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1. Overview - introduction

There are several structures observed in viscous incompress-
ible flows, which exhibit typical behaviors of flows or persist
for a relatively long time. These structures are often described
in terms of vorticity fields.

• Vortex tubes in 3D flows:

· · · tube-like structures of intense vorticity fields

• ‘Inverse cascade’ in 2D flows:

· · · tendency for small vortices to form larger vortices

• Boundary layer of flows at high Reynolds number:

· · · vortex sheets or lines attached to the boundary



1. Overview - vorticity field

In this lecture we are interested in the vorticity filed of the
viscous incompressible flows.

u =
(
u1,u2, u3

)⊤ : velocity field

ω = ∇ × u =

 ∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1

 : vorticity field in 3D

ω = Rot u = ∂x1u2 − ∂x2u1 : vorticity field in 2D



1. Overview - vorticity equations

•Navier-Stokes equations for viscous incompressible flows:

∂tu + u · ∇u − ν∆u + ∇p = 0 ∇ · u = 0. (NS)

The difficulty comes fromnonlinearityand also fromnon-
local naturedue to the pressure term.

• Vorticity equations for viscous incompressible flows:

∂tω + u · ∇ω − ω · ∇u − ν∆ω = 0 in 3D. (V3)

∂tω + u · ∇ω − ν∆ω = 0 in 2D. (V2)



1. Overview - contents of this lecture

In view of the vorticity equations the vorticity is a ‘local’
quantity, and useful to study local properties of the flow.

Topics:

I. Inviscid limit for viscous incompressible flows inR2
+

- approach from the vorticity formulation -

II. Stability of the Burgers vortex for 3D perturbations

III. Stability of the Lamb-Oseen vortex in 2D exterior
domains

∗ Firstly we will see overviews of each topic.
∗ In this lecture the first topic will be more focused.



1-1. Overview of Topic I:
- behavior of NS flows at the inviscid limit -

By formally taking the limitν→ 0 of the NS equations

∂tuNS + uNS·∇uNS − ν∆uNS + ∇pNS = 0 ∇·uNS = 0,
(NSν)

we get the Euler equations

∂tuE + uE · ∇uE + ∇pE = 0 ∇ · uE = 0. (E)

Boundary condition:

uNS = 0 (no-slip) ←→ n · uE = 0 n: exterior unit normal

=⇒ boundary layer appears



1-1. Overview of Topic I:
- behavior of NS flows at the inviscid limit -

· Prandtl theory (1904)

(i) Outer region(the region away from the boundary):

· The fluid motion will be described by theEulerequations.

(ii) Boundary layer region(the region where the viscosity
effect essentially exists):

· The fluid motion will be described by thePrandtlequa-
tions. The formal boundary layer thickness isO(ν1/2).



1-1. Overview of Topic I:
- behavior of NS flows at the inviscid limit inR2

+ -

Mathematically the above description corresponds with the
asymptotic expansion atν→ 0:

uNSν(t, x) = uE(t, x) + u(ν)
P (t, x) + O(ν

1
2) in L∞t,x, (1)

u(ν)
P (t, x) =

(
vP,1(t, x1,

x2

ν
1
2

), ν
1
2vP,2(t, x1,

x2

ν
1
2

)
)⊤
.

However, the rigorous verification of (1) is still widely open.
So far it is verified only forthe initial data with analytic regu-
larity: Asano (’88), Sammartino-Caflisch (’98).



1-1. Overview of Topic I:
- behavior of NS flows at the inviscid limit inR2

+ -

a: initial velocity b = Rot a: initial vorticity

- Main result in Topic I (M. preprint) -

Assume that a∈ Lp
σ(R2

+) for some1 < p < ∞ and b ∈
W4,1(R2

+) ∩W4,2(R2
+). Assume also that a= 0 on∂R2

+ and

d0 = dist (∂R2
+, suppb) > 0. (2)

Then the asymptotic expansion(1) holds at least for a short
time T > 0, where T satisfies T≥ cmin{d0,1} with c > 0
depending only on∥b∥W4,1∩W4,2.

• For the proof we use the vorticity formulation.



1-2. Overview of Topic II:
- NS flows with a linear strain and the Burgers vortex -

It is believed that vortex tubes take place due to the interplay
of two mechanism:

(i) amplification of vorticity due to stretching

(ii) diffusion through the action of viscosity

To study their typical interaction we consider the NS velocity
field V of the form

V = Mx+ U M =


−1

2 0 0
0 −1

2 0
0 0 1

 .
U = (U1,U2,U3): unknown perturbation velocity



1-2. Overview of Topic II:
- NS flows with a linear strain and the Burgers vortex -

Let x = (xh, x3) ∈ R2 × R and set

G = g e3 g(xh) =
1
4π

e−
|xh|2

4 e3 =


0
0
1

 ,
UG(xh) =


−x2 ug(|xh|2)
x1 ug(|xh|2)

0

 ug(r) =
1

2πr
(1− e−

r
4).

Burgers (’48): For eachα ∈ R the velocity fieldMx+ αUG is
a stationary solution to(NS).

Problem: Stability of the Burgers vortexαG for a given cir-
culation numberα?



1-2. Overview of Topic II:
- NS flows with a linear strain and the Burgers vortex -

Consider the initial vorticity of the form

Ω0 = αG + ω0

∫
R2
ω0,3dxh = 0.

ω0(x) =


0
0

ω0,3(xh)

 ⇐⇒ Two dimensional perturbation

ω0(x) =


ω0,1(x)
ω0,2(x)
ω0,3(x)

 ⇐⇒ Three dimensional perturbation



1-2. Overview of Topic II:
- NS flows with a linear strain and the Burgers vortex -

Theorem (stability in 2D). For anyα ∈ R the Burgers vortex
αG is asymptotically stable with respect to2D perturbations.

Giga-Kambe (’88):∥ω0,3∥L1 + |α| ≪ 1
Carpio (’94): |α| ≪ 1
Gallay-Wayne (’05): without smallness on∥ω0,3∥L1, α

See also a book by Giga-Giga-Saal (’10).

