On the L_p - L_q maximal regularity of the Neumann-Dirichlet problem for the Stokes equations in an infinite layer

Hirokazu Saito

Waseda University

June 11th, 2012
The 5th Japanese-German International Workshop on Mathematical Fluid Dynamics

§0 Contents

- Problem
 - Stokes equations in an infinite layer
- 2 Known results
- Main result
 - L_p - L_q maximal regularity for Stokes equations
- Outline of proof
 - Resolvent Stokes equations
 - Solution formula of Stokes equations
 - Estimates of the solution to Stokes equations

§1 Problem

$$(SP) \begin{cases} \partial_t u - \mu \Delta u + \nabla \theta = f, \ \nabla \cdot u = 0 & \text{in} \quad \Omega \times (0, \infty), \\ S(u, \theta) \mathbf{n} = g & \text{on} \quad \Gamma_h \times (0, \infty), \\ u = 0 & \text{on} \quad \Gamma_0 \times (0, \infty), \\ u|_{t=0} = 0 & \text{in} \quad \Omega. \end{cases}$$

 $\mu > 0$: a coefficient of viscosity, f, g: given functions. $u = (u_1, \dots, u_N)$: velocity, θ : pressure: unknown. $S(u, \theta) = -\theta I + \mu[\{\nabla u + (\nabla u)^T\}]$: stress tensor, $I: N \times N$ identity matrix. $\Omega \subset \mathbf{R}^N$ $(N \ge 2)$:

§1 Problem

$$(\text{NS}) \begin{cases} \partial_t u + u \cdot \nabla u - \mu \Delta u + \nabla \theta = 0, \quad \nabla \cdot u = 0 & \text{in} \quad \Omega(t) \quad t > 0, \\ \partial_t \eta + u' \cdot \nabla' \eta - u_N = 0 & \text{on} \quad \Gamma(t) \quad t > 0, \\ S(u, \theta) \mathbf{n} + (c_g \eta - c_\sigma H) \mathbf{n} = 0 & \text{on} \quad \Gamma(t) \quad t > 0, \\ u = 0 & \text{on} \quad \Gamma_0, \\ \eta_0 = \eta_0(x'), \quad u_0 = u_0(x). \end{cases}$$

 $\eta = \eta(x',t), \ x' \in \mathbf{R}^{N-1}$: the height from the bottom to sea level. $c_g > 0$: the gravity constant, $c_\sigma > 0$: a surface tension constant, H: mean curvature of $\Gamma(t)$.

§1 Problem

$$(\text{NS}) \begin{cases} \partial_t u + u \cdot \nabla u - \mu \Delta u + \nabla \theta = 0, \quad \nabla \cdot u = 0 & \text{in} \quad \Omega(t) \quad t > 0, \\ \partial_t \eta + u' \cdot \nabla' \eta - u_N = 0 & \text{on} \quad \Gamma(t) \quad t > 0, \\ S(u, \theta) \mathbf{n} + (c_g \eta - c_\sigma H) \mathbf{n} = 0 & \text{on} \quad \Gamma(t) \quad t > 0, \\ u = 0 & \text{on} \quad \Gamma_0, \\ \eta_0 = \eta_0(x'), \quad u_0 = u_0(x). \end{cases}$$

 $\eta = \eta(x',t), \ x' \in \mathbf{R}^{N-1}$: the height from the bottom to sea level. $c_g > 0$: the gravity constant, $c_\sigma > 0$: a surface tension constant, H: mean curvature of $\Gamma(t)$.

Results in L_2 - L_2 framework:

- Beale (1980) \Rightarrow The existence of a unique local time solution in (NS) with $c_{\sigma} = 0$.
- Beale (1984) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} \neq 0$.
- Beale and Nishida (1985) \Rightarrow Decay properties for global time solution in (NS) with $c_{\sigma} \neq 0$.
- Hataya (2009) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} = 0$.

- Abe $(2004) \Rightarrow$ Resolvent problem corresponding to (SP).
- Denk, Geissert, Hieber, Saal and Sawada (2011) ⇒ The spin coating process
- \Rightarrow The goal of this talk is to show the L_p - L_q maximal regularity for (SP) by using resolvent analysis.

