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Nonlinear problem

The motion of compressible viscous fluid is formulated by the
following initial boundary value problem:

g—€+div(pu):0 inQ, t>0,
(NP) p(%+u-Vu)—DivS(u,P):F inQ, t>0,

(,0, u)'t:O = (pOa UO), |>I(|iLn°°(p, U) = (poo’ 0),

subject to some boundary condition.
@ U= (Uy,...,uy) :unknown velocity field, N > 2: dimension
@ P=P(p) : pressure. P'(p) > 0. p : unknown density
@ Su,P) = 2u;D(u) + (uzdivu — P)I : stress tensor
D(u) = {Vu+ (Vu)"}/2 : deformation tensor
@ u1, > : the first and second viscosity coefficient.
p1 >0, pug + pp > 0.
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Known results

@ the generation of analytic semigroup

@ the maximal regularity
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Known results

@ the generation of analytic semigroup
- Stromer (1987), Shibata and Tanaka (2004)
= the generation of analytic semigroup for the compressible
viscous fluid in a general domain with Dirichlet boundary
condition
(e.g. half-space, bounded domain, exterior domain)

@ the maximal regularity
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Known results

@ the generation of analytic semigroup
- Stromer (1987), Shibata and Tanaka (2004)
= the generation of analytic semigroup for the compressible
viscous fluid in a general domain with Dirichlet boundary
condition
(e.g. half-space, bounded domain, exterior domain)

@ the maximal regularity
- Solonnikov (1965)
= the maximal regularity for the general parabolic equations in
a general domain with uniform Lopatinski-Shapiro condition
- Kakizawa (2011)
= the maximal regularity of the linearized initial boundary
value problem for the compressible viscous fluid in bounded
domain with Navier boundary condition
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Known result and motivation

Enomoto and Shibata (2012, preprint)=
- the generation of analytic semigroup and the maximal regularity by
the R-boundedness of Stokes operator

Miho Murata (Waseda University) sectorial R-boundedness 6/12/2012 5/24



Known result and motivation

Enomoto and Shibata (2012, preprint)=
- the generation of analytic semigroup and the maximal regularity by
the R-boundedness of Stokes operator

- alocal in time unique existence theorem in a general domain with
Dirichlet boundary condition for the initial boundary value problem
for the compressible viscous fluid flow

Miho Murata (Waseda University) sectorial R-boundedness 6/12/2012 5/24



Known result and motivation

Enomoto and Shibata (2012, preprint)=

- the generation of analytic semigroup and the maximal regularity by
the R-boundedness of Stokes operator

- alocal in time unique existence theorem in a general domain with
Dirichlet boundary condition for the initial boundary value problem
for the compressible viscous fluid flow

The difference between “result of Enomoto and Shibata” and “our
result” is the following:

domain boundary condition
Enomoto and Shibata | general domain | Dirichlet condition
our result
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Known result and motivation

Enomoto and Shibata (2012, preprint)=

- the generation of analytic semigroup and the maximal regularity by
the R-boundedness of Stokes operator
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Dirichlet boundary condition for the initial boundary value problem
for the compressible viscous fluid flow
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our result slip condition
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Known result and motivation

Enomoto and Shibata (2012, preprint)=

- the generation of analytic semigroup and the maximal regularity by
the R-boundedness of Stokes operator

- alocal in time unique existence theorem in a general domain with
Dirichlet boundary condition for the initial boundary value problem
for the compressible viscous fluid flow

The difference between “result of Enomoto and Shibata” and “our
result” is the following:

domain boundary condition
Enomoto and Shibata | general domain | Dirichlet condition
our result half-space slip condition
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Linearized problem

We consider the linearized problem of (NP) in the half-space with
slip boundary condition.

(Z—'(t)+ydivu:f inRY, t> 0,

0 )
8—?—@Au—,8Vd|vu+pr:g inRY, t> 0,

P
) S, p)vlan = hlan on R’SI, t>0,
uy=0 onRf, t>0,
(p’ U)|t:0 = (0,0)
@ RY = {Xx=(xq,...,xy) € RN | xy > 0},

RY = {X=(X,..., %) € RN | xy = O}.
@ «,B,v:constant. o,y > 0,a+ 5 > 0.
@ v=(0,...,0,-1) : unit outer normal field on Rg
@ YU, p)Vlan hkan : tangential part of Su, p)v,h
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Resolvent problem

The corresponding resolvent problem:

Ao +vydivu=f in RY,
Au—aAu-pBvdivu+yVp =g in RY,
S, p)Vkan = hlan 0N Rg,

uy=0 on RY.