- Main result in Topic II (Gallay-M. (’11)) -

For anyα ∈ R the Burgers vortexαG is asymptotically stable
with respect to small3D perturbations.

cf. Gallay-Wayne (’06): smallness on both|α| and 3D perturbations



1-3. Overview of Topic III: - stability of the Lamb-Oseen vortex

Through the self-similar transformation

ξ =
x

t
1
2

τ = log t,

the 2D stability of the Burgers vortexαUG is equivalent with
the asymptotic convergence att → ∞ of 2D Navier-Stokes so-
lution u(t, xh) to the self-similar solutionαt−

1
2UG(

xh

t
1
2

), calledthe

Lamb-Oseen vortex.

The aim of Topic III is to extend the above result inR2 to the
case of the exterior domainsΩ in R2.



1-3. Overview of Topic III: - stability of the Lamb-Oseen vortex

• For finite kinetic energy solutionsof (NS) in 2D exterior
domains the temporal decay of their norms att → ∞ has been
well studied.

Masuda (’84), Borchers-Miyakawa (’92), Maremonti (’92),
Kozono-Ogawa (’93), Dan-Shibata (’99), Bae-Jin (’06)

• The object of research here is a special case ofthe L2,∞
σ (Ω)

solutionsto (NS) (with no-slip B.C.).

· Global solvability of (NS) in 2D exterior domains is proved by
Kozono-Yamazaki (’95) under the smallness condition on the local
singularity inL2,∞

σ (Ω).



1-3. Overview of Topic III: - stability of the Lamb-Oseen vortex

u0: initial velocity ω0 = Rot u0: initial vorticity

α =

∫
Ω

ω0(x) dx: circulation number

- Main result in Topic III (Gallay-M. preprint) -

Let u0 ∈ Ẇ1,p
0,σ(Ω) for some p∈ [1,2) and ω0 satisfies∫

Ω

(1+ |x|2)m|ω0(x)|2 dx < ∞ for some m> 1.

Then there is ϵ > 0 such that if |α| ≤ ϵ then the solution u
to (NS) satisfies

lim
t→∞
∥u(t) − α

(1+ t)
1
2

UG(
·

(1+ t)
1
2

)∥L2 = 0.

cf. Iftimie-Karch-Lacave (preprint): smallness on|α| and∥u0−αUG∥L2.



Topic I

Inviscid limit for viscous incompressible flows inR2
+

- approach from the vorticity formulation -

• Vorticity boundary condition and vorticity formulation

• Inviscid limit when the initial vorticity is located away
from the boundary



I-1. Navier-Stokes equations in the half plane
∂tu+ u · ∇u− ν∆u+ ∇p = 0 t > 0 x ∈ R2

+,

∇ · u = 0 t ≥ 0 x ∈ R2
+,

u = 0 t ≥ 0 x ∈ ∂R2
+,

u|t=0 = a x ∈ R2
+.

(NS)

u = u(t, x) = (u1(t, x),u2(t, x)); velocity field
p = p(t, x); pressure field
ν > 0; kinematic viscosity coefficient
R2
+ =

{
x = (x1, x2) ∈ R2 | x2 > 0

}



I-2. Vorticity boundary conditions

In the case of the half plane the vorticityω is subject to the follow-
ing boundary condition:

ν
(
∂2+ (−∂2

1)
1
2
)
ω = − ∂2(−∆D)−1(u · ∇ω) t > 0 x ∈ ∂R2

+.

(3)

Here f = (−∆D)−1h denote the solution to the Poisson equations:{
−∆ f = h in R2

+,

f = 0 on ∂R2
+.

The operator (−∂21)1/2 is defined in terms of the Fourier transformF
in the tangential (x1) direction:

(−∂2
1)

1
2 f (x1) = F −1[ |ξ1| F [ f ](ξ1)

]
(x1). (4)



I-2. Vorticity boundary condition: derivation

The condition (3) is derived from a simple mathematical considera-
tion using the Biot-Savart law inR2

+:

u(t) = ∇⊥(−∆D)−1ω(t) ∇⊥ = (
∂2,−∂1

)
. (5)

By (5) the condition u2(t) = 0 on ∂R2
+ is automatically satisfied.

We need u1(t) = 0 on ∂R2
+, that is,

u1(t, x1,0) =
1
2π

∫
R2
+

y2

(x1 − y1)2 + y2
2

ω(t, y)dy = 0. (6)

However,(6) is highly non-localand difficult to adopt as a boundary
condition on the vorticity. Thus we impose the condition so that(6) is
preserved under the evolution of the vorticity inR2

+, i.e., the vorticity
equations:∂tω + u · ∇ω − ν∆ω = 0.



I-3. Initial boundary value problem for vorticity equations

The IBP for the vorticity equations inR2
+ is described as

∂tω + u · ∇ω − ν∆ω = 0 t > 0 x ∈ R2
+,

u = ∇⊥(−∆D)−1ω t ≥ 0 x ∈ R2
+

ω|t=0 = b := Rot a x ∈ R2
+,

(V)

with the boundary conditions

ν
(
∂2 + (−∂2

1)
1
2
)
ω = −∂2(−∆D)−1(u·∇ω) t > 0 x ∈ ∂R2

+.

(BC)



I-4. Solution formula for linearized problem

Let us consider the linear problem ∂tω − ν∆ω = f t > 0 x ∈ R2
+,

ω|t=0 = b x ∈ R2
+,

(LV)

subject to the boundary conditions

ν
(
∂2 + (−∂2

1)
1
2
)
ω = g t > 0 x ∈ ∂R2

+. (LBC)



I-4. Solution formula for linearized problem

Let G(t, x) be the Gauss kernel inR2, andE(x) be the Newton po-
tential inR2, i.e.,

G(t, x) =
1

4πt
exp

( − |x|2
4t

)
E(x) = − 1

2π
log |x|.

Thefollowing notations will be used:

(h1 ∗ h2)(x) =
∫
R2
+

h1(x− y)h2(y) dy,

(h1 ⋆ h2)(x) =
∫
R2
+

h1(x− y∗)h2(y) dy y∗ = (y1,−y2),

h ∗ (gH1
{∂R2

+}
)(x) = h⋆ (gH1

{∂R2
+}

)(x) =
∫
R

h(x1 − y1, x2)g(y1) dy1.



I-4. Solution formula for linearized problem

Then we set

Γ(t, x) = 2
(
∂2

1 + (−∂2
1)

1
2∂2

)(
E ∗G(t)

)
(x),

et∆N f = G(t) ∗ f + G(t) ⋆ f .

