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Introduction

Equations
We consider stationary solutions to the 3D Navier-Stokes equations

for viscous incompressible flows with a linear strain

AU+ (U, V)U + (Mx,V)U + MU+VP =0, x € R?
V-U =0, x € R3.
(NSw)
A1 0O
M=10 X 0 ., A ER. (1)
0 0 X;

Here U(x) = (Ui(x), Ua(x), Us(x)) € R? and P(x) € R.
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If we assume the solutions to the stationary 3D Navier-Stokes
equations are of the form U(x) + Mx, we observe that
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If we assume the solutions to the stationary 3D Navier-Stokes
equations are of the form U(x) + Mx, we observe that

—Av+(v,V)v+Vp=0

|| v(x) = U(x) + Mx
-AU+ (U, V)U+ (Mx,V)U+ MU+ VP =0
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If we assume the solutions to the stationary 3D Navier-Stokes
equations are of the form U(x) + Mx, we observe that

—Av+(v,V)v+Vp=0

|| v(x) = U(x) + Mx
-AU+ (U, V)U+ (Mx,V)U+ MU+ VP =0
The second equation of (NSy) is also satisfied when Tr(M) = 0.
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If we assume the solutions to the stationary 3D Navier-Stokes
equations are of the form U(x) + Mx, we observe that

—Av+(v,V)v+Vp=0
|| v(x) = U(x) + Mx
-AU+ (U, V)U+ (Mx,V)U+ MU+ VP =0

The second equation of (NSy) is also satisfied when Tr(M) = 0.
When Tr(M) # 0: self-similar solution with a linear strain.
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To formulate the relations in a more precise way, we start from the
3D incompressible Navier-Stokes equations with unit viscosity and
zero external force (NSE):

vi —Av+(v,V)v+Vp = 0 2)
Vv = 0,

where v = v(x,t) € R3, p=p(x,t) € R and x = (x1, %, x3)! € R3.

P.Y. Hsu (U. Tokyo) Nonexistence problem for the NSE June 14, 2012 4 /19



Relations to the NSE

e tr(M) = 0 : stationary solutions to (NSE)

{v(x) = U(x) + Mx,
plx) = P(x) = 3IMx],
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Relations to the NSE

e tr(M) = 0 : stationary solutions to (NSE)

{v(x) = U(x) + Mx,
plx) = P(x) = 3IMx],

e tr(M) < 0 : forward self-similar solutions to (NSE)
{W&ﬂ — LU+ S,

7

plx.t) = (P +S) ().

June 14, 2012 5/19

Nonexistence problem for the NSE

P.Y. Hsu (U. Tokyo)



Relations to the NSE

e tr(M) = 0 : stationary solutions to (NSE)

{v(x) = U(x) + Mx,
plx) = P(x) = 3IMx],

e tr(M) < 0 : forward self-similar solutions to (NSE)
(x.8) = (US55
plx ) = SL(P+S)()

e tr(M) > 0 : backward self-similar solutions to (NSE)

v(x,t) = ﬁ(UﬂLS)(#)a
2( ) V/2a(T—t) (3)

PO t) = mra(P+ S o)
where T € Ra = M > o G, (x) = (M — 200 1)x,
Sa(x) = LW x2 — | max]?).
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The eigenvalues \; of the matrix M are closely related to
the existence of nontrivial entire solutions to (NSy).
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The eigenvalues \; of the matrix M are closely related to
the existence of nontrivial entire solutions to (NSy).
Our goal: to clarify the relation of these.
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The eigenvalues \; of the matrix M are closely related to
the existence of nontrivial entire solutions to (NSy).
Our goal: to clarify the relation of these.

However, it is still not clear whether (NSy;) admits
nontrivial solutions or not, except for the following cases:

o ()X >0, i=123
o (il) Ay <0, A\ <0, 32 X\ =0,
° (iii) A1 =X = A3 <0.
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We study the case when one of ); is negative and the
other two are positive.
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We study the case when one of ); is negative and the
other two are positive.

By suitable scaling and coordinate transformation we may
assume without loss of generality that

A= —-A <0, A =1, )\3:,LLZ]..
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We study the case when one of ); is negative and the
other two are positive.

By suitable scaling and coordinate transformation we may
assume without loss of generality that

A= —-A <0, A =1, )\3:,LLZ]..

Before stating our results, we briefly recall the known
results on the cases (i)-(iii).
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Related researches (1/3)

(i) An important open problem in fluid mechanics is that: does the
three dimensional velocity develop a blow-up phenomenon in finite
time?
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(i) An important open problem in fluid mechanics is that: does the
three dimensional velocity develop a blow-up phenomenon in finite
time?

