On nonexistence for stationary solutions to the Navier-Stokes equations with a linear strain

Pen-Yuan Hsu Graduate School of Mathematical Sciences University of Tokyo

Joint work with Y. Maekawa (Kobe University)

The 5th Japanese-German International Workshop on Mathematical Fluid Dynamics

June 14, 2012

Nonexistence problem for the NSE

Introduction

Equations

We consider stationary solutions to the 3D Navier-Stokes equations for viscous incompressible flows with a linear strain

$$\left\{egin{array}{ll} - riangle U+(U,
abla)U+(Mx,
abla)U+MU+
abla P&=0, & x\in\mathbb{R}^3\
abla\cdot U&=0, & x\in\mathbb{R}^3.\ & (\mathrm{NS}_\mathrm{M})\end{array}
ight.$$

$$M = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} , \quad \lambda_i \in \mathbb{R}.$$
 (1)

Here $U(x) = (U_1(x), U_2(x), U_3(x)) \in \mathbb{R}^3$ and $P(x) \in \mathbb{R}$.

$$-\bigtriangleup v + (v, \nabla)v + \nabla p = 0$$
$$\Downarrow v(x) = U(x) + Mx$$
$$-\bigtriangleup U + (U, \nabla)U + (Mx, \nabla)U + MU + \nabla P = 0$$

$$-\triangle v + (v, \nabla)v + \nabla p = 0$$

$$\Downarrow v(x) = U(x) + Mx$$

$$-\triangle U + (U, \nabla)U + (Mx, \nabla)U + MU + \nabla P = 0$$

The second equation of (NS_M) is also satisfied when Tr(M) = 0.

$$-\bigtriangleup v + (v, \nabla)v + \nabla p = 0$$
$$\Downarrow v(x) = U(x) + Mx$$
$$-\bigtriangleup U + (U, \nabla)U + (Mx, \nabla)U + MU + \nabla P = 0$$

The second equation of (NS_M) is also satisfied when Tr(M) = 0. When $Tr(M) \neq 0$: self-similar solution with a linear strain. To formulate the relations in a more precise way, we start from the 3D incompressible Navier-Stokes equations with unit viscosity and zero external force (NSE):

$$\begin{cases} v_t - \bigtriangleup v + (v, \nabla)v + \nabla p &= 0\\ \nabla \cdot v &= 0, \end{cases}$$
(2)

where $v = v(x, t) \in \mathbb{R}^3$, $p = p(x, t) \in \mathbb{R}$ and $x = (x_1, x_2, x_3)^t \in \mathbb{R}^3$.

Relations to the NSE

• tr(M) = 0: stationary solutions to (NSE)

$$\begin{cases} v(x) = U(x) + Mx, \\ p(x) = P(x) - \frac{1}{2}|Mx|^2, \end{cases}$$

Relations to the NSE

• tr(M) = 0: stationary solutions to (NSE)

$$\begin{cases} v(x) = U(x) + Mx, \\ p(x) = P(x) - \frac{1}{2}|Mx|^2, \end{cases}$$

• tr(M) < 0: forward self-similar solutions to (NSE)

$$\begin{cases} v(x,t) = \frac{1}{\sqrt{2\alpha t}}(U+S_1)(\frac{x}{\sqrt{2\alpha t}}), \\ p(x,t) = \frac{1}{2\alpha t}(P+S_2)(\frac{x}{\sqrt{2\alpha t}}), \end{cases}$$

Relations to the NSE

• tr(M) = 0: stationary solutions to (NSE)

$$\begin{cases} v(x) = U(x) + Mx, \\ p(x) = P(x) - \frac{1}{2}|Mx|^2, \end{cases}$$

• tr(M) < 0: forward self-similar solutions to (NSE)

$$\begin{cases} v(x,t) = \frac{1}{\sqrt{2\alpha t}}(U+S_1)(\frac{x}{\sqrt{2\alpha t}}), \\ p(x,t) = \frac{1}{2\alpha t}(P+S_2)(\frac{x}{\sqrt{2\alpha t}}), \end{cases}$$

