on a]Ri IS nothing
but the compatibility condition:a; = 0 on 6R2.



I-6. Note on the generator of{e®}i-g
Wé”j_(Ri) = the completion ofiV - ||_« of the space of smooth and
divergence free vector fields with compact suppoiin
Xq = { Rotu € LYR3) | ue Wy %R2) }.
Proposition. Let q € (1,). Then the one-parameter family

{eB}0 defines a G-analytic semigroup in X Moreover, the
generator B of {€B}.o in Xy is given by

D(By) = {f € Xg N W?I(R2) | (8, + (-82)2)f =0 on dR?),

and it follows that ||[V4f||q < Cl||BqyfllLa forall f e D(By).



I-7. LP — L9 estimatesfor &b

Lemma. () Letl<g<p<oorl<g<p<oco. Then

1€BF]| Lo < Cta"| f[|La t>0.

(i) Letl < q< p<oandkeN. Then

1 Kk

VKBl » < Ctats 2| f]| q t>0.

(i) Letl < g < p < oo and g= da(=A)1f |x._0. Then

I€B(f — gHE _o)lie < CUa 72V (-Ap) s t>0.



I-8. Solvability of IBP for the vorticity equations in R?

Theorem. Assume that e LP(R?), dp € (1,2), and that b sat-
isfiesdx(—Ap)™ib = 0 ondR2. Then there is T> 0 such that
(V)-(BC) has a unigue mild solutian € C([0, T,); LP) satisfy-
Ing

sup tYP Y w(t)]] 4 < .

O<t<T,
Furthermore, the solution is smooth in positive time.

Remark. (i) WhenQ = R? the solvability of the vorticity equations
IS classicalGiga-Miyakawa-Osada ('88), Ben-Artzi ('94), Kato ('94).

(i) In view of the solvability of the Navier-Stokes equations, the
above theorem does not give a new result. For (NS)Lthéheory
IS already well developed; e.§olonnikov ('77), Weissler ('80)



1-9. Analysis of vorticity at inviscid limit

Ou+Uu-Vu—vAu+Vp=0 t>0 XxeR2,

V.-u=0 t>0 xeR2,

< u=0 t>0 XedR?,

\ U= = a X € R2.
(NS)

The behavior of solutions to (NS) at the inviscid limit:— O

cf. Without boundaries the convergence to the Euler solutions
IS proved In various settings.
Ebin-Marsden ("70), Swann ('71), Kato ('72) Constantin-Wu ('94,

'96), Chemin ('96), Danchin ('97,99), Taniuchi ('04), Hmidi ('05,
'06),Caflisch-Sammartino ('06) Masmoudi ('07), Sueur ('08),



I-10. Recall: Formal asymptotics - the Euler equations

Formally, by tendingg — 0 in (NS) we get the Euler equations
for the ideal incompressible flows:

,

OtUg + Ug - Vug + Vpe = 0 t>0, XeR2,
< divug =0 t>0, XxeR?
Ugo =0 t>0, xedR2
\ UEli=0 = @ X € RS,
(E)

Recall thatuys = 0 ondR?2, while ug 1 £ 0 ondR? in general.
= The boundary layer appears.



I-11. Recall: Formal asymptotics - the Prandtl equations
By assuming the expansiomat- O as

uns(t, X) = Ug(t, x) + uQ(t, %) + O(»2), (7)

% X2 1 X2
U (t, X) = (Vpa(t, X, =), v2 Vpa(t, X1, =) ),
V2 V2

we get the Prandtl equations famp(t, X1, Xo):
( (at — aiz)Vp’l + V|:>,18X1Vp,1 + V|:>,28x2Vp,1 + axlﬂ'p =0,
(9X1Vp,1 + aXZVRz =0, axzﬂ'p =0,

} VP lx=0=0, (P)
lim vpi(t, X1, X2) = Uga(t, X1, 0),

X2—>oo

im 7p(t, X1, X2) = pe(t, X1, 0).

\ Xz—)oo




-12. Known mathematical results

So far the solvability of the Prandtl equations and the verification
of the expansion (7) are establishatter particular situations only.