@ When A\; = )y = A3 > 0: (NSy) are Leray's equations.
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Related researches (1/3)

(i) An important open problem in fluid mechanics is that: does the
three dimensional velocity develop a blow-up phenomenon in finite
time?
@ When A\; = )y = A3 > 0: (NSy) are Leray's equations.
o Leray (1934): Does backward self-similar solutions to the NSE
exist? (Leray's question)
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Related researches (1/3)

(i) An important open problem in fluid mechanics is that: does the
three dimensional velocity develop a blow-up phenomenon in finite
time?
@ When A\; = )y = A3 > 0: (NSy) are Leray's equations.
o Leray (1934): Does backward self-similar solutions to the NSE
exist? (Leray's question)
o Netas, Riitka and Sverdk (1996): The only weak solution of
Leray's problem belonging to (L3(R3))3is U = 0.
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Related researches (1/3)

(i) An important open problem in fluid mechanics is that: does the
three dimensional velocity develop a blow-up phenomenon in finite
time?
@ When A\; = )y = A3 > 0: (NSy) are Leray's equations.
o Leray (1934): Does backward self-similar solutions to the NSE
exist? (Leray's question)
o Netas, Ruzitka and Sverdk (1996): The only weak solution of
Leray's problem belonging to (L3(R3))3 is U = 0.
o Mailek, Netas, Pokorny and Schonbek (1999): Another proof.
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Related researches (1/3)

(i) An important open problem in fluid mechanics is that: does the
three dimensional velocity develop a blow-up phenomenon in finite
time?
@ When A\; = )y = A3 > 0: (NSy) are Leray's equations.
o Leray (1934): Does backward self-similar solutions to the NSE
exist? (Leray's question)
o Netas, Ruzitka and Sverdk (1996): The only weak solution of
Leray's problem belonging to (L3(R3))3 is U = 0.
o Malek, Netas, Pokorny and Schonbek (1999): Another proof.
o Tsai (1999): U € (L9(R3))3,3 < g < 0o = U must be
constant.
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Related researches (2/3)

(i) Ay <0, A\ <0, 33 X\ =0,
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Related researches (2/3)

(i) Ay <0, A\ <0, 33 X\ =0,
@ Burgers (1948): When U is two-dimensional, an explicit solution
exists.(Burgers vortex)
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Related researches (2/3)

(i) Ay <0, A\ <0, 33 X\ =0,
@ Burgers (1948): When U is two-dimensional, an explicit solution
exists.(Burgers vortex)

@ Asymptotic behavior of Burgers vortex are investigated by
[Giga-Kambe],[Gallay-Wayne],[Maekawa],...,etc.
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Related researches (3/3)

As for A\ = A\, = A3 < 0, it reduced to forward self-similar solutions.

The existence of non-trivial solutions to (NSy) in this case have been
known for several years.
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Related researches (3/3)

As for A\ = A\, = A3 < 0, it reduced to forward self-similar solutions.

The existence of non-trivial solutions to (NSy) in this case have been
known for several years.

@ Many general class of forward self-similar solutions have been
constructed by
[Giga-Miyakawa],[Cannone-Planchon],[Kozono-Yamazaki],...,etc.
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Main result

For \j = =A< 0, =1, 3 =p>1, let Q(x) =V x U(x) be the
vorticity field. Then we assume that

(CO) |U(x)| + % e L=(R%);

(C1) Ay, y3) € R? s.t. P(x1, yo,y3) = o(|x1]) at |x1| — oo;
(C2) (1+ xDIAx)| € LP(R?)  for some py € [1,3);
(C3) thereis 6 > A such that
either (i) |Q(x)| < C(1 + |x|)~"7?

r (i) [Qx)] < C(1+ |xs])~ @M=t holds.
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Main result

For \j = =A< 0, =1, 3 =p>1, let Q(x) =V x U(x) be the
vorticity field. Then we assume that

(CO) |U(x)| + % e L=(R%);

(C1) Ay, y3) € R? s.t. P(x1, yo,y3) = o(|x1]) at |x1| — oo;
(C2) (1+ xDIAx)| € LP(R?)  for some py € [1,3);
(C3) thereis 6 > A such that
either (i) |Q(x)| < C(1 + |x|)~"7?

r (i) [Qx)] < C(1+ |xs])~ @M=t holds.