(RP)
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Resolvent problem

The corresponding resolvent problem:

Ao +vydivu=f in RY,
Au—aAu-pBvdivu+yVp =g in RY,
S, p)Vkan = hlan 0N Rg,

uy=0 on RY.

(RP)

In order to show the generation of analytic semigroup, we define a
linear operator A by

Ao, u) = (—ydivu, aAu + BV divu — yVp) for (o, u) € D(A),

D(A) = {(p, u) € Wy*(RY) | (U, p)vkan = O,y = 0 on Ry},

where we set Wi (RY) = {(f,g) | f € W(RY), g € Wi RN}
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Resolvent problem

The corresponding resolvent problem:

Ap +vydivu=f in RY,
Au—aAu-pBvdivu+yVp =g in RY,
S, p)Vkan = hlan 0N Rg,

uy=0 on RY.

(RP)

In order to show the generation of analytic semigroup, we define a
linear operator A by

Ao, u) = (—ydivu, aAu + BV divu — yVp) for (o, u) € D(A),

D(A) = {(p, u) € Wy*(RY) | (U, p)vkan = O,y = 0 on Ry},
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LetO < e <m/2, 19> 0. we set

AS,/lo = 28,/10 N Ke’

2. ,and K, is the set defined by
Tep = {1€C\ {0} |argal < n

2

— 5,141 2 Ao},

\{

2 2
Kg:{/leC|(Re/l+ i +g) +(Im/1)22(a+2ﬁ+s)}.

a+p

7

Miho Murata (Waseda University) sectorial R-boundedness

Y
N

6/12/2012




Aim and key point

@ A generates an analytic semigroup {T(t)}o on W&’O(RE‘).
@ the maximal Ly-Lq regularity for (P).
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Aim and key point

@ A generates an analytic semigroup {T(t)}o on W&’O(RT).
@ the maximal Ly-Lq regularity for (P).

By the method due to Enomoto and Shibata, we see that it is
sufficient to prove R-boundedness of the solution operator to
resolvent problem.
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Aim and key point

@ A generates an analytic semigroup {T(t)}o on W&’O(RT).
@ the maximal Ly-Lq regularity for (P).

By the method due to Enomoto and Shibata, we see that it is
sufficient to prove R-boundedness of the solution operator to
resolvent problem.

The key of the proof is R-boundedness of the solution operator to
(RP). J
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R-boundedness

Definition (R — boundedness)

A family of operators 7~ c £(X,Y) is called R-bounded on £(X,Y), if
there exist constants C > 0 and p € [1, o) such that for each

meN, T e7, fie X( =1,...,m)for all sequences {rj(u)}j":‘1 of
independent, symmetric, {—1, 1}-valued random variables on [0, 1],
there holds the inequality :

1 m 5 L om i
fOHZn(U)Tj f,-HYdus Cfo Her(u)fjHXdu_
=1 j=1

The smallest such C is called R-bound of 7~ on £L(X,Y), which is
denoted by R x.v)(7).

For any Banach spaces X and Y, £(X, Y) denotes the set of all
bounded linear operators from X into Y. £(X) = L(X, X).
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Main theorem

Main theorem
Let0< e < /2, 1<(< . Then, there exist a 1o > 0 depending
on ¢, g, N and an operator R(A) € L(WFO(RN) x Lo(RY)N L WHA(RN))
such that the following two assertions hold :
(i) For any (f,g) € Wy°(RY), he W RN and 1 € A, 4,
(0, u) = R(A)(f, g, Vh,|112h) € WI?(RY) solves the equations (RP)

uniquely.
(il) There exist yo > 0 such that

R pongomtyigmine-2, wiogy (AR 4 € Aco) < vo,

1
R rongomta@e-t, Leipdy (AP VRR(D T4 € Asi}) < %o,
R rona ot q@e-s, e (VPR 14 € Acy)) < 7o,

where we set P,R(1)(f, g, Vh, |/1|%h) = u.
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The generation of analytic semigroup

Since the definition of R-boundedness with m = 1 implies the usual
boundedness, it follows from main theorem (ii) that

|0, Wlhwgogen) + IV Ullygepy + 172Ul ygen)
1
< C(I(f, g)”vv&"’(RQ) +1(141zh, Vh)llL,zn)-

v

Let 1 < g < c0.Then, the operator A generates an analytic
semigroup {T(t)}=0 on Wy °(RD).
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The maximal Ly-Lq regularity

Applying the main theorem (ii) and Weis’ operator valued Fourier
multiplier theorem, we obtain the following theorem.