Remark. (i) θ(t) = et∆N f definesthe solution to the heat equations
in R2

+ subject to the homogeneous Neumann B. C. with the initial

data f , i.e.,


∂tθ − ∆θ = 0 t > 0 x ∈ R2

+,

∂2θ = 0 t > 0 x ∈ ∂R2
+,

θ|t=0 = f x ∈ R2
+.

(ii) Γ(0)⋆ f := lim
ϵ↓0
Γ(ϵ) ⋆ f = 2

(
∂2

1 + (−∂2
1)

1
2∂2

)
E ⋆ f satisfies(

∂2 + (−∂2
1)

1
2
)
Γ(0)⋆ f = 0 in R2

+.



I-4. Solution formula for linearized problem

Theorem. The integral representation for solutions to (LV)-
(LBC) is given by

ω(t) = eνtBb − Γ(0)⋆ b +
∫ t

0
eν(t−s)B( f (s)− g(s)H1

{x2=0}
)
ds

−
∫ t

0
Γ(0)⋆

(
f (s)− g(s)H1

{x2=0}
)
ds.

Here eνtB is defined by

eνtB f = eνt∆N f + Γ(νt) ⋆ f .

Remark. For (NS) the solution formula is obtained by Solon-
nikov (’68) and Ukai (’87).



I-5. Note on the operator Γ(0)⋆

Γ(0)⋆ f = 2
(
∂2

1 + (−∂2
1)

1
2∂2

)
E ⋆ f E(x) = − 1

2π
log |x|.

Thus the operatorΓ(0)⋆ does not possess a smoothing effect
near the boundary. Butthis term does not appear in the vorticity
equations, due to the following cancellation property.

Proposition. If g = ∂2(−∆D)−1 f |x2=0 then
Γ(0)⋆

(
f − gH1

{x2=0}
)
= 0 in R2

+. In particular, we have
Γ(0)⋆ b = 0 in R2

+ if ∂2(−∆D)−1b = 0 on ∂R2
+.

Note that the condition∂2(−∆D)−1b = 0 on ∂R2
+ is nothing

but the compatibility condition:a1 = 0 on ∂R2
+.



I-6. Note on the generator of{etB}t≥0

Ẇ1,q
0,σ(R

2
+) = the completion on∥∇ · ∥Lq of the space of smooth and

divergence free vector fields with compact support inR2
+,

Xq =
{

Rot u ∈ Lq(R2
+)

∣∣∣ u ∈ Ẇ1,q
0,σ(R

2
+)

}
.

Proposition. Let q ∈ (1,∞). Then the one-parameter family
{etB}t≥0 defines a C0-analytic semigroup in Xq. Moreover, the
generator Bq of {etB}t≥0 in Xq is given by

D(Bq) =
{
f ∈ Xq ∩W2,q(R2

+)
∣∣∣ (∂2 + (−∂2

1)
1
2
)
f = 0 on ∂R2

+

}
,

Bq f = ∆ f f ∈ D(Bq),

and it follows that ∥∇2 f ∥Lq ≤ C∥Bq f ∥Lq for all f ∈ D(Bq).



I-7. Lp − Lq estimatesfor etB

Lemma. (i) Let1 ≤ q < p ≤ ∞ or 1 < q ≤ p < ∞. Then

∥etB f ∥Lp ≤ Ct−
1
q+

1
p∥ f ∥Lq t > 0.

(ii) Let1 ≤ q ≤ p ≤ ∞ and k∈ N. Then

∥∇ketB f ∥Lp ≤ Ct−
1
q+

1
p−

k
2∥ f ∥Lq t > 0.

(iii) Let1 ≤ q ≤ p ≤ ∞ and g= ∂2(−∆)−1 f |x2=0. Then

∥etB( f − gH1
{x2=0}

)∥Lp ≤ Ct−
1
q+

1
p−

1
2∥∇⊥(−∆D)−1 f ∥Lq t > 0.



I-8. Solvability of IBP for the vorticity equations in R2
+

Theorem.Assume that b∈ Lp(R2
+), ∃p ∈ (1,2), and that b sat-

isfies∂2(−∆D)−1b = 0 on ∂R2
+. Then there is Tν > 0 such that

(V)-(BC) has a unique mild solutionω ∈ C([0,Tν); Lp) satisfy-
ing

sup
0<t<Tν

t1/p−1/4∥ω(t)∥L4 < ∞.

Furthermore, the solution is smooth in positive time.

Remark. (i) WhenΩ = R2 the solvability of the vorticity equations
is classical;Giga-Miyakawa-Osada (’88), Ben-Artzi (’94), Kato (’94).

(ii) In view of the solvability of the Navier-Stokes equations, the
above theorem does not give a new result. For (NS) theLp theory
is already well developed; e.g.Solonnikov (’77), Weissler (’80).



I-9. Analysis of vorticity at inviscid limit


∂tu+ u · ∇u− ν∆u+ ∇p = 0 t > 0 x ∈ R2

+,

∇ · u = 0 t ≥ 0 x ∈ R2
+,

u = 0 t ≥ 0 x ∈ ∂R2
+,

u|t=0 = a x ∈ R2
+.

(NS)

The behavior of solutions to (NS) at the inviscid limit:ν→ 0

cf. Without boundaries the convergence to the Euler solutions
is proved in various settings.

Ebin-Marsden (’70), Swann (’71), Kato (’72) Constantin-Wu (’94,
’96), Chemin (’96), Danchin (’97,’99), Taniuchi (’04), Hmidi (’05,
’06),Caflisch-Sammartino (’06) Masmoudi (’07), Sueur (’08),· · ·



I-10. Recall: Formal asymptotics - the Euler equations

Formally, by tendingν→ 0 in (NS) we get the Euler equations
for the ideal incompressible flows:

∂tuE + uE · ∇uE + ∇pE = 0 t > 0, x ∈ R2
+,

div uE = 0 t ≥ 0, x ∈ R2
+,

uE,2 = 0 t ≥ 0, x ∈ ∂R2
+,

uE|t=0 = a x ∈ R2
+.

(E)

Recall thatuNS = 0 on∂R2
+, while uE,1 ≡/ 0 on∂R2

+ in general.
⇒ The boundary layer appears.