Let (U, P) € (C?(R%))® x CY(R3) be a solution to (NSy;). Assume
that (C0)-(C3) hold. Then U = const.
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Idea of proof
Fundamental equality

1
M(x) = SV + Mx - U(x) + P(x), (4)
Let £ be the differential operator defined by

Lf = Af — Mx - V. (5)
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Idea of proof
Fundamental equality

1
M(x) = SV + Mx - U(x) + P(x), (4)
Let £ be the differential operator defined by

Lf = Af — Mx - V. (5)

Proposition 2.1

cn—u-vn = |Qf (6)
—AU = (UxQ);+0N = —Mx-(VU;—9;U),  (7)
LA+ (M—Te(MNQ = U-VQ—Q-VU. (8)

v
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Estimates for 1
At first we establish estimates for 1 from using the relation between
M and Q. From (7) we have

AN =-V-(UxQ)+> (M- (VU; - 9U)).  (9)

J
Motivated by (16) we set

Mo(x) := —(—A)'V - (Ux Q) + > (=A)7'5;(Mx - (VU; — 5;V))

o> [k 2 (00 % )+ My - (TU) - U ) 0.
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Assume that (C0),(C2) hold. Then

lim sup ([Mo(x)| + [Vo(x)]) = . (10)

R—o0 [x|>R

Moreover, if (C3) holds in addition, then there is 6 > O such that

||_|0(0; X2, 0)|
“_lo(o, 0, X3)|

Cl+|x|)™®  if (i) of (C3) holds, (11)
C(1+|x|)° if (ii) of (C3) holds. (12)

<
<
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Then we construct estimates for g in another way.
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Then we construct estimates for g in another way.
The condition (C0) and Proposition 2.2 implies [1 = a5 + Ny and
hence,

LMy — U-VN, = Q] (13)
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Then we construct estimates for g in another way.
The condition (C0) and Proposition 2.2 implies [1 = a5 + Ny and
hence,

LMy — U-VN, = Q] (13)

Since |Mo(x)| — 0 as |x| — oo by Proposition 2.2, the strong
maximum principle implies

Assume that (C0),(C2),(C3)hold. Then either My = 0 or My(x) < 0
for all x € R3.
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Then we construct estimates for g in another way.
The condition (C0) and Proposition 2.2 implies [1 = a5 + Ny and
hence,

LMy — U-VN, = Q] (13)

Since |Mo(x)| — 0 as |x| — oo by Proposition 2.2, the strong
maximum principle implies

Assume that (C0),(C2),(C3)hold. Then either My = 0 or My(x) < 0
for all x € R3.

For the moment we consider a smooth nontrivial function 1y which
satisfies

LMy — U -V > 0. (14)

The strong maximum principle implies that My(x) < 0 for all x € R3.
Our aim is to derive a lower bound on the spatial decay of —ITy.
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Proposition 2.4

Assume that (C0)-(C3) hold and that Ny £ 0. Then for any | > 0
there is C > 0 such that

_HO(OJ X2, O)
—n0(0>0,X3)

C(1+ |xe|)™ if (i) of (C3) holds,  (15)
C(1+ |x|)”’ if (i) of (C3) holds. (16)

4

IV v
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Proposition 2.4

Assume that (C0)-(C3) hold and that Ny £ 0. Then for any | > 0
there is C > 0 such that

—Mp(0, x2,0) > C(1 + |x2])~ if (i) of (C3) holds, (15)
—Mo(0,0,x3) > C(1+ |x3|)~ if (ii) of (C3) holds.  (16)

[

4

In the proof of Proposition the sign of ), is essential. Indeed, we
carefully estimate the property that the positivity of A\, (A3) leads to
slower spatial decay of —Iy in xa(x3) direction.

We note that, since A; < 0, we can not use the argument in [Tsail.
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Conclusion

Proof of Theorem 1.1

If My £ 0 then the lower bound for Ny in Proposition 2.4 contradicts
with the decay estimate of [y in Proposition 2.2. Hence Iy =0, i.e.,
MM = const. Thus we have 2 = 0 from (6), which implies U = const.
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Estimate for velocity
Set

V(x)=(-A)'VxQ=C % x Q(y)dy. (17)

Then by (C0) we have

U=u+V uc : a constant vector. (18)

Proposition 2.5
Assume that (C0),(C2) hold. Then

V()| < C(1+ |x])~ (19)
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Estimates for vorticity

Proposition 2.6
Assume that (C0),(C2),(C3) hold. Then,for k =0,1,2,

(14 [x))|[V*Q(x)| € LP(R?) for all p € [py,o0], (20)
IVFQ(x)| < C(1 + |x|) %t if (i) of (C3) holds, (21)
IVKQ(x)| < C(1 + |xs]) % it (i) of (C3) holds.  (22)
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