(1) Mathematical analysis of the Prandtl equations

e Solvability

Oleinik ('66), Matsui-Shirota ('84), Xin-Zhang (‘'04Monotonicdata
Asano ('88), Sammartino-Caflisch ('98)\nalytic data
Lombardo et al. ('O3)Analytic (in x; direction) data

e lll-posedness of linearized Prandtl equations in Sobolev class
GerardVaret-Dormy ('10)

(2) Verification of the asymptotic expansion (7)
Asano ('88), Sammartino-Caflisch ("98)\nalytic initial data



-12. Known mathematical results
(3) Counter example for (7)

Grenier ('00); Invalidity of (7) around the linearly unstable shear
layer profileugia X2) for the stationary Euler equations

Roughly speaking, he considered the initial data of the form

y X2 X
U0 =~ UsaZ) + YWo(5) N> L,
V2 V2
and then, with a suitable choice aofy, established the estimate for the
corresponding NS solutionys, such as

luns,(T,) — Ustad Ty, ;l)”L"O > cy for some T, = O(vZlogv™Y).
V2

Hereugp(t, Xo) Is the solution to the heat equations with the homogeneous
Dirichlet B.C. and with the initial datagia(X>).



1-13. Known mathematical results
e L2 convergence:
!/iH])()||UNSV(t) — Ue(t)ll2q) = O. (8)

(1) Under theradial symmetryof the domain and the solution the
convergence (8) is verified.

Matsui ('94), LopesFilho et al ('08), Kelliher ('09); -

(2) Criterionon the convergence (8):
Kato ('84), Temam-Wang ('97), Kelliher ('08,09); -

T
lim f v||Vu(t)||Ez(Q ) dt=0 Q, ={xe Q]dist (x,002) < v}].
O 4

v—0



I-14. Inviscid limit for initial vorticity located away from the
boundary

Goal: Establish the asymptotic expansion (for a short time¢n the
Initial vorticity is located away from the boundary

This class of initial data includesdpole-type vortexas a typical
example, which iIs used as a benchmark in the study (numerical or
experimental one) of the interaction betwepa vorticity originated
from the initial oneandthe vorticity created on the boundary; cf.

Orlandi ('90).
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t=102 t=03 t = 0.3278

FIG. 2. Sequence of vorticity contour
plots showing the flow evolution of a
dipole colliding with a no-slip wall for
integral-scale Reynolds number Re
=2500. The contour levels are drawn
t=04 t=05 t=06 for ...,~100,-60,-20,20,60,100,...

=07 t=08 t=1.0



Extractfrom Nguyen-Farge-Schneider (Phys.Rev.Lett. 2011):
(the horizontal direction is— )
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FIG. 1 (color online). Vorticity in the subdomain [0.708, 0.962] X [0.5, 0.754] at ¢ = 0.36, 0.4, 0.45, and 0.495 (left to right) for
Re = 7880. The white dotted box at ¢ = 0.495 frames region B (see text). Black pixels correspond to @ = =300 in all pictures.



Roughdescription of the behavior of vorticity with a dipole ini-
tial vortex

1. The dipole vortex approaches to the boundary, while the high
vorticity is immediately created along the boundargr{ex line).

2. The dipole vortex collides into the boundary and the produced
vortex line starts to roll up.

3. The produced vortex pairs with the original one and forms a
secondary dipole.

4. The secondary dipole bounces back to the boundary.
Note. For the Euler flows the vorticity is independent of time along

the trajectory flows (the Lagrange theorem) and the rebound of the
secondary dipole vortex is not observedftBan ('79).

Formal asymptotic expansion by Prandtl will be verified (only) for
Stepl.



-15. Malin result

Theorem. Let ae LE(R?) for somel < p < oo and be WH{(R2) n
W*2(R2). Assume also thata 0 on dR? and that

do = dist (OR?, supp Rot) > 0. (9)
Then there is T> 0 such that the solution,(@ to (NS) satisfies
UOL() — ue(®) — 8@l wgzy <Cve 0<t<T. (10)

Thetime T is estimated from below as=cmin{dy, 1}, where c> 0

depends only olfbliwsiqwsz. Herefj(g) IS the solution to the (modified)
Prandtl equations.