Let 1 < p,g < o. Then, there exists a constant y; > 0 such that the
following two assertions hold:
(i) For any f € Ly, o(R, W3(RY)), g € Lp,, o(R, Lo(RY)Y) and
1
h € Lpy,o(R, WaRY)Y) N HZ R, Lo(RY)N), the problem (P)
admits a unique solution (p, u) satisfying
p € Wy, o(R, Wy(RY)),
U € Lpy,o(R, WRY)™) N W,

o, La@®)™)
(i) le™ (pr, VP)”L,)(R,W&(RQ‘)) + [le7 (U yu, Af VU,VZU)“LP(R,Lq(RE‘))

1
< Clle”™(f, VE, A7V, 9)ll @ L@y (VY = 72)-
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Functional space

For a Banach space X, we set

Lo, (R, X) = { f(t) € Lpioc(R, X) | €7 (1) € Lp(R, X)},
prlo(R X) = { f(t) € Lp,,(R,X) | f(t) = 0, t<O},
(R, X) = { f(t) € Lp,, (R, X) | €7D} () € Ly(R, X),
i=12...,m},

p71

ngyl,O(R’ X) = pyl(R X) N prl O(R x)
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Laplace transform £ and its inverse £*

L[f1(2) = IOO e 'f(tydt, £3'[g](t) = % Iw e''g(r)dr. (A = y + i)

(%)

We set
A = LA £IC0IE). J

1
i 2
Bessel potential space Hg,,

1 1
HE (R, X) = (1R - X | € "AZ[I) € Ly(R, X), ¥y > 1),
1
2

1
HZ oR.X)={f eHL, (R.X)|f(t) =0, t<O0).
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Outline of proof in RN

The resolvent problem in RN

Ao +vydivu=f inRN,
AU—aAu-pBvdivu+yVp =g inRN.
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Outline of proof in RN

The resolvent problem in RN

Ao +vydivu=f inRN,
AU—aAu-pBvdivu+yVp =g inRN.

Setting p = A71(f — ydivu) and 1, = 8 + ¥?17%, we convert upper
eqguation into the equation:
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Outline of proof in RN

The resolvent problem in RN

Ao +vydivu=f inRN,
AU—aAu-pBvdivu+yVp =g inRN.

Setting p = A71(f — ydivu) and 1, = 8 + ¥?17%, we convert upper
eqguation into the equation:

Au—aAu—-nVdivu=g-yA2 Vi = f in RV ]

The solution formula is

S — EEEI2 gade? .
Zﬂ[ PE ] 0+ Z [(a+n)u+|§|2fk 00-
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Lemma(key of proof of R-boundedness)

Let1 < q < co. Let m(4, 8 € C*(RN \ {0}) be a function such that for
any multi-index 8 € Nij (No = N U {0}) there exist constants C, d;
and d, satisfying the following estimates:

(i) IDM(A, &) < Cpono (117 + €)™,
(ii) Ay (1% + 1£1)% < 11617 + PA)] < (|12 + [£])2

for any (4,€’) € A, x (RN1\ {O)).
Then, let K(1) be an operator defined by:

mem:ﬁﬂmmmmm,k@gzlﬁﬁl

€17 + p(A)

{K(A)IA € A, ) is R-bounded on L(Ly(RY)).
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Lemma(key of proof of R-boundedness)

Let1 < q < co. Let m(4, 8 € C*(RN \ {0}) be a function such that for
any multi-index 8 € Nij (No = N U {0}) there exist constants C, d;
and d, satisfying the following estimates:

(i) IDM(A, &) < Cpono (117 + €)™,
(ii) Ay (1% + 1£1)% < 11617 + PA)] < (|12 + [£])2

for any (4,€’) € A, x (RN1\ {O)).
Then, let K(1) be an operator defined by:

_ -1 £ _ m(/l’ é)
[KOFI(X) = F k(4 HF (%), Kk(2,€) = EZ+ 00D
{K(A)IA € A, ) is R-bounded on L(Ly(RY)).
E&lE?

fic|).

o 1|9 §6d€17%
.__Z 1[ Jk_l/lj klg|2 ] )_Z

(@ +m) A+ |17
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Outline of proof in RN

The resolvent problem in RY :

