The Stokes flow in exterior domains with non-decaying initial velocity

Ken Abe

Univ. of Tokyo

June 12, 2012

jointly with Prof. Yoshikazu Giga (U. Tokyo)

We consider

$$(S) \left\{ \begin{array}{ll} v_t - \Delta v + \nabla q = 0 & \text{in } \Omega \times (0, T) \\ & \text{div } v = 0 & \text{in } \Omega \times (0, T) \\ \text{B. C.} & v = 0 & \text{on } \partial \Omega \\ \text{I. C.} & v(x, 0) = v_0 & \text{on } \{t = 0\} \end{array} \right.$$

in a domain $\Omega \subset \mathbf{R}^n$ with $n \geq 2$.

v(x, t): unknown velocity field q(x, t): unknown pressure field v_0 : a given initial data

 $S(t): v_0 \mapsto v(\cdot, t)(t \ge 0)$ Stokes semigroup

<u>Definition</u> (Analytic semigroup)

X: Banach space, $\{T(t)\}_{t\geq 0}\subset \mathcal{L}(X)$: semigroup, We say T(t) is analytic if $\exists C>0$ s.t.

$$\left|\left|\frac{dT(t)}{dt}\right|\right|_{\mathcal{L}(X)} \leq \frac{C}{t} \quad \text{for } t \in (0,1].$$

Ex.

- S(t) is analytic in $L^r_{\sigma} \cdots$ e.g. bounded and exterior domains
- $e^{t\Delta}$ is analytic in $L^{\infty}\cdots$ Masuda '72, Stewart '74

Analyticity of S(t) in L^{∞}

$$\Omega = \mathbf{R}_+^n$$

- Desch-Hieber-Prüss '01 Resolvent approach $\cdots C_{0,\sigma}$, L_{σ}^{∞}
- Solonnikov '03, Maremonti-Starita '03 Explicit formula for S(t)

```
\Omega = {\sf admissible} (e.g. bdd) S(t) is analytic in C_{0,\sigma} [ A-Giga, preprint]
```

```
L^{\infty}-type spaces C_{0,\sigma}=L^{\infty}-closure of C_{c,\sigma}^{\infty} L_{\sigma}^{\infty}=\{v\in L^{\infty}\mid \int_{\Omega}v\nabla\varphi=0,\ \nabla\varphi\in L^{1}\}: non-decaying
```

A typical result

Theorem 1

Let Ω be a bounded domain with C^3 boundary. Then there exists $T_0 > 0$ and C > 0 s.t. a priori estimate

$$\sup_{0\leq t\leq T_0}||N(v,q)||_{\infty}(t)\leq C||v_0||_{\infty}$$

holds for all (v, q) with $v_0 \in C_{c,\sigma}^{\infty}(\Omega)$.

Here

$$N(v,q)(x,t) = |v(x,t)| + t^{\frac{1}{2}} |\nabla v(x,t)| + t |\nabla^2 v(x,t)| + t |\partial_t v(x,t)| + t |\nabla q(x,t)|.$$

Strictly admissible domain

To establish a priori estimate, a key is the estimate

$$\sup_{x\in\Omega} d_{\Omega}(x) |\nabla q(x,t)| \leq C_{\Omega} ||\nabla v||_{L^{\infty}(\partial\Omega)}(t). \tag{P}$$

(P) follows from the strict estimate

$$\sup_{x \in \Omega} d_{\Omega}(x) |\nabla P(x)| \leq C_{\Omega} ||W||_{L^{\infty}(\partial \Omega)}$$

of the problem:

$$\Delta P = 0 \text{ in } \Omega, \ \partial P / \partial n_{\Omega} = \operatorname{div}_{\partial \Omega} W \text{ on } \partial \Omega$$
 (NP)

Definition

Let $\Omega \subset \mathbf{R}^n (n \geq 2)$ be a domain with C^1 boundary. We call Ω strictly admissible if $\exists C_{\Omega} > 0$ s.t. a priori estimate

$$\sup_{x\in\Omega}d_{\Omega}(x)|\nabla P(x)|\leq C_{\Omega}||W||_{L^{\infty}(\partial\Omega)}$$

holds for all sol. of (NP) with $W \in L^{\infty}_{tan}(\partial\Omega)$.