-16. Remark on main theorem

(1) Sammartino-Caflisch ('98) proved (10) for the analytic initial
data directly from the Navier-Stokes equations.

Our solution Iis not analytic in the region away from the boundary,
and we use the vorticity formulation.

(2) T
such
the ¢

ne lower bound ofl gives an information of the time period
that the vortex line remains stable and does not separate beyond

assical boundary layer thickness.



I-17. Formal asymptotics - vorticity for the Euler flows
By taking the formal limity — 0 in (V) we get

Owe +Ug-Vwe =0, U = V*(=Ap) wE, wgli=0 = b. (VE)

cf.) The solvability of the two-dimensional Euler equations for the
Incompressible flows is well known,

Wolibner ('33), Yudovich ('63), Kato ('67), Bardos ('72); -



1-18. Formal asymptotics - vorticity for boundary layer

Assume w"(t, X) = we(t,X) + v 2wp(t, X1, Xo/v2) + remainder

(

OWp — 05 Wp = — (VE1 + VR1)O1Wp — (VE2 + VP2)d2Wp,
VE1(t, X1, X2) = Uga(t, Xg, 0),
Ve (L, X1, Xo) = Xo0oUg o(t, X1, 0),

(©Q)

Vpi(t, X1, X2) = fxz Wp(t, X1, Y2) dYo,
X
Vea(t, X1, X2) = — (91( I, Yawp(t, X1, Y2) dY5

+ X2 fXO: Wp(t, X1, Y2) de),

\ Wpli—o0 = O,

subject to the boundary condition

82Wp = — f (VE + Vp) - VWp dYg — 52(—AD)_1(UE . V(UE).
0



1-19. Key observation for the proof of main theorem

(1) Since the vorticity fieldvg of the Euler flows solves the trans-
port equation we have

~

d
Uo<t< SUPPwe(t) € {X € R2 | X, > EO > 0}, (11)

for someT’ > cdy. In particular, all data in the vorticity equations
areanalytic near the boundary layer region.

—> The Prandtl type equations should be solved (construction of
the boundary layer).

But w loses the analyticity as it leaves the boundary.



1-20. Key observation for the proof of main theorem

(2) We have to work in th&obolev class away from the boundary

But in the region away from the boundary, the argumentdifer
heat-convection equationsitf will be applied to some extent.

(3) Due to the support property afs, there should be the region

Dsman = {X € Ri | Clao < X2 < 0250} dc, > ¢ > 0,

wherew Is exponentially small, say,

C :
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I-21. Difficulty and Key idea

Difficulty: How to capture the properties (1) - (3) rigorously by
taking into account the interaction between the vorticities inside and
outside the boundary layer.

Key idea

(1) Decompose as

w = W + wp, + W, wg, = R%WBV, w|, = R%W| B, + W .
(RsF)(X) = 2 (xq, X).

- Theprofilewg, Is taken so that convergesue (the Prandtl flows).

. The profilesw;g, andw;; will be estimated as the ordé{(v'/?) in
suitable norms.

(2) Introduce suitableveighted function spacder wg, Wig , W .



(3) In order to estimatev,, (the remainder of the Euler part) we
appeal to the optimal pointwise estimate by Carlen-Loss ('95) for

fundamental solutions to

Ol —vAO+Uu-VO=0 V.-u=0 t>0 XxeR2
{
1 (Ix=yl = [, lu(@)ll~ d7), 2
PU)(t, x; s,y) < e (— S )
u (L% S.Y) Arv(t — S) XD 4v(t — S)

Here (o), = max{a,0}.

(4) Constructug, and (wg , Wy, ) by the iteration scheme (with
the aid of the solution formula) and use thbstract Cauchy-

Kowalewski theorem (ACK).

cf.) ACK theorem; Nirenberg ('72), Nishida ('77), Kano-Nishida ('79),
Safonov ('95)



1-22. Equation for wg: w = wg + wp, + W,

{ Owp, — vVAwg, + M(wg + wp,,wp,) =0
CUBV|t:O =0

subject to the boundary condition
v(02wp, + (—8%)%(1)5) = N(wg + wp,, we,) + N(wg, wg)

M(f,g) = J(T) - Vg J(f) = V*(-Ap)
N(f9 g) — _‘Jl( M(fa g) )|X2=O-

The solution Is constructed In the forwg, = Ry /,Wg,

sup [lwg, (t) — Wp(D)Il .6 < Cy? for some u,p > 0.
O<t<T XBV

Herewp Is the vorticity of the Prandtl flows.