• tr(M) > 0: backward self-similar solutions to (NSE)

$$\begin{cases} v(x,t) = \frac{1}{\sqrt{2\alpha(T-t)}} (U+S_1)(\frac{x}{\sqrt{2\alpha(T-t)}}), \\ p(x,t) = \frac{1}{2\alpha(T-t)} (P+S_2)(\frac{x}{\sqrt{2\alpha(T-t)}}), \end{cases}$$
(3)

where
$$T \in \mathbb{R}, \alpha = \frac{|\operatorname{tr}(M)|}{3} > 0, \ S_1(x) = (M - \frac{\operatorname{tr}(M)}{3}I)x,$$

 $S_2(x) = \frac{1}{2}(\frac{|\operatorname{tr}(M)|^2}{9}|x|^2 - |Mx|^2).$

P.Y. Hsu (U. Tokyo)

The eigenvalues λ_i of the matrix M are closely related to the existence of nontrivial entire solutions to (NS_M).

The eigenvalues λ_i of the matrix M are closely related to the existence of nontrivial entire solutions to (NS_M). Our goal: to clarify the relation of these. The eigenvalues λ_i of the matrix M are closely related to the existence of nontrivial entire solutions to (NS_M). Our goal: to clarify the relation of these.

However, it is still not clear whether (NS_M) admits nontrivial solutions or not, except for the following cases:

• (i)
$$\lambda_i > 0$$
, $i = 1, 2, 3$

• (ii)
$$\lambda_1 < 0, \ \lambda_2 < 0, \ \sum_{i=1}^3 \lambda_i = 0,$$

• (iii)
$$\lambda_1 = \lambda_2 = \lambda_3 < 0.$$

We study the case when one of λ_i is negative and the other two are positive.

We study the case when one of λ_i is negative and the other two are positive.

By suitable scaling and coordinate transformation we may assume without loss of generality that

$$\lambda_1 = -\lambda < 0, \qquad \lambda_2 = 1, \qquad \lambda_3 = \mu \ge 1.$$

We study the case when one of λ_i is negative and the other two are positive.

By suitable scaling and coordinate transformation we may assume without loss of generality that

$$\lambda_1 = -\lambda < 0, \qquad \lambda_2 = 1, \qquad \lambda_3 = \mu \ge 1.$$

Before stating our results, we briefly recall the known results on the cases (i)-(iii).

• When $\lambda_1 = \lambda_2 = \lambda_3 > 0$: (NS_M) are Leray's equations.

- When $\lambda_1 = \lambda_2 = \lambda_3 > 0$: (NS_M) are Leray's equations.
 - Leray (1934): Does backward self-similar solutions to the NSE exist? (Leray's question)

- When $\lambda_1 = \lambda_2 = \lambda_3 > 0$: (NS_M) are Leray's equations.
 - Leray (1934): Does backward self-similar solutions to the NSE exist? (Leray's question)
 - Nečas, Růžička and Šverák (1996): The only weak solution of Leray's problem belonging to (L³(ℝ³))³ is U ≡ 0.

- When $\lambda_1 = \lambda_2 = \lambda_3 > 0$: (NS_M) are Leray's equations.
 - Leray (1934): Does backward self-similar solutions to the NSE exist? (Leray's question)
 - Nečas, Růžička and Šverák (1996): The only weak solution of Leray's problem belonging to (L³(ℝ³))³ is U ≡ 0.
 - Málek, Nečas, Pokorný and Schonbek (1999): Another proof.

- When $\lambda_1 = \lambda_2 = \lambda_3 > 0$: (NS_M) are Leray's equations.
 - Leray (1934): Does backward self-similar solutions to the NSE exist? (Leray's question)
 - Nečas, Růžička and Šverák (1996): The only weak solution of Leray's problem belonging to (L³(ℝ³))³ is U ≡ 0.
 - Málek, Nečas, Pokorný and Schonbek (1999): Another proof.
 - Tsai (1999): $U \in (L^q(\mathbb{R}^3))^3, 3 < q \le \infty \Rightarrow U$ must be constant.