Results in L_2 - L_2 framework:

- Beale (1980) \Rightarrow The existence of a unique local time solution in (NS) with $c_{\sigma} = 0$.
- Beale (1984) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} \neq 0$.
- Beale and Nishida (1985) \Rightarrow Decay properties for global time solution in (NS) with $c_{\sigma} \neq 0$.
- Hataya (2009) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} = 0$.

- Abe $(2004) \Rightarrow$ Resolvent problem corresponding to (SP).
- Denk, Geissert, Hieber, Saal and Sawada (2011) ⇒ The spin coating process
- \Rightarrow The goal of this talk is to show the L_p - L_q maximal regularity for (SP) by using resolvent analysis.

Results in L_2 - L_2 framework:

- Beale (1980) \Rightarrow The existence of a unique local time solution in (NS) with $c_{\sigma} = 0$.
- Beale (1984) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} \neq 0$.
- Beale and Nishida (1985) \Rightarrow Decay properties for global time solution in (NS) with $c_{\sigma} \neq 0$.
- Hataya (2009) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} = 0$.

- Abe $(2004) \Rightarrow$ Resolvent problem corresponding to (SP).
- Denk, Geissert, Hieber, Saal and Sawada (2011) ⇒ The spin coating process
- \Rightarrow The goal of this talk is to show the L_p - L_q maximal regularity for (SP) by using resolvent analysis.

Results in L_2 - L_2 framework:

- Beale (1980) \Rightarrow The existence of a unique local time solution in (NS) with $c_{\sigma} = 0$.
- Beale (1984) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} \neq 0$.
- Beale and Nishida (1985) \Rightarrow Decay properties for global time solution in (NS) with $c_{\sigma} \neq 0$.
- Hataya (2009) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} = 0$.

- Abe (2004) \Rightarrow Resolvent problem corresponding to (SP).
- Denk, Geissert, Hieber, Saal and Sawada (2011) ⇒ The spin coating process
- \Rightarrow The goal of this talk is to show the L_p - L_q maximal regularity for (SP) by using resolvent analysis.

Results in L_2 - L_2 framework:

- Beale (1980) \Rightarrow The existence of a unique local time solution in (NS) with $c_{\sigma} = 0$.
- Beale (1984) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} \neq 0$.
- Beale and Nishida (1985) \Rightarrow Decay properties for global time solution in (NS) with $c_{\sigma} \neq 0$.
- Hataya (2009) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} = 0$.

- Abe (2004) ⇒ Resolvent problem corresponding to (SP).
- Denk, Geissert, Hieber, Saal and Sawada (2011) ⇒ The spin coating process
- \Rightarrow The goal of this talk is to show the L_p - L_q maximal regularity for (SP) by using resolvent analysis.

Results in L_2 - L_2 framework:

- Beale (1980) \Rightarrow The existence of a unique local time solution in (NS) with $c_{\sigma} = 0$.
- Beale (1984) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} \neq 0$.
- Beale and Nishida (1985) \Rightarrow Decay properties for global time solution in (NS) with $c_{\sigma} \neq 0$.
- Hataya (2009) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} = 0$.

- Abe (2004) ⇒ Resolvent problem corresponding to (SP).
- Denk, Geissert, Hieber, Saal and Sawada (2011) ⇒ The spin coating process
- \Rightarrow The goal of this talk is to show the L_p - L_q maximal regularity for (SP) by using resolvent analysis.

Results in L_2 - L_2 framework:

- Beale (1980) \Rightarrow The existence of a unique local time solution in (NS) with $c_{\sigma} = 0$.
- Beale (1984) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} \neq 0$.
- Beale and Nishida (1985) \Rightarrow Decay properties for global time solution in (NS) with $c_{\sigma} \neq 0$.
- Hataya (2009) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} = 0$.

- Abe (2004) ⇒ Resolvent problem corresponding to (SP).
- Denk, Geissert, Hieber, Saal and Sawada (2011) ⇒ The spin coating process
- \Rightarrow The goal of this talk is to show the L_p - L_q maximal regularity for (SP) by using resolvent analysis.

Results in L_2 - L_2 framework:

- Beale (1980) \Rightarrow The existence of a unique local time solution in (NS) with $c_{\sigma} = 0$.
- Beale (1984) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} \neq 0$.
- Beale and Nishida (1985) \Rightarrow Decay properties for global time solution in (NS) with $c_{\sigma} \neq 0$.
- Hataya (2009) \Rightarrow The existence of a unique global time solution in (NS) with $c_{\sigma} = 0$.