Ap+vydivu=f in RN,
AU—aAu-pVvdivu+yVp=g  inRY,
S, p)vlan = hlan 0N RB‘,

uy=0 on Ry,
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Outline of proof in RN

The resolvent problem in RY :

Ap+vydivu=f in RN,
AU—aAu-pVvdivu+yVp=g  inRY,
S, p)vltan = Nkan 0N RB‘,

uy=0 onR},

AUu—aAu-n,Vdivu=f in RY,
— CL’(DNUj+DjUN):—hj OnRy,(j:].,...,N—l)
uy=0 onR{,

where 1, = 8+ Y%A
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Let F = (f5,...,fq_. f3) be extension of f, where

fje(X) — { fj () (xn > 0), fNO(X) _ { fn(X) (xn > 0),

fi(X', —xn) (Xn < 0). (X, —xn) (v < 0).
By the result in RN, there exists U satisfying the following equations:

AU —aAU - ,VdivU =F inRY, Uy=0 onR{, J
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Let F = (f5,...,fq_. f3) be extension of f, where

fje(X) — { fj () (xn > 0), fNO(X) _ { fn(X) (xn > 0),

fi(X', —xn) (Xn < 0). (X, —xn) (v < 0).
By the result in RN, there exists U satisfying the following equations:

AU —aAU - ,VdivU =F inRY, Uy=0 onR{, J

We set u = U + v, then v satisfies the equations:

AV—aAv-n,Vdivv=0 inRY,
a(DnVy +Djw) = -l onRY (=1,...,N-1),
w=0 onR{,

where |; = hy + a(DyU; + D;Uy).
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(v — ¥ oaligm A , ,
vi(x) = kzz;j; Fe Kl klk](f,YN)](X)dYN
SEE &m0 1€
N R R NA ER I
=1 B
N-1 o0
> [ e S e )| ()
k=1
1
e 2 [ e s e | oo
TR

where
A= \/I§’|2+(a+m) 1A, B= VIER+a A, (¢ = (... 6n)

M) = %, = aa + n)AA+ B).
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Lemma(key of proof of R-boundedness)

Let0<e<m/2, 1 <g<ooand g > 0. Letk; be functions such that
for any multi-index 8’ € Nj"* there exist constants C; such that

IDe ka4, €)] < Ca(112 + 1), DG koA, €)] < Cole 17,
DY ka(A,£)] < Ca(1A12 + € Dig 1"

for any (4,€’) € A, x (R™1\ {0}). Let Ki(1) (i = 1,2,3) be operator
defined by

[Ka()h](x) = fo ) For ka4, £)1A17€ B WRE, y)](X)dyw,
[K2()h](x) = fo Fo o, €)1 e B MR, y)](X )dyw,

[Ks(D)h](X) = ‘[0‘” Fo [ka(d, €)IE IM (% + )N, )1 ) dy.

Then, Ki(4)is R-bounded on £L(L4(RY)).
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Main theorem
Let0< e < /2, 1< (< . Then, there exist a 1o > 0 depending
on &, g, N and an operator R() € L(Wa°(RY) x Lo(RN)N'~% WE2(RY))
such that the following two assertions hold :
(i) For any (f,g) € Wy°(RY), he WARY)NL and A € A,
(0, u) = R(A)(f, g, Vh,|412h) € WH?(RY) solves the equations (RP)

uniquely.
(il) There exist yo > 0 such that

R pongomtyigmine-2, waogy (AR 4 € Aco}) < vo,

1
R cwd oo, Lyenney (A2 VPR A € Agro}) < vo,
R o1, L) (VPR T4 € Aco) < v,
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@ next step:case of general domain

We can prove the same assertion as half space case by
means of a perturbation method.
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Theorem (operator-valued Fourier multiplier theorem)

Let X and Y be two UMD Banach spacesand 1 < p < c. Let M be
a function in CY(R \ {0}, £(X, Y)) such that

RL(xy)(M(T)lTER\ )—K0<OO
Rexny({TM'(7) | T € R\ {0}}) = k1 < 0.

If we define the operator Ty : F 1D(R, X) — S’'(R,Y) by the
formula:
Tug = F IMF[4]l, (FI4] € DR, X)).
Then, the operator Ty, is extended to a bounded linear operator
from Lp(R, X) into Ly(R, Y). Moreover, denoting this extension by
Twm, we have
MMl £p@ex) Le@.Y) < Clko + k1)

for some constant C > 0 depending on p, X and Y.
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