Related researches (2/3)

(ii)
$$\lambda_1 < 0, \ \lambda_2 < 0, \ \sum_{i=1}^3 \lambda_i = 0,$$

٠

(ii)
$$\lambda_1 < 0, \ \lambda_2 < 0, \ \sum_{i=1}^3 \lambda_i = 0,$$

• Burgers (1948): When U is two-dimensional, an explicit solution exists.(Burgers vortex)

٠

(ii)
$$\lambda_1 < 0, \ \lambda_2 < 0, \ \sum_{i=1}^3 \lambda_i = 0,$$

- Burgers (1948): When U is two-dimensional, an explicit solution exists.(Burgers vortex)
- Asymptotic behavior of Burgers vortex are investigated by [Giga-Kambe],[Gallay-Wayne],[Maekawa],...,etc.

As for $\lambda_1 = \lambda_2 = \lambda_3 < 0$, it reduced to forward self-similar solutions. The existence of non-trivial solutions to (NS_M) in this case have been known for several years.

As for $\lambda_1 = \lambda_2 = \lambda_3 < 0$, it reduced to forward self-similar solutions. The existence of non-trivial solutions to (NS_M) in this case have been known for several years.

 Many general class of forward self-similar solutions have been constructed by [Giga-Miyakawa],[Cannone-Planchon],[Kozono-Yamazaki],...,etc.

Main result

For $\lambda_1 = -\lambda < 0$, $\lambda_2 = 1$, $\lambda_3 = \mu \ge 1$, let $\Omega(x) = \nabla \times U(x)$ be the vorticity field. Then we assume that

(C0)
$$|U(x)| + \frac{|P(x)|}{1+|x|} \in L^{\infty}(\mathbb{R}^3);$$

(C1) $\exists (y_2, y_3) \in \mathbb{R}^2 \ s.t. \ P(x_1, y_2, y_3) = o(|x_1|) \text{ at } |x_1| \to \infty;$
(C2) $(1+|x|)|\Omega(x)| \in L^{p_0}(\mathbb{R}^3) \text{ for some } p_0 \in [1,3);$
(C3) there is $\theta_0 > \lambda$ such that
either (i) $|\Omega(x)| \leq C(1+|x_2|)^{-\theta_0-1}$
or (ii) $|\Omega(x)| \leq C(1+|x_3|)^{-(\theta_0/\mu)-1}$ holds.

3

イロト イポト イヨト イヨト

Main result

For $\lambda_1 = -\lambda < 0$, $\lambda_2 = 1$, $\lambda_3 = \mu \ge 1$, let $\Omega(x) = \nabla \times U(x)$ be the vorticity field. Then we assume that

(C0)
$$|U(x)| + \frac{|P(x)|}{1+|x|} \in L^{\infty}(\mathbb{R}^3);$$

(C1) $\exists (y_2, y_3) \in \mathbb{R}^2 \ s.t. \ P(x_1, y_2, y_3) = o(|x_1|) \ \text{at } |x_1| \to \infty;$
(C2) $(1+|x|)|\Omega(x)| \in L^{p_0}(\mathbb{R}^3) \text{ for some } p_0 \in [1,3);$
(C3) there is $\theta_0 > \lambda$ such that
either (i) $|\Omega(x)| \leq C(1+|x_2|)^{-\theta_0-1}$
or (ii) $|\Omega(x)| \leq C(1+|x_3|)^{-(\theta_0/\mu)-1}$ holds.