- Abe (2004) ⇒ Resolvent problem corresponding to (SP).
- Denk, Geissert, Hieber, Saal and Sawada (2011) ⇒ The spin coating process
- \Rightarrow The goal of this talk is to show the L_p - L_q maximal regularity for (SP) by using resolvent analysis.

Theorem (L_p - L_q maximal regularity)

Let $1 < p, q < \infty$ and $\gamma_0 > 0$. Then, for any $f \in L_{p,\gamma_0,0}(\mathbf{R}, L_q(\Omega))^N$, $g \in L_{p,\gamma_0,0}(\mathbf{R}, W_q^1(\Omega))^N \cap H_{p,\gamma_0,0}^{1/2}(\mathbf{R}, L_q(\Omega))^N$ (SP) admits a unique solution (u,θ) such that

$$u \in L_{p,\gamma_0,0}(\mathbf{R}, W_q^2(\Omega))^N \cap W_{p,\gamma_0,0}^1(\mathbf{R}, L_q(\Omega))^N,$$

$$\theta \in L_{p,\gamma_0,0}(\mathbf{R}, W_q^1(\Omega))$$

satisfying with the estimate:

$$||e^{-\gamma t}(u_t, \gamma u, \Lambda_{\gamma}^{\frac{1}{2}} \nabla u, \nabla^2 u, \theta, \nabla \theta)||_{L_p(\mathbf{R}, L_q(\Omega))} \leq C||e^{-\gamma t}(f, \Lambda_{\gamma}^{\frac{1}{2}} g, \nabla g)||_{L_p(\mathbf{R}, L_q(\Omega))}$$

for any $\gamma \geq \gamma_0$ with some constant C independent of γ .

Remark

$$L_{p,\gamma_0,0}(\mathbf{R},X) = \left\{ f : \mathbf{R} \to X \mid ||e^{-\gamma_0 t} f(t)||_X \in L_p(\mathbf{R}), f(t) = 0 \ (t < 0) \right\}.$$

Theorem (L_p - L_q maximal regularity)

Let $1 < p, q < \infty$ and $\gamma_0 > 0$. Then, for any $f \in L_{p,\gamma_0,0}(\mathbf{R}, L_q(\Omega))^N$, $g \in L_{p,\gamma_0,0}(\mathbf{R}, W_q^1(\Omega))^N \cap H_{p,\gamma_0,0}^{1/2}(\mathbf{R}, L_q(\Omega))^N$ (SP) admits a unique solution (u,θ) such that

$$u \in L_{p,\gamma_0,0}(\mathbf{R}, W_q^2(\Omega))^N \cap W_{p,\gamma_0,0}^1(\mathbf{R}, L_q(\Omega))^N,$$

$$\theta \in L_{p,\gamma_0,0}(\mathbf{R}, W_q^1(\Omega))$$

satisfying with the estimate:

$$||e^{-\gamma t}(u_t, \gamma u, \Lambda_{\gamma}^{\frac{1}{2}} \nabla u, \nabla^2 u, \theta, \nabla \theta)||_{L_p(\mathbf{R}, L_q(\Omega))} \leq C||e^{-\gamma t}(f, \Lambda_{\gamma}^{\frac{1}{2}} g, \nabla g)||_{L_p(\mathbf{R}, L_q(\Omega))}$$

for any $\gamma \geq \gamma_0$ with some constant C independent of γ .

Remark

$$L_{p,\gamma_0,0}(\mathbf{R},X) = \left\{ f : \mathbf{R} \to X \mid ||e^{-\gamma_0 t} f(t)||_X \in L_p(\mathbf{R}), f(t) = 0 \ (t < 0) \right\}.$$

Laplace transform $\mathcal L$ and its inverse $\mathcal L_\lambda^{-1}$

Let u(t) and $v(\tau)$ be functions defined on **R**. Then, for $\lambda = \gamma + i\tau$ $(\gamma, \tau \in \mathbf{R})$ Laplace transform and its inverse are defined by

$$\mathcal{L}[u(t)](\lambda) = \int_{-\infty}^{\infty} e^{-\lambda t} u(t) dt, \quad \mathcal{L}_{\lambda}^{-1}[v(\tau)](t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\lambda t} v(\tau) d\tau.$$