I-11. Recall: Formal asymptotics - the Prandtl equations
By assuming the expansion atν→ 0 as

uNS(t, x) = uE(t, x) + u(ν)
P (t, x) + O(ν

1
2), (7)

u(ν)
P (t, x) =

(
vP,1(t, x1,

x2

ν
1
2

), ν
1
2 vP,2(t, x1,

x2

ν
1
2

)
)
,

weget the Prandtl equations forvP(t, x1,X2):

(∂t − ∂2
X2

)vP,1 + vP,1∂x1vP,1 + vP,2∂X2vP,1 + ∂x1πP = 0,

∂x1vP,1 + ∂X2vP,2 = 0, ∂X2πP = 0,

vP |X2=0 = 0,

lim
X2→∞

vP,1(t, x1,X2) = uE,1(t, x1,0),

lim
X2→∞

πP(t, x1,X2) = pE(t, x1,0).

(P)



I-12. Known mathematical results

So far the solvability of the Prandtl equations and the verification
of the expansion (7) are establishedunder particular situations only.

(1) Mathematical analysis of the Prandtl equations

• Solvability

Oleinik (’66), Matsui-Shirota (’84), Xin-Zhang (’04);Monotonicdata
Asano (’88), Sammartino-Caflisch (’98);Analytic data
Lombardo et al. (’03);Analytic (in x1 direction) data

• Ill-posedness of linearized Prandtl equations in Sobolev class

GérardVaret-Dormy (’10)

(2) Verification of the asymptotic expansion (7)

Asano (’88), Sammartino-Caflisch (’98);Analytic initial data



I-12. Known mathematical results

(3) Counter example for (7)

Grenier (’00); Invalidity of (7) around the linearly unstable shear
layer profileustat(x2) for the stationary Euler equations

Roughly speaking, he considered the initial data of the form

u(ν)
0 (x) ≈ ustat(

x2

ν
1
2

) + νnw0(
x

ν
1
2

) n≫ 1,

and then, with a suitable choice ofw0, established the estimate for the
corresponding NS solutionuNSν such as

∥uNSν(Tν) − ustat(Tν,
·
ν

1
2

)∥L∞ ≥ cν
1
4 for some Tν = O(ν

1
2 logν−1).

Hereustat(t,X2) is the solution to the heat equations with the homogeneous
Dirichlet B.C. and with the initial dataustat(X2).



I-13. Known mathematical results

• L2 convergence:

lim
ν→0
∥uNSν(t) − uE(t)∥L2(Ω) = 0. (8)

(1) Under theradial symmetryof the domain and the solution the
convergence (8) is verified.

Matsui (’94), LopesFilho et al (’08), Kelliher (’09),· · ·

(2) Criterionon the convergence (8):

Kato (’84), Temam-Wang (’97), Kelliher (’08,’09),· · ·

lim
ν→0

∫ T

0
ν∥∇u(t)∥2L2(Ων)

dt = 0 Ων = {x ∈ Ω | dist (x, ∂Ω) ≤ ν}.



I-14. Inviscid limit for initial vorticity located away from the
boundary

Goal: Establish the asymptotic expansion (for a short time)when the
initial vorticity is located away from the boundary.

This class of initial data includes adipole-type vortexas a typical
example, which is used as a benchmark in the study (numerical or
experimental one) of the interaction betweenthe vorticity originated
from the initial oneand the vorticity created on the boundary; cf.
Orlandi (’90).





Extractfrom Nguyen-Farge-Schneider (Phys.Rev.Lett. 2011):
(the horizontal direction is−→ )



Roughdescription of the behavior of vorticity with a dipole ini-
tial vortex

1. The dipole vortex approaches to the boundary, while the high
vorticity is immediately created along the boundary (vortex line).

2. The dipole vortex collides into the boundary and the produced
vortex line starts to roll up.

3. The produced vortex pairs with the original one and forms a
secondary dipole.

4. The secondary dipole bounces back to the boundary.

Note. For the Euler flows the vorticity is independent of time along
the trajectory flows (the Lagrange theorem) and the rebound of the
secondary dipole vortex is not observed; Saffman (’79).

Formal asymptotic expansion by Prandtl will be verified (only) for
Step1.



I-15. Main result

Theorem.Let a∈ Lp
σ(R2

+) for some1 < p < ∞ and b∈ W4,1(R2
+) ∩

W4,2(R2
+). Assume also that a= 0 on∂R2

+ and that

d0 = dist (∂R2
+, supp Rota) > 0. (9)

Then there is T> 0 such that the solution u(ν)NS to (NS) satisfies

∥u(ν)
NS(t) − uE(t) − ũ(ν)

P (t)∥L∞(R2
+)
≤ Cν

1
2 0 < t ≤ T. (10)

Thetime T is estimated from below as T≥ cmin{d0,1}, where c> 0
depends only on∥b∥W4,1∩W4,2. Hereũ(ν)

P is the solution to the (modified)
Prandtl equations.



I-16. Remark on main theorem

(1) Sammartino-Caflisch (’98) proved (10) for the analytic initial
data directly from the Navier-Stokes equations.

Our solution is not analytic in the region away from the boundary,
and we use the vorticity formulation.

(2) The lower bound ofT gives an information of the time period
such that the vortex line remains stable and does not separate beyond
the classical boundary layer thickness.



I-17. Formal asymptotics - vorticity for the Euler flows

By taking the formal limitν→ 0 in (V) we get

∂tωE + uE · ∇ωE = 0, uE = ∇⊥(−∆D)−1ωE, ωE|t=0 = b. (VE)

cf.) The solvability of the two-dimensional Euler equations for the
incompressible flows is well known,

Wolibner (’33), Yudovich (’63), Kato (’67), Bardos (’72),· · ·



I-18. Formal asymptotics - vorticity for boundary layer

Assume :ω(ν)(t, x) = ωE(t, x) + ν−
1
2wP(t, x1, x2/ν

1
2) + remainder.

∂twP − ∂2
X2

wP = − (vE,1 + vP,1)∂1wP − (vE,2 + vP,2)∂2wP,

vE,1(t, x1,X2) = uE,1(t, x1,0),

vE,2(t, x1,X2) = X2∂2uE,2(t, x1,0),

vP,1(t, x1,X2) =
∫ ∞

X2
wP(t, x1,Y2) dY2,

vP,2(t, x1,X2) = − ∂1

( ∫ X2

0
Y2wP(t, x1,Y2) dY2

+ X2

∫ ∞
X2

wP(t, x1,Y2) dY2

)
,

wP|t=0 = 0,

subject to the boundary condition

∂2wP = −
∫ ∞

0
(vE + vP) · ∇wP dY2 − ∂2(−∆D)−1(uE · ∇ωE

)
.