RK

- Strictly admissible $\cdots \mathbb{R}^n_+$, \mathbb{C}^3 -bounded domain
- Not strictly admissible · · · Layer domains

More general result

Theorem 2

Let Ω be a strictly admissible, uniformly C^3 domain. Then for any T_0 there exists $C = C(T_0, \Omega)$ a priori estimate

$$\sup_{0\leq t\leq T_0}||N(v,q)||_{\infty}(t)\leq C||v_0||_{\infty}$$

holds for all (v, q) with $v_0 \in L^{\infty}_{\sigma}(\Omega)$.

RK

For a general unbounded domain, the existence is unknown.

Goal: Ω =exterior

Extend $S(t): v_0 \mapsto v(\cdot, t) (t \ge 0)$ to an analytic semigroup in $L^{\infty}_{\sigma}(\Omega)$

Uniqueness in L_{σ}^{∞}

$$\Omega = \mathbf{R}^n_+$$
 Solution formula for (v,q) with $v_0 \in L^\infty_\sigma$

$$\Rightarrow \sup_{\substack{x \in \Omega \\ t \in (0,T)}} t^{1/2} d_{\Omega}(x) \left| \nabla q(x,t) \right| \leq C \|v_0\|_{\infty},$$

where $\Omega = \mathbf{R}_{+}^{n}$ with $d_{\mathbf{R}_{+}^{n}}(x) = x_{n}$.

Note

 $\nabla q \to 0$ as $x_n \to \infty$ is necessary for the uniqueness. (e.g. Poiseuille flows)

Non-decaying solutions

Definition

Let (v,q) solve (S) in the classical sense with $v_0 \in L^\infty_\sigma(\Omega)$ in the sense that

$$v(\cdot,t) \to v_0 \quad *\text{-weakly in } L^{\infty} \text{ as } t \downarrow 0.$$

We call (v,q) L^{∞} -solution if N(v,q)(x,t) and

$$t^{1/2}d_{\Omega}(x)\left|\nabla q(x,t)\right|$$

are bounded in $\Omega \times (0, T)$.

Main results

Theorem 3

Let $\Omega \subset \mathbf{R}^n (n \ge 2)$ be an exterior domain with C^3 boundary.

(i) For $v_0 \in L^\infty_\sigma$ there exists a unique L^∞ -solution (v,q) satisfying

$$\sup_{0\leq t\leq T_0}||N(v,q)||_{\infty}(t)\leq C||v_0||_{\infty}$$

for any T_0 with $C = C(T_0, \Omega)$.

(ii) $S(t): v_0 \mapsto v(\cdot, t)$ is uniquely extendable to a (non C_0 -) analytic semigroup in $L^{\infty}_{\sigma}(\Omega)$.

RK

- S(t) is C_0 -semigroup in $BUC_{\sigma}(\subset L^{\infty}_{\sigma})$
- Maximum modulus, i.e. $\exists C_{\Omega} > 0$ s.t.

$$||S(t)v_0||_{\infty} \leq C_{\Omega}||v_0||_{\infty} \quad t>0$$

for $v_0 \in L^{\infty}_{\sigma}$ is proved by Maremonti '12

• S(t) is bounded analytic in $X=L^r_\sigma$ for $r\in(1,\infty)$ in the sense that both

$$||S(t)||_{\mathcal{L}(\mathbf{X})}$$
 and $t||dS(t)/dt||_{\mathcal{L}(\mathbf{X})}$

are bounded in $[0, \infty)$ [Borchers- Sohr '87], [Borchers-Varnhorn '93]

Ideas: Extension to L_{σ}^{∞}

Prove the existence for $v_0 \in L^{\infty}_{\sigma}$

1 Admissibility
If an exterior domain is strictly admissible,

$$\sup_{0 \le t \le T} ||N(v,q)||_{\infty}(t) \le C_T ||v_0||_{\infty}$$

is available for $v_0 \in C_{c,\sigma}^{\infty}$.