1-23. Equation for w, : w = wg + wp, + w,

( (9'[(1)|V — VA(U|V + J(a)) . Va)|v = —I\/I(a)|v, WE + a)BV) + FV,
4 F, = —M(ws,, wg) + VAwE,
\ w),lt=0 = 0.

subject to the boundary condition

V(02w + (—6%)%a)|v) = N(w, w,) + N(w,, wg + wg)) + N(ws,, WE)
+ le(Aa)E) |x2:0-

The solutionw,, Is constructed in the formy;, = Ry ,Wig, + Wi .
— Solve a suitable system for (yy, w;; ).



1-24. Equation for wj, ! w = wg+wp,+w,, w, = Rewg +Wj;

( (9tw|| — VAW” + J(w) . VW|| = —J(a)|v) . Va)E + Fv,
F, = —J(ws,) - Vwg + VAwE,
OoWi| |x=0 = 0,
Wi |=0 = O.

Remark. (1) We have
Uo<t<T” SUPR, (—J(w|v)-VwE+ Fv) C {Xe Ri | Xo > 320 > 0}.

(2) The equation fow, is the heat-convection equations with
the homogeneous Neumann boundary condition.

— By using the reflection we can use the estimateR?ifor
the heat equatiowith a divergence free drift



Recall: We construct the vorticity fieldv of the form

WNS
R)X) = v Ef(x0, D)
%4 Vi

WE + RlWBV + R;W||3V + W,

e Riwg, Riw g : flowswith boundary layer structure
e wg, W, :flowswithoutboundary layer structure

(1) Our solution loses the analyticity as it leaves the boundary.
Then, how?

(i) The remainder termv;;, should be estimated as

O(e‘(‘v:) 0< X <l
O(V%) Xo > Coly

W||V(t, X) = {

How to describe this drastic transition?



1-25. Function space for wg (t, X1, X2), Wi (t, X1, X2), Wy (t, X)

(u — V%X2)+
4
QU-—-XQ)+
4

£l + X2 )

€] + €(6dE — Xz)i)-
y

Sﬁ(étv’p) (€1, X2) = exp(

90%’9)(61, X2) = eXp (

Il = > el eI} flen Xl e

0<jk<1 1%
_ ) /g \1-jyestial £
Il = D, [leg ™57, fle X)Lz 110
0<jk<z1
,0 ial—j & 0,
Ifllyen = > [le¥ 10, fen |2 o + > Fll
Iy Ogjgjl_ v £1 X2 v

f(é1, %) = FIT( X)I€)  (@)s = max{e,0)  de = 27 min{dy, 1)



I-26. Note on the invariant property of X(B‘i’p), ng’f), Xfﬁ’@)

Lemma. Let t>s>0, u>0,0<p<2% and0<o< 274
Then it follows that

72 VIil— (,U,%)
e F(RECINR 2y < Cligy “F (Nl »
v v 1 X2 v §1 X2

(D) (- (19
o “F(eFN )il 1z, < Cllgy = F ()l 3,

— 2 X N
Pu N1 Xo) = exp( b 2 211+ pX3 )
90&1’9)(51, X2) = eXp (('u _4X2)+|§1| + ?/(GdE - Xz)i)-



172 X3
Proof. Set g(t, Xo) = (4nt) exp(—zt). Then

F (Rvev(t_s)AR% )L Xo) = €94 | g(t—5,% — Vo) f(é1, Y2) dYa.
Ry

From the inequalities

(= vIXo) &l < (u—vaYo)al&ll + v2Xo — Yo |,
2
X — Y. < v(t-9)§ + %2 Y2
vi[Xo = Yol 1] < w(t-9)& s
we have

FRETIR, F)(£, Xo)| < & HESE-Hv2X0) e
- f 9(2(t— ). X2 — Y2)e %) (e f)(€r Ya) d Yo
Ry

Thusthe desired estimate follows from
1

||et 29(t —s)=*h (X2)|||_1 S ||es h(X2)|||_1 O0<pB< 2



I-27. Open problem

1. Qualitative or quantitative estimates of vorticity fields when
the instability of the boundary layer occurs.

2. L bound of velocity fields such as

T

sup ||u(V) (t)]|L~ dt < 0.
O<vk1 JO

for suficiently general class of initial data.

cf.) So far we have onlysup sup IIU(V) ()]l < oo0.