I-19. Key observation for the proof of main theorem

(1) Since the vorticity fieldωE of the Euler flows solves the trans-
port equation we have

∪0<t<T′ suppωE(t) ⊂ {x ∈ R2
+ | x2 ≥

d̃0

2
> 0}, (11)

for someT′ ≥ cd̃0. In particular, all data in the vorticity equations
areanalytic near the boundary layer region.

=⇒ The Prandtl type equations should be solved (construction of
the boundary layer).

But ω loses the analyticity as it leaves the boundary.



I-20. Key observation for the proof of main theorem

(2) We have to work in theSobolev class away from the boundary.

But in the region away from the boundary, the arguments forthe
heat-convection equations inR2 will be applied to some extent.

(3) Due to the support property ofωE, there should be the region

Dsmall= {x ∈ R2
+ | c1d̃0 ≤ x2 ≤ c2d̃0} ∃c2 > c1 > 0,

whereω is exponentially small, say,

|ω(t, x)| ≤ C exp
( − c
νt

)
in Dsmall.





I-21. Difficulty and Key idea

Difficulty: How to capture the properties (1) - (3) rigorously by
taking into account the interaction between the vorticities inside and
outside the boundary layer.

Key idea

(1) Decomposeω as

ω = ωE + ωBν + ωIν, ωBν = R1
ν
wBν, ωIν = R1

ν
wI Bν + wII ν.

(Rs f )(x) = s
1
2 f (x1, s

1
2x2).

· TheprofilewBν is taken so that converges towP (the Prandtl flows).

· The profileswIBν andwII will be estimated as the orderO(ν1/2) in
suitable norms.

(2) Introduce suitableweighted function spacesfor wBν, wIBν, wII ν.



(3) In order to estimatewII ν (the remainder of the Euler part) we
appeal to the optimal pointwise estimate by Carlen-Loss (’95) for
fundamental solutions to

∂tθ − ν∆θ + u · ∇θ = 0 ∇ · u = 0 t > 0 x ∈ R2.

P(ν)
u (t, x; s,y) ≤ 1

4πν(t − s)
exp

(
−

(|x− y| −
∫ t

s
∥u(τ)∥L∞ dτ

)
+

2

4ν(t − s)

)
.

Here (α)+ = max{α,0}.

(4) ConstructωBν and (wIBν,wII ν) by the iteration scheme (with
the aid of the solution formula) and use theabstract Cauchy-
Kowalewski theorem (ACK).

cf.) ACK theorem; Nirenberg (’72), Nishida (’77), Kano-Nishida (’79),
Safonov (’95)



I-22. Equation for ωBν: ω = ωE + ωBν + ωIν{
∂tωBν − ν∆ωBν + M(ωE + ωBν, ωBν) = 0

ωBν|t=0 = 0

subject to the boundary condition

ν
(
∂2ωBν + (−∂2

1)
1
2ωBν

)
= N(ωE + ωBν, ωBν) + N(ωE, ωE)

M( f ,g) = J( f ) · ∇g J( f ) = ∇⊥(−∆D)−1 f
N( f ,g) = −J1

(
M( f ,g)

)|x2=0.

The solution is constructed in the formωBν = R1/νwBν,

sup
0<t<T

∥wBν(t) − wP(t)∥
X

(µ,ρt )
Bν

≤ Cν
1
2 for some µ, ρ > 0.

HerewP is the vorticity of the Prandtl flows.



I-23. Equation for ωIν: ω = ωE + ωBν + ωIν
∂tωIν − ν∆ωIν + J(ω) · ∇ωIν = −M(ωIν, ωE + ωBν) + Fν,

Fν = −M(ωBν, ωE) + ν∆ωE,

ωIν|t=0 = 0.

subject to the boundary condition

ν
(
∂2ωIν + (−∂2

1)
1
2ωIν

)
= N(ω,ωIν) + N(ωIν, ωE + ωBν) + N(ωBν, ωE)
+ νJ1

(
∆ωE

) |x2=0.

The solutionωIν is constructed in the formωIν = R1/νwIBν + wII ν.

=⇒ Solve a suitable system for (wIBν,wII ν).



I-24. Equation for wII ν: ω = ωE+ωBν+ωIν, ωIν = R1
ν
wI Bν+wII ν

∂twII − ν∆wII + J(ω) · ∇wII = −J(ωIν) · ∇ωE + Fν,
Fν = −J(ωBν) · ∇ωE + ν∆ωE,

∂2wII |x2=0 = 0,
wII |t=0 = 0.

Remark. (1) We have

∪0<t<T′ suppx
(− J(ωIν) ·∇ωE+Fν

) ⊂ {x ∈ R2
+ | x2 ≥ 32dE > 0}.

(2) The equation forwII ν is the heat-convection equations with
the homogeneous Neumann boundary condition.

=⇒ By using the reflection we can use the estimates inR2 for
the heat equationwith a divergence free drift.



Recall: We construct the vorticity fieldω of the form

ωNS = ωE + R1
ν
wBν + R1

ν
wI Bν + wII ν(

R1
ν
f
)
(x) = ν−

1
2 f (x1,

x2

ν
1
2

)

• R1
ν
wBν, R1

ν
wI Bν: flowswith boundary layer structure

• ωE, wII ν : flowswithoutboundary layer structure

(i) Our solution loses the analyticity as it leaves the boundary.
Then, how?

(ii) The remainder termwII ν should be estimated as

wII ν(t, x) =

 O(e−
c
ν) 0 ≤ x2 ≤ c1d0

O(ν
1
2) x2 ≥ c2d0

How to describe this drastic transition?



I-25. Function space for wBν(t, x1,X2), wIBν(t, x1,X2), wII ν(t, x)

φ
(µ,ρ)
Bν

(ξ1,X2) = exp
( (µ − ν1

2X2)+
4

|ξ1| + ρX2
2

)
,

φ
(µ,θ)
Iν

(ξ1, x2) = exp
((µ − x2)+

4
|ξ1| +

θ

ν
(6dE − x2)

2
+

)
.