We set:

$$(\Lambda_{\gamma}^{\frac{1}{2}}f)(t) = \mathcal{L}_{\lambda}^{-1}[|\lambda|^{\frac{1}{2}}\mathcal{L}[f](\lambda)](t).$$

Bessel potential space $H_{p,\gamma_0,0}^{1/2}(\mathbf{R},X)$

Let $1 and <math>\gamma_0 > 0$. We define the following function space:

$$H_{p,\gamma_0,0}^{1/2}(\mathbf{R},X) = \left\{ f \in L_{p,\gamma_0,0}(\mathbf{R},X) \mid \|e^{-\gamma t} (\Lambda_{\gamma}^{1/2} f)(t)\|_X \in L_p(\mathbf{R}) \ (\gamma \ge \gamma_0) \right\}.$$

Laplace transform $\mathcal L$ and its inverse $\mathcal L_\lambda^{-1}$

Let u(t) and $v(\tau)$ be functions defined on **R**. Then, for $\lambda = \gamma + i\tau$ $(\gamma, \tau \in \mathbf{R})$ Laplace transform and its inverse are defined by

$$\mathcal{L}[u(t)](\lambda) = \int_{-\infty}^{\infty} e^{-\lambda t} u(t) dt, \quad \mathcal{L}_{\lambda}^{-1}[v(\tau)](t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\lambda t} v(\tau) d\tau.$$

We set:

$$(\Lambda_{\gamma}^{\frac{1}{2}}f)(t)=\mathcal{L}_{\lambda}^{-1}[|\lambda|^{\frac{1}{2}}\mathcal{L}[f](\lambda)](t).$$

Bessel potential space $H_{p,\gamma_0,0}^{1/2}(\mathbf{R},X)$

Let $1 and <math>\gamma_0 > 0$. We define the following function space: $H_{p,\gamma_0,0}^{1/2}(\mathbf{R},X) = \{f \in L_{p,\gamma_0,0}(\mathbf{R},X) \mid ||e^{-\gamma t}(\Lambda_{\gamma}^{1/2}f)(t)||_X \in L_p(\mathbf{R}) \ (\gamma \geq \gamma_0) \}.$

Laplace transform $\mathcal L$ and its inverse $\mathcal L_\lambda^{-1}$

Let u(t) and $v(\tau)$ be functions defined on **R**. Then, for $\lambda = \gamma + i\tau$ $(\gamma, \tau \in \mathbf{R})$ Laplace transform and its inverse are defined by

$$\mathcal{L}[u(t)](\lambda) = \int_{-\infty}^{\infty} e^{-\lambda t} u(t) dt, \quad \mathcal{L}_{\lambda}^{-1}[v(\tau)](t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\lambda t} v(\tau) d\tau.$$

We set:

$$(\Lambda_{\gamma}^{\frac{1}{2}}f)(t) = \mathcal{L}_{\lambda}^{-1}[|\lambda|^{\frac{1}{2}}\mathcal{L}[f](\lambda)](t).$$

Bessel potential space $H^{1/2}_{p,\gamma_0,0}(\mathbf{R},X)$

Let $1 and <math>\gamma_0 > 0$. We define the following function space: $H^{1/2}(\mathbb{R} | X) = \{f \in I_{m+n} \circ (\mathbb{R} | X) \mid ||e^{-\gamma t}(\Lambda^{1/2}f)(t)||_{Y} \in I_{m}(\mathbb{R}) \ (\gamma > \gamma_0)\}$

Laplace transform $\mathcal L$ and its inverse $\mathcal L_\lambda^{-1}$

Let u(t) and $v(\tau)$ be functions defined on **R**. Then, for $\lambda = \gamma + i\tau$ $(\gamma, \tau \in \mathbf{R})$ Laplace transform and its inverse are defined by

$$\mathcal{L}[u(t)](\lambda) = \int_{-\infty}^{\infty} e^{-\lambda t} u(t) dt, \quad \mathcal{L}_{\lambda}^{-1}[v(\tau)](t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\lambda t} v(\tau) d\tau.$$