1
O<vxl O<t<cyd



Topic Il

Stabllity of the Burgers vortex for 3D perturbations



Topic II: Stability of the Burgers vortex
lI-1. Flows with a background strain

V = (V1, Vo, V3) " velocity field, P: pressure field
(6V — AV + (V,V)V + VP =0 t>0 xeR3,

(NS) V-V=0 t>0 XeR3
\ Vlt:O = Vp X € RB.

We consider the solutiox of the form

r_%o()\
V =Mx+U M=| 0 -30].
.0 0 1,

U = (Uy, Uy, U3g): unknown perturbation velocity



[I-2. Burgers vortex

Let X = (X, X3) € R? x R and set

1 b2 (0
G=ge; 90h) = €% es=| 0],
T
"y
(=X VO([Xn]?) ) 1 r
UCS(xn) =] X1 VI(IX?) Vo(r) = 2—(1 — €74).

Burgers ('48): For eacha € R the velocity fieldvix + aU®
IS a stationary solution tgNS).

- Main result in Topic Il (Gallay-M. ('11)) -

For anya € R the Burgers vortexG is asymptotically stable
with respect to smalBD perturbations.



[I-3. Vorticity equations

Q=VxV =VxU = aG+w: expansion arounaG
U = VX (-Aps)Q = aU® + Kyppxw: Biot-Savart law

(0w — (L-aA)w + Blw,w) =0 t>0 xeR3
(V') < V-w =0 t>0 xeR3
\ Wlzo = wo XER?’.
(_% 0 0)
Lw = Aw — (MX, V)w + Mw M=]| O —%O :
.0 0 1

Aw = (U®, Vw — (v, V)U® + (Ksp * w, V)G — (G, V)K3p * w,

B(w, w) = (Kap * w, V)w = (w, V)Ksp * w.



II-4. Function setting

0o}

LARY) = (F e LB [ IfO0Ps <

Lgo®) = (feLg®) | | fOm)dx = 0]
X = BC(R; LiR?))  Xo = BC(R; L (R?)
Iflix = Ifllx, = supllf(, xs)llzea

X3€R

The perturbation vorticityw Is taken from the function space

X = X?x Xo



II-5. Key linear estimate

Theorem (Gallay-M. ('11)).
Let f e X satisfy V- f =0. Then it follows that

[Nl < Cue2||fllx t> 0.

e Theabove result implies that the spectral boundl efa A
IS estimated uniformly in the circulation number

e The Gaussian weight can be relaxed to a polynomial weight.



1I-6. Decomposition ofL — aA into 2D parts and 3D parts

Lop.a.h wh
I—2D,a W = L o
2D.a,3 W3

( Lhwn — 3wn — (US, Vi)wn + a(wh, Vi)UR)

. Lhws — a(UZ, Vi)ws — a(Kop * w3, Vi)g

X
Here L, = Ap + Eh-Vh + 1 and Kop*ws = Vﬁ(—ARz)‘lwg.



1I-6. Decomposition ofL — aA into 2D parts and 3D parts

Lop o.h wh
Lopg w = Lo
2D.,a,3 W3

[ Lhwh — %wh — a(UG,Vh)wh + a(wh, Vh)Ur?\

| Lhws — a(UP, Vi)ws — ao(Kop * w3, Vh)g |

X
Here L, = Ap + Eh-Vh + 1 and Kopxws = Vﬁ(—ARz)‘lwg.

Then L — A = Ly, + 05 — X303 — aH, where

How = (K3p *w, V)G — (Kop * w3, V)G — (G, V)Kzp * w.
Note: If w = (0,0, ws(Xy)) ' thenHw = 0.