∥ f ∥X(µ,ρ)
Bν
=

∑
0≤ j,k≤1

∥∥∥φ(µ,ρ)
Bν
⟨ξ1⟩2− jX

k
2+ j
2 ∂

j
X2

f̂ (ξ1,X2)
∥∥∥

L2
ξ1

L1+k
X2

,

∥ f ∥X(µ,ρ)
I Bν
=

∑
0≤ j,k≤1

∥∥∥φ(µ,ρ)
Bν
⟨ξ1⟩1− jX

k
2+ j
2 ∂

j
X2

f̂ (ξ1,X2)
∥∥∥

L2
ξ1

L1+k
X2

,

∥ f ∥X(µ,θ)
I Iν
=

∑
0≤ j≤1

∥∥∥φ(µ,θ)
Iν
⟨ξ1⟩ j∂1− j

2 f̂ (ξ1, x2)
∥∥∥

L2
ξ1

L2
x2
+ ∥φ(0,θ)

Iν
f ∥L1

x

f̂ (ξ1,X2) = F
[
f (·,X2)

]
(ξ1) (α)+ = max{α,0} dE = 2−6 min{d0,1}



I-26. Note on the invariant property of X(µ,ρ)
Bν

, X(µ,θ)
IBν

, X(µ,θ)
II ν

Lemma. Let t> s≥ 0, µ ≥ 0, 0 ≤ ρ ≤ 2−4, and 0 ≤ θ ≤ 2−4.
Then it follows that

∥φ(µ,ρt )
Bν
F (

Rνe
ν(t−s)∆NR1

ν
f
)∥L2

ξ1
L1

X2
≤ C ∥φ(µ,ρs)

Bν
F ( f )∥L2

ξ1
L1

X2
,

∥φ(µ,θt )
Iν
F (

eν(t−s)∆N f
)∥L2

ξ1
L2

x2
≤ C∥φ(µ,θs)

Iν
F ( f )∥L2

ξ1
L2

x2
.

φ
(µ,ρ)
Bν

(ξ1,X2) = exp
( (µ − ν1

2X2)+
4

|ξ1| + ρX2
2

)
,

φ
(µ,θ)
Iν

(ξ1, x2) = exp
((µ − x2)+

4
|ξ1| +

θ

ν
(6dE − x2)

2
+

)
.



Proof. Set g(t,X2) = (4πt)−1/2exp
( − X2

2

4t
)
. Then

F (
Rνe
ν(t−s)∆R1

ν
f
)
(ξ1,X2) = e−ν(t−s)ξ21

∫
R+

g(t− s,X2 − Y2) f̂ (ξ1,Y2) dY2.

From the inequalities

(µ − ν1
2X2)+|ξ1| ≤ (µ − ν1

2Y2)+|ξ1| + ν
1
2|X2 − Y2| |ξ1|,

ν
1
2|X2 − Y2| |ξ1| ≤ ν(t − s)ξ21 +

|X2 − Y2|2
4(t− s)

,

wehave

|F (
Rνe
ν(t−s)∆R1

ν
f
)
(ξ1,X2)| <∼ e−

3
4ν(t−s)ξ21−

1
4(µ−ν

1
2X2)+|ξ1|

·
∫
R+

g(2(t− s),X2 − Y2)e
−ρsY2

2 |(φ(µ,ρs)
B f̂ )(ξ1,Y2)|dY2.

Thusthe desired estimate follows from

∥e
β
t X

2
2g(t− s)∗ h (X2)∥L1

X2

<∼ ∥e
β
sX

2
2h(X2)∥L1

X2
0 < β <

1
4
.



I-27. Open problem

1. Qualitative or quantitative estimates of vorticity fields when
the instability of the boundary layer occurs.

2. L∞ bound of velocity fields such as

sup
0<ν≪1

∫ T

0
∥u(ν)

NS(t)∥L∞ dt < ∞.

for sufficiently general class of initial data.

cf.) So far we have only sup
0<ν≪1

sup
0<t<cν

1
3

∥u(ν)
NS(t)∥L∞ < ∞.



Topic II

Stability of the Burgers vortex for 3D perturbations



Topic II: Stability of the Burgers vortex
II-1. Flows with a background strain

V = (V1,V2,V3)⊤: velocity field, P: pressure field

(NS)


∂tV − ∆V + (V,∇)V + ∇P = 0 t > 0 x ∈ R3,

∇ · V = 0 t > 0 x ∈ R3,
V|t=0 = V0 x ∈ R3.

We consider the solutionV of the form

V = Mx+ U M =

−
1
2 0 0

0 −1
2 0

0 0 1

 .
U = (U1,U2,U3): unknown perturbation velocity



II-2. Burgers vortex

Let x = (xh, x3) ∈ R2 × R and set

G = g e3 g(xh) =
1
4π

e−
|xh|2

4 e3 =

 0
0
1

 ,
UG(xh) =

 −x2 vg(|xh|2)
x1 vg(|xh|2)

0

 vg(r) =
1

2πr
(1− e−

r
4).

Burgers (’48): For eachα ∈ R the velocity fieldMx+ αUG

is a stationary solution to(NS).

- Main result in Topic II (Gallay-M. (’11)) -

For anyα ∈ R the Burgers vortexαG is asymptotically stable
with respect to small3D perturbations.



II-3. Vorticity equations

Ω = ∇ × V = ∇ × U = αG + ω : expansion aroundαG

U = ∇ × (−∆R3)−1Ω = αUG + K3D ∗ ω : Biot-Savart law

(V′)


∂tω − (L − αΛ)ω + B(ω,ω) = 0 t > 0 x ∈ R3,

∇ · ω = 0 t > 0 x ∈ R3,
ω|t=0 = ω0 x ∈ R3.

Lω = ∆ω − (Mx,∇)ω + Mω M =

−
1
2 0 0

0 −1
2 0

0 0 1

 ,
Λω = (UG,∇)ω − (ω,∇)UG + (K3D ∗ ω,∇)G − (G,∇)K3D ∗ ω,

B(ω,ω) = (K3D ∗ ω,∇)ω − (ω,∇)K3D ∗ ω.



II-4. Function setting

L2
g(R

2) = { f ∈ L2(R2) |
∫
R2
| f (xh)|2

dxh

g(xh)
< ∞}

L2
g,0(R

2) = { f ∈ L2
g(R

2) |
∫
R2

f (xh) dxh = 0}

X = BC(R; L2
g(R

2)) X0 = BC(R; L2
g,0(R

2))
∥ f ∥X = ∥ f ∥X0 = sup

x3∈R
∥ f (·, x3)∥L2

g(R2)

The perturbation vorticityω is taken from the function space

X = X2 × X0



II-5. Key linear estimate

Theorem (Gallay-M. (’11)).