Theorem 1.1

Let $(U, P) \in (C^2(\mathbb{R}^3))^3 \times C^1(\mathbb{R}^3)$ be a solution to (NS_M) . Assume that **(C0)-(C3)** hold. Then $U \equiv \text{const.}$

P.Y. Hsu (U. Tokyo)

Nonexistence problem for the NSE

Idea of proof Fundamental equality

$$\Pi(x) = \frac{1}{2} |U(x)|^2 + Mx \cdot U(x) + P(x), \qquad (4)$$

Let \mathcal{L} be the differential operator defined by

$$\mathcal{L}f = \Delta f - Mx \cdot \nabla f. \tag{5}$$

Idea of proof Fundamental equality

$$\Pi(x) = \frac{1}{2} |U(x)|^2 + Mx \cdot U(x) + P(x), \tag{4}$$

Let \mathcal{L} be the differential operator defined by

$$\mathcal{L}f = \Delta f - Mx \cdot \nabla f. \tag{5}$$

Proposition 2.1

$$\mathcal{L}\Pi - U \cdot \nabla\Pi = |\Omega|^2, \qquad (6)$$

$$-\Delta U_j - (U \times \Omega)_j + \partial_j \Pi = -M_X \cdot (\nabla U_j - \partial_j U), \qquad (7)$$

$$\mathcal{L}\Omega + (M - \operatorname{Tr}(M)I)\Omega = U \cdot \nabla\Omega - \Omega \cdot \nabla U. \qquad (8)$$

P.Y. Hsu (U. Tokyo)

Estimates for Π

At first we establish estimates for Π from using the relation between Π and Ω . From (7) we have

$$-\Delta \Pi = -\nabla \cdot (U \times \Omega) + \sum_{j} \partial_{j} (Mx \cdot (\nabla U_{j} - \partial_{j}U)).$$
(9)

Motivated by (16) we set

$$egin{aligned} &\Pi_0(x) := -(-\Delta)^{-1}
abla \cdot (U imes \Omega) + \sum_j (-\Delta)^{-1} \partial_j ig(Mx \cdot (
abla U_j - \partial_j U) ig) \ &= C \sum_j \int_{\mathbb{R}^3} rac{x_j - y_j}{|x - y|^3} ig((U(y) imes \Omega(y))_j + My \cdot (
abla U_j(y) - \partial_j U(y)) ig) \,\mathrm{d}y. \end{aligned}$$

Proposition 2.2

Assume that (C0),(C2) hold. Then

$$\lim_{R \to \infty} \sup_{|x| \ge R} (|\Pi_0(x)| + |\nabla \Pi_0(x)|) = 0.$$
 (10)

Moreover, if (C3) holds in addition, then there is $\delta > 0$ such that

$$\begin{array}{lll} |\Pi_0(0,x_2,0)| &\leq & C(1+|x_2|)^{-\delta} & \quad \text{if (i) of (C3) holds, (11)} \\ |\Pi_0(0,0,x_3)| &\leq & C(1+|x_3|)^{-\delta} & \quad \text{if (ii) of (C3) holds. (12)} \end{array}$$

Then we construct estimates for Π_0 in another way.

P.Y. Hsu (U. Tokyo)

Nonexistence problem for the NSE

June 14, 2012 15 / 19

Then we construct estimates for Π_0 in another way. The condition **(C0)** and Proposition 2.2 implies $\Pi = a_0 + \Pi_0$ and hence,

$$\mathcal{L}\Pi_0 - U \cdot \nabla \Pi_0 = |\Omega|^2. \tag{13}$$

Then we construct estimates for Π_0 in another way. The condition **(C0)** and Proposition 2.2 implies $\Pi = a_0 + \Pi_0$ and hence,

$$\mathcal{L}\Pi_0 - U \cdot \nabla \Pi_0 = |\Omega|^2. \tag{13}$$

Since $|\Pi_0(x)| \to 0$ as $|x| \to \infty$ by Proposition 2.2, the strong maximum principle implies

Corollary 2.3

Assume that (C0),(C2),(C3)hold. Then either $\Pi_0 \equiv 0$ or $\Pi_0(x) < 0$ for all $x \in \mathbb{R}^3$.