11-7. Decomposition ofe=*) into 2D parts and 3D parts

The operatot_,p , IS vectorial but two-dimensional.
The semigroupR,(t) of Lop, + 05— X303 is

(RO F)X) = \/271(11— = fR & sie (600 (-, y3)) (%) dys.

Then the original solution(t) = e--2Mf is given by

o) = N = R,Mf - « f | R,(t — s)Hw(s) .
0



11-7. Key structure of g{—A)

e From a rough estimatée-—24)|| < C,e*! and astretch-
ing effect g5e--oM) = e Kelll=eMgk " we have an exponential
temporal decay obkel-*") at least fork > 1.

L — oA = Lyp, + Gg—xgﬁg — aH

Hw = (Ksp *w, V)G — (Kop * w3, V)G — (G, V)Ksp * w.



11-7. Key structure of g{—A)

e From a rough estimatée-—24)|| < C,e*! and astretch-
ing effect g5e--oM) = e Kelll=eMgk " we have an exponential
temporal decay obkel-*") at least fork > 1.

e Since Hw |s estimated In terms ofdzw, the inhomo-
geneous termf R,(t — S)Hw(s) ds is negligible fort > 1.
Hence It stfices to focus on R, (1), that is,the spectrum of
the 2D operatorLop, in (L§(R?))* x LE O(RZ)

(Ra(t) f)(X) = \/27[(11_ e—2t) fe l);(i e_—);tl) (e L2D,af(., yg))(xh) dy3



11-7. Key structure of g{—A)

e From a rough estimatée-—24)|| < C,e*! and astretch-
ing effect g5e--oM) = e Kelll=eMgk " we have an exponential
temporal decay obkel-*") at least fork > 1.

e Since Hw |s estimated In terms ofdzw, the inhomo-
geneous termf R,(t — S)Hw(s) ds is negligible fort > 1.
Hence It stfices to focus on R, (1), that is,the spectrum of
the 2D operatorLop, in (L§(R?))* x LE O(RZ)

[ Lhown — ga)h — a(US, Vi)wn + a(wh, Vh)UG\
L2D,cxw —

\ Lhws - (U2, Vn)ws — a(Kop * w3, Vh)g

Here £, = An + E Vh + 1, and —L£, >0 in LZ(R?).



11-7. Key structure of g{—A)

e From a rough estimatée-—24)|| < C,e*! and astretch-
ing effect g5e--oM) = e Kelll=eMgk " we have an exponential
temporal decay obkel-*") at least fork > 1.

e Since Hw |s estimated In terms ofdzw, the inhomo-
geneous termf R,(t — S)Hw(s) ds is negligible fort > 1.
Hence It stfices to focus on R, (1), that is,the spectrum of
the 2D operatorLop, in (L§(R?))* x LE O(RZ)

From G.-W. ('05) we already have(Lop ,.3) C {1 € C|ReA <
—1/2}. So we consider the eigenvalue problem

3
Lopahwn = Lhwn — zwn — a(UZ, Vi)wn + a(wn, VR)UP = Awn.

‘ (12)



By taking the inner product of L(R?))* with w, we have
ReAllwhll®
3
= Re((Lh—§|)wh, wn) — aRe((UZ, Vi)wn, wn) + aRe((wn, Vi)Up, wh).



By taking the inner product of L(R?))* with w, we have

ReAl|wn||”
3
= Re((Lh — §|)a)h, wh) — CL’RG((UG, Vh)a)h, wh) + CL’RG(((uh, Vh)Uﬁ;, Wh)

< —Sllwnll? + aRe((wn, VRUR, wn)
3

= —Z|lwpl]®* + 2aRe f Xn - wh Xpy - @h (X017 ——
2 R2

where f(r) = 2-4(1-e9)/r.

dXh

00 (13)



By taking the inner product of L(R?))* with w, we have

ReAl|wn||”
3
= Re((Lh — §|)a)h, wh) — CL’RG((UG, Vh)a)h, wh) + CL’RG(((uh, Vh)Uﬁ;, Wh)

< —Sllwnll? + aRe((wn, VRUR, wn)