Let f ∈ X satisfy ∇ · f = 0. Then it follows that

∥et(L−αΛ) f ∥X ≤ Cαe
− t

2∥ f ∥X t > 0.

• Theabove result implies that the spectral bound ofL−αΛ
is estimated uniformly in the circulation numberα.

• The Gaussian weight can be relaxed to a polynomial weight.



II-6. Decomposition ofL − αΛ into 2D parts and3D parts

L2D,α ω =

(
L2D,α,h ωh
L2D,α,3 ω3

)

=

 Lhωh − 3
2ωh − α(UG

h ,∇h)ωh + α(ωh,∇h)UG
h

Lhω3 − α(UG
h ,∇h)ω3 − α(K2D ∗ ω3,∇h)g

 .
HereLh = ∆h +

xh

2
·∇h + 1 and K2D∗ω3 = ∇⊥h (−∆R2)−1ω3.



II-6. Decomposition ofL − αΛ into 2D parts and3D parts

L2D,α ω =

(
L2D,α,h ωh
L2D,α,3 ω3

)

=

 Lhωh − 3
2ωh − α(UG

h ,∇h)ωh + α(ωh,∇h)UG
h

Lhω3 − α(UG
h ,∇h)ω3 − α(K2D ∗ ω3,∇h)g

 .
HereLh = ∆h +

xh

2
·∇h + 1 and K2D∗ω3 = ∇⊥h (−∆R2)−1ω3.

Then L − αΛ = L2D,α + ∂
2
3 − x3∂3 − αH, where

Hω = (K3D ∗ ω,∇)G − (K2D ∗ ω3,∇)G − (G,∇)K3D ∗ ω.

Note: If ω = (0,0, ω3(xh))⊤ thenHω = 0.



II-7. Decomposition ofet(L−αΛ) into 2D parts and3D parts

The operatorL2D,α is vectorial but two-dimensional.

The semigroupRα(t) of L2D,α + ∂
2
3 − x3∂3 is

(Rα(t) f )(x) =
1√

2π(1− e−2t)

∫
R

e
− |x3e−t−y3|2

2(1−e−2t)
(
etL2D,α f (·, y3)

)
(xh) dy3.

Then the original solutionω(t) = et(L−αΛ) f is given by

ω(t) = et(L−αΛ) f = Rα(t) f − α
∫ t

0
Rα(t − s)Hω(s) ds.



II-7. Key structure of et(L−αΛ)

• From a rough estimate∥et(L−αΛ)∥ ≤ CαeCαt and astretch-
ing effect ∂k

3e
t(L−αΛ) = e−ktet(L−αΛ)∂k

3, we have an exponential
temporal decay of∂k

3e
t(L−αΛ) at least fork≫ 1.

L − αΛ = L2D,α + ∂
2
3 − x3∂3 − αH

Hω = (K3D ∗ ω,∇)G − (K2D ∗ ω3,∇)G − (G,∇)K3D ∗ ω.



II-7. Key structure of et(L−αΛ)

• From a rough estimate∥et(L−αΛ)∥ ≤ CαeCαt and astretch-
ing effect ∂k

3e
t(L−αΛ) = e−ktet(L−αΛ)∂k

3, we have an exponential
temporal decay of∂k

3e
t(L−αΛ) at least fork≫ 1.

• Since Hω is estimated in terms of∂3ω, the inhomo-
geneous term

∫ t

0
Rα(t − s)Hω(s) ds is negligible fort ≫ 1.

Hence it suffices to focus on Rα(t), that is,the spectrum of
the 2D operatorL2D,α in (L2

g(R
2))2 × L2

g,0(R
2).

(Rα(t) f )(x) =
1√

2π(1− e−2t)

∫
R

e
− |x3e−t−y3|2

2(1−e−2t)
(
etL2D,α f (·, y3)

)
(xh) dy3.



II-7. Key structure of et(L−αΛ)

• From a rough estimate∥et(L−αΛ)∥ ≤ CαeCαt and astretch-
ing effect ∂k

3e
t(L−αΛ) = e−ktet(L−αΛ)∂k

3, we have an exponential
temporal decay of∂k

3e
t(L−αΛ) at least fork≫ 1.

• Since Hω is estimated in terms of∂3ω, the inhomo-
geneous term

∫ t

0
Rα(t − s)Hω(s) ds is negligible fort ≫ 1.

Hence it suffices to focus on Rα(t), that is,the spectrum of
the 2D operatorL2D,α in (L2

g(R
2))2 × L2

g,0(R
2).

L2D,α ω =

 Lhωh − 3
2ωh − α(UG

h ,∇h)ωh + α(ωh,∇h)UG
h

Lhω3 − α(UG
h ,∇h)ω3 − α(K2D ∗ ω3,∇h)g

 .
Here Lh = ∆h +

xh

2
· ∇h + 1, and −Lh ≥ 0 in L2

g(R
2).



II-7. Key structure of et(L−αΛ)

• From a rough estimate∥et(L−αΛ)∥ ≤ CαeCαt and astretch-
ing effect ∂k

3e
t(L−αΛ) = e−ktet(L−αΛ)∂k

3, we have an exponential
temporal decay of∂k

3e
t(L−αΛ) at least fork≫ 1.

• Since Hω is estimated in terms of∂3ω, the inhomo-
geneous term

∫ t

0
Rα(t − s)Hω(s) ds is negligible fort ≫ 1.

Hence it suffices to focus on Rα(t), that is,the spectrum of
the 2D operatorL2D,α in (L2

g(R
2))2 × L2

g,0(R
2).

From G.-W. (’05) we already haveσ(L2D,α,3) ⊂ {λ ∈ C |Reλ ≤
−1/2}. So we consider the eigenvalue problem

L2D,α,hωh := Lhωh −
3
2
ωh − α(UG

h ,∇h)ωh + α(ωh,∇h)U
G
h = λωh.

(12)



By taking the inner product of (L2
g(R

2))2 with ωh we have

Reλ∥ωh∥2

= Re⟨(Lh −
3
2

I )ωh, ωh⟩ − αRe⟨(UG
h ,∇h)ωh, ωh⟩ + αRe⟨(ωh,∇h)U

G
h , ωh⟩.