Then we construct estimates for Π_0 in another way. The condition **(C0)** and Proposition 2.2 implies $\Pi = a_0 + \Pi_0$ and hence,

$$\mathcal{L}\Pi_0 - U \cdot \nabla \Pi_0 = |\Omega|^2. \tag{13}$$

Since $|\Pi_0(x)| \to 0$ as $|x| \to \infty$ by Proposition 2.2, the strong maximum principle implies

Corollary 2.3

Assume that (C0),(C2),(C3)hold. Then either $\Pi_0 \equiv 0$ or $\Pi_0(x) < 0$ for all $x \in \mathbb{R}^3$.

For the moment we consider a smooth nontrivial function Π_0 which satisfies

$$\mathcal{L}\Pi_0 - U \cdot \nabla \Pi_0 \ge 0. \tag{14}$$

The strong maximum principle implies that $\Pi_0(x) < 0$ for all $x \in \mathbb{R}^3$. Our aim is to derive a lower bound on the spatial decay of $-\Pi_0$.

Proposition 2.4

Assume that (C0)-(C3) hold and that $\Pi_0 \not\equiv 0$. Then for any l > 0 there is C > 0 such that

 $\begin{aligned} &-\Pi_0(0, x_2, 0) \ge C(1 + |x_2|)^{-l} & \text{if (i) of (C3) holds,} \quad (15) \\ &-\Pi_0(0, 0, x_3) \ge C(1 + |x_3|)^{-l} & \text{if (ii) of (C3) holds.} \quad (16) \end{aligned}$

Proposition 2.4

Assume that (C0)-(C3) hold and that $\Pi_0 \not\equiv 0$. Then for any l > 0 there is C > 0 such that

$-\Pi_0(0,x_2,0) \geq C(1+ x_2)^{-l}$	if (i) of (C3) holds,	(15)
$-\Pi_0(0,0,x_3)\geq C(1+ x_3)^{-l}$	if (ii) of (C3) holds.	(16)

In the proof of Proposition the sign of λ_i is essential. Indeed, we carefully estimate the property that the positivity of λ_2 (λ_3) leads to slower spatial decay of $-\Pi_0$ in $x_2(x_3)$ direction.

We note that, since $\lambda_1 < 0$, we can not use the argument in [Tsai].

Proof of Theorem 1.1

If $\Pi_0 \not\equiv 0$ then the lower bound for Π_0 in Proposition 2.4 contradicts with the decay estimate of Π_0 in Proposition 2.2. Hence $\Pi_0 \equiv 0$, i.e., $\Pi \equiv \text{const.}$ Thus we have $\Omega \equiv 0$ from (6), which implies U = const.

Estimate for velocity Set

$$V(x) = (-\Delta)^{-1} \nabla \times \Omega = C \int_{\mathbb{R}^3} \frac{(x-y)}{|x-y|^3} \times \Omega(y) \, \mathrm{d}y.$$
(17)

Then by (C0) we have

$$U = u_c + V$$
 u_c : a constant vector. (18)

Proposition 2.5

Assume that (C0),(C2) hold. Then

$$|V(x)| \le C(1+|x|)^{-1}.$$
 (19)

Estimates for vorticity

Proposition 2.6

Assume that (C0),(C2),(C3) hold. Then, for k = 0, 1, 2, ..., k = 0, ..., k = 0, 1, 2, ..., k = 0, ..., k =

$$\begin{aligned} (1+|x|)|\nabla^{k}\Omega(x)| &\in L^{p}(\mathbb{R}^{3}) \text{ for all } p \in [p_{0},\infty], \quad (20)\\ |\nabla^{k}\Omega(x)| &\leq C(1+|x_{2}|)^{-\theta_{0}-1} & \text{ if } (i) \text{ of } (\textbf{C3}) \text{ holds}, \quad (21)\\ |\nabla^{k}\Omega(x)| &\leq C(1+|x_{3}|)^{-\frac{\theta_{0}}{\mu}-1} & \text{ if } (ii) \text{ of } (\textbf{C3}) \text{ holds}. \end{aligned}$$