3

dx
= _§||wh||2 + zaRef2 Xn - @n Xt - @n f(Xp?) —s
R

g(Xn)
where f(r) = 217rdr(1 e 3)/r. The function x, - wy, satisfies

(14)

AXh - wh = (.l:h— 2|) Xh*Wh — a(Uh,V) Xh+wh — 2Vh -+ wp,
thus we have
ReAlXn - whll® < = 2% - whll® = 2Re(Viy - wh, X - wh). (15)



By taking the inner product of L(R?))* with w, we have
ReAl|wn||”
3
= Re<(£h—§|)a)h, wh) — aRG((UG,Vh)wh, wh) + CL’RG(((uh, Vh)Uﬁ;,wh)

3
< —Sllwnll? + aRe((wn, VRUR, wn)

3

dx
= _§||wh||2 + zaRef2 Xn - @n Xt - @n f(Xp?) —s
R

g(Xn)
where f(r) = Zlﬂdr(l e 3)/r. The function x,- wp satisfies

(16)

AXn-wh = (Lh=21)%y - wh — a(Uh,V)Xh-a)h — 2Vh - wp,
thus we have
ReAlXn- whll> < =2l - whll® — 2Re(Vh- wn, Xn- wn).  (17)
The function Vi, - wy, satisfies
AVh-wn = (L= DVh-wn — a(UZ, Vi)Vh - wh,
which leads to
ReA(|Vh - will® < —gnvh-whn? (18)



Topic

Stablility of the Lamb-Oseen vortex in 2D exterior domains



11-0. Recall: Main result

Q c R? exterior domain
Uo. Initial velocity wo = Rotug: Initial vorticity

@ = fwo(X) dx: circulation number
Q

- Main Theorem (Gallay-M. preprint) -

Let W€ Wéﬁ(ﬂ) forsome pe[1,2) and wq satisfies
Jo(L+ XA Mwo(X)?dx < co for some m> 1.

Then there is e > 0 such that if |a| < € then the solution u
to (NS) satisfies

[ - 9(— . = 0.
lim {ju(®) PR ((1+t)%)”L 0 (19)




I1I-1. Decomposition of initial velocity

Consider the Navier-Stokes equations in 2D exterior domains

ou + U-Vu — Au+ Vp = 0 V-u=0 (NS

subject to the no-slip boundary condition. Under the assump-
tion of the theorem we can express the initial velocity as

u(0) = ayu’(1) + v(0).

Here y Is aradial cut-ofsuchthajy = 1for|x| > 1, au¥(1) is
the Lamb-Oseen vortex at tinhe= 1, andv(0) € L%(Q) N L (Q)
with some g € (1,2) is an initial perturbation.



I1I-2. Logarithmic energy estimate for v(t) = u(t) — ayud(1 +t)
OV + aP(u’f -VV+ V- VU +v- Vv) = -Av+aRY. (20)

P : the Helmholtz projection in LZ(Q))?

A : the Stokes operator ihZ2(Q),
RY = (AxY)Uu? + 2Vy - VU9 : circular flow with compact support

Proposition (Gallay-M.). There is K> 0 such that for anyr and
v(0) € L2(Q) the solution tq20) with the initial data \0) satisfies

t
IVEOIIZ. + fo IVV(S)IF.ds < Ka([VollZq) + @?log(1+1) + Do) ,

where Q,, = @?log(1+|a|) +a?p? andp is the diameter ofR*\Q.



11I-3. Fractional primitive of v

Lemma (Borchers-Miyakawa ('92), Kozono-Ogawa ('93)).

Let qe (1,2) and u = 1/g-1/2. Forall ve L2(Q)NLYQ)?
there exists a unique w D(A¥) c L2(Q) such thatv = A¢w.
Moreover, there exists a constant ££C(g) > 0 (independent

of v andQ) such that||w/|| zqy < ClIVl|Lagq).
Then we combine the argument of Kozono-Ogawa ('93) with

the logarithmic energy estimate to get the estimate of the frac-
tional primitive w(t) = A7#v(t) such that

t
WO+ [ Ivws)R, ds
o)
< K'(L+ 1) expK'(IVollZ + Day) (IVollZs + p%?) ,

which leads to the temporal decay p¥w(t)|| 2 if ca® < 1.