By taking the inner product of (L2
g(R

2))2 with ωh we have

Reλ∥ωh∥2

= Re⟨(Lh −
3
2

I )ωh, ωh⟩ − αRe⟨(UG
h ,∇h)ωh, ωh⟩ + αRe⟨(ωh,∇h)U

G
h , ωh⟩

≤ −3
2
∥ωh∥2 + αRe⟨(ωh,∇h)U

G
h , ωh⟩

= −3
2
∥ωh∥2 + 2αRe

∫
R2

xh · ωh x⊥h · ω̄h f (|xh|2)
dxh

g(xh)
, (13)

where f (r) = 1
2π

d
dr(1− e−

r
4)/r.



By taking the inner product of (L2
g(R

2))2 with ωh we have

Reλ∥ωh∥2

= Re⟨(Lh −
3
2

I )ωh, ωh⟩ − αRe⟨(UG
h ,∇h)ωh, ωh⟩ + αRe⟨(ωh,∇h)U

G
h , ωh⟩

≤ −3
2
∥ωh∥2 + αRe⟨(ωh,∇h)U

G
h , ωh⟩

= −3
2
∥ωh∥2 + 2αRe

∫
R2

xh · ωh x⊥h · ω̄h f (|xh|2)
dxh

g(xh)
. (14)

where f (r) = 1
2π

d
dr(1− e−

r
4)/r. The function xh · ωh satisfies

λxh · ωh = (Lh − 2I ) xh · ωh − α(UG
h ,∇) xh · ωh − 2∇h · ωh,

thus we have

Reλ∥xh · ωh∥2 ≤ − 2∥xh · ωh∥2 − 2Re⟨∇h · ωh, xh · ωh⟩. (15)



By taking the inner product of (L2
g(R

2))2 with ωh we have

Reλ∥ωh∥2

= Re⟨(Lh −
3
2

I )ωh, ωh⟩ − αRe⟨(UG
h ,∇h)ωh, ωh⟩ + αRe⟨(ωh,∇h)U

G
h , ωh⟩

≤ −3
2
∥ωh∥2 + αRe⟨(ωh,∇h)U

G
h , ωh⟩

= −3
2
∥ωh∥2 + 2αRe

∫
R2

xh · ωh x⊥h · ω̄h f (|xh|2)
dxh

g(xh)
. (16)

where f (r) = 1
2π

d
dr(1− e−

r
4)/r. The function xh · ωh satisfies

λxh · ωh = (Lh − 2I )xh · ωh − α(UG
h ,∇)xh · ωh − 2∇h · ωh,

thus we have

Reλ∥xh · ωh∥2 ≤ − 2∥xh · ωh∥2 − 2Re⟨∇h · ωh, xh · ωh⟩. (17)

The function ∇h · ωh satisfies

λ∇h · ωh = (Lh − I )∇h · ωh − α(UG
h ,∇h)∇h · ωh,

which leads to

Reλ∥∇h · ωh∥2 ≤ −
3
2
∥∇h · ωh∥2. (18)



Topic III

Stability of the Lamb-Oseen vortex in 2D exterior domains



II-0. Recall: Main result

Ω ⊂ R2: exterior domain
u0: initial velocity ω0 = Rot u0: initial vorticity

α =

∫
Ω

ω0(x) dx: circulation number

- Main Theorem (Gallay-M. preprint) -

Let u0 ∈ Ẇ1,p
0,σ(Ω) for some p∈ [1,2) and ω0 satisfies∫

Ω
(1+ |x|2)m|ω0(x)|2 dx < ∞ for some m> 1.

Then there is ϵ > 0 such that if |α| ≤ ϵ then the solution u
to (NS) satisfies

lim
t→∞
∥u(t) − α

(1+ t)
1
2

ug(
·

(1+ t)
1
2

)∥L2 = 0. (19)



III-1. Decomposition of initial velocity

Consider the Navier-Stokes equations in 2D exterior domains

∂tu + u · ∇u − ∆u + ∇p = 0 ∇ · u = 0 (NS)

subject to the no-slip boundary condition. Under the assump-
tion of the theorem we can express the initial velocity as

u(0) = αχug(1) + v(0).

Hereχ is a radial cut-offsuch thatχ = 1 for |x| ≫ 1, αug(1) is
the Lamb-Oseen vortex at timet = 1, andv(0) ∈ L2

σ(Ω) ∩ Lq
σ(Ω)

with some q ∈ (1,2) is an initial perturbation.



III-2. Logarithmic energy estimate for v(t) = u(t)−αχug(1+ t)

∂tv+ αP
(
uχ · ∇v+ v · ∇uχ + v · ∇v

)
= −Av+ αRχ. (20)

P : the Helmholtz projection in (L2(Ω))2

A : the Stokes operator inL2
σ(Ω),

Rχ = (∆χ)ug + 2∇χ · ∇ug : circular flow with compact support

Proposition (Gallay-M.). There is K> 0 such that for anyα and
v(0) ∈ L2

σ(Ω) the solution to(20)with the initial data v(0) satisfies

∥v(t)∥2L2 +

∫ t

0
∥∇v(s)∥2L2 ds ≤ K1

(
∥v0∥2L2(Ω) + α

2log(1+ t) + Dα,ρ
)
,

where Dα,ρ = α2 log(1+ |α|)+α2ρ2 andρ is the diameter ofR2\Ω.



III-3. Fractional primitive of v

Lemma (Borchers-Miyakawa (’92), Kozono-Ogawa (’93)).
Let q∈ (1,2) and µ = 1/q−1/2. For all v∈ L2

σ(Ω)∩ Lq(Ω)2,
there exists a unique w∈ D(Aµ) ⊂ L2

σ(Ω) such that v = Aµw.
Moreover, there exists a constant C= C(q) > 0 (independent
of v andΩ) such that∥w∥L2(Ω) ≤ C∥v∥Lq(Ω).

Then we combine the argument of Kozono-Ogawa (’93) with
the logarithmic energy estimate to get the estimate of the frac-
tional primitive w(t) = A−µv(t) such that

∥w(t)∥2L2 +

∫ t

0
∥∇w(s)∥2L2 ds

≤ K′(1+ t)cα2
exp

(
K′(∥v0∥2L2 + Dα,ρ)

)(∥v0∥2Lq + ρ2α2) ,
which leads to the temporal decay of∥∇w(t)∥L2 if cα2 < 1.