2 Approximation

If
$$\exists C_{\Omega} > 0$$
 s.t. $\forall v_0 \in L^{\infty}_{\sigma}, \exists \{v_{0,m}\}_{m \geq 1} \subset C^{\infty}_{c,\sigma}$ s.t.

$$||v_{0,m}||_{\infty} \leq C_{\Omega}||v_0||_{\infty}$$

 $v_{0,m} \rightarrow v_0$ a.e. in Ω

By setting (v_m, q_m) as a solution for $v_{0,m}$, we have

$$\sup_{0\leq t\leq T}||N(v_m,q_m)||_{\infty}(t)\leq C||v_0||_{\infty}.$$

From a compactness result, we find

$$(v_m,q_m) \rightarrow \exists (v,q)$$

We then define

$$S(t)v_0 := v(\cdot, t)$$
 for $v_0 \in L^{\infty}_{\sigma}$

Note: Approximation topology is not uniform.

However, uniqueness automatically follows from a priori estimate

$$\sup_{0 \le t \le T} ||N(v,q)||_{\infty}(t) \le C_T ||v_0||_{\infty}$$

with $v_0 = 0$.

Sketch of the proof: Exterior is "admissible"

Argument by contradiction

Suppose that a priori estimate were false, then $\exists \{P_m\}_{m\geq 1}$ and $\{x_m\}_{m\geq 1}\subset \Omega$ s.t.

$$d_{\Omega}(x_m)|\nabla P_m(x_m)| \geq m||W_m||_{L^{\infty}(\partial\Omega)}$$

By normalizing P_m (still denoted by P_m),

$$\frac{1}{2} \leq d_{\Omega}(x_m) \big| \nabla P_m(x_m) \big| \leq \sup_{x \in \Omega} d_{\Omega}(x) \big| \nabla P_m(x) \big| = 1$$

and $W_m \to 0$ uniformly on $\partial \Omega$.

Case
$$1$$
 $\overline{\lim}_{m \to \infty} d_{\Omega}(x_m) < \infty \Longrightarrow$ reduced to \mathbf{R}^n_+ and Ω

Case 2
$$\overline{\lim}_{m\to\infty} d_{\Omega}(x_m) = \infty \Longrightarrow$$
 reduced to \mathbf{R}^n

Blow-up sequence

$$Q_m(x) = P_m(x_m + d_m^{1/2}x), \quad d_m = d_{\Omega}(x_m) \uparrow \infty$$

$$\Omega_m = (\Omega - \{x_m\})/d_m$$
: downscaled domain

$$\Omega$$
: exterior $\Rightarrow \Omega_m^c \to \{a\}(a \neq 0)$

The estimates for P_m are inherited to

$$\sup_{x \in \Omega_m} d_{\Omega_m}(x) |
abla Q_m(x)| \leq 1$$
 $|
abla Q_m(0)| \geq 1/2$

Since Q_m is harmonic, $Q_m \to Q$ locally uniformly in $\mathbb{R}^n \setminus \{a\}$, so

$$|\nabla Q(0)| \ge 1/2.$$

 $\Delta Q = 0$ in $\mathbb{R}^n \setminus \{a\}$ under the bound

$$\sup_{x \in \mathbf{R}^n} |x - a| |\nabla Q(x)| \le 1$$

When $n \ge 3$, x = a is removable so $\nabla Q \equiv 0$.

When n = 2, with the help of mean value, i.e.

$$\int_{\partial B_a(r)} Q d\mathcal{H}^{n-1}$$

which is independent of r > 0, x = a is still removable.