We set:

$$(\Lambda_{\gamma}^{\frac{1}{2}}f)(t) = \mathcal{L}_{\lambda}^{-1}[|\lambda|^{\frac{1}{2}}\mathcal{L}[f](\lambda)](t).$$

Bessel potential space $H^{1/2}_{p,\gamma_0,0}(\mathbf{R},X)$

Let $1 and <math>\gamma_0 > 0$. We define the following function space:

$$H_{p,\gamma_0,0}^{1/2}(\mathbf{R},X) = \Big\{ f \in L_{p,\gamma_0,0}(\mathbf{R},X) \mid \|e^{-\gamma t}(\Lambda_{\gamma}^{1/2}f)(t)\|_X \in L_p(\mathbf{R}) \ (\gamma \geq \gamma_0) \Big\}.$$

First, we consider the resolvent Stokes equations:

(RP)
$$\begin{cases} \lambda v - \mu \Delta v + \nabla p = f, & \nabla \cdot v = 0 & \text{in} & \Omega, \\ S(v, p) \mathbf{n} = g & \text{on} & \Gamma_h, \\ u = 0 & \text{on} & \Gamma_0, \end{cases}$$

where μ and S(v, p) are same symbols of (SP).

First, we consider the resolvent Stokes equations:

(RP)
$$\begin{cases} \lambda v - \mu \Delta v + \nabla p = f, & \nabla \cdot v = 0 \text{ in } \Omega, \\ S(v, p) \mathbf{n} = g & \text{on } \Gamma_h, \\ u = 0 & \text{on } \Gamma_0, \end{cases}$$

where μ and S(v, p) are same symbols of (SP).

Lemma (cf. T.Abe (2004))

Let $1 < q < \infty$, $0 < \varepsilon < \pi/2$ and $\gamma_0 > 0$. For any $\lambda \in \Sigma_{\varepsilon, \gamma_0}$, there exist the operators $\mathcal{S}(\lambda)$ in $\mathcal{B}(L_q(\Omega)^{2N+N^2}, L_q(\Omega)^N)$ and $\mathcal{T}(\lambda)$ in $\mathcal{B}(L_q(\Omega)^{2N+N^2}, L_q(\Omega))$ such that

$$v = S(\lambda)(f, |\lambda|^{\frac{1}{2}}g, \nabla g), \quad p = \mathcal{T}(\lambda)(f, |\lambda|^{\frac{1}{2}}g, \nabla g),$$

solve (RP) for any $f \in L_q(\Omega)^N$ and $g \in W^1_q(\Omega)^N$.

We can obtain the solution formula for (SP) by using $\mathcal{S}(\lambda)$ and $\mathcal{T}(\lambda)$. We set

$$u(t) = \mathcal{L}_{\lambda}^{-1}[\mathcal{S}(\lambda)\mathcal{L}(f,\Lambda_{\gamma}^{\frac{1}{2}}g,\nabla g)](t), \ \theta(t) = \mathcal{L}_{\lambda}^{-1}[\mathcal{T}(\lambda)\mathcal{L}(f,\Lambda_{\gamma}^{\frac{1}{2}}g,\nabla g)](t).$$

Then, (u, θ) solve (SP). Next, we estimate the solution (u, θ) to complete our proof.

We give some important lemmas and ideas to estimate the solution.

We give some important lemmas and ideas to estimate the solution.

Key lemma (To estimate the solution of (SP))

Let $1 < p, q < \infty$, $0 < \varepsilon < \pi/2$ and $\gamma_0 > 0$. Let Φ_{λ} be a C^1 function of $\tau \in \mathbf{R} \setminus \{0\}$, where $\lambda = \gamma + i\tau$, with its value in $\mathcal{B}(L_q(\Omega))$. Assume that the sets $\{\Phi_{\lambda} \mid \lambda \in \Sigma_{\varepsilon,\gamma_0}\}$ and $\{\tau \partial_{\tau} \Phi_{\lambda} \mid \lambda \in \Sigma_{\varepsilon,\gamma_0}\}$ are \mathcal{R} -bounded families in $\mathcal{B}(L_q(\Omega))$. For $f \in C_0^{\infty}(\mathbf{R}_+, L_q(\Omega))$, we define the following operator:

$$(\Psi f)(t) = \mathcal{L}_{\lambda}^{-1}[\Phi_{\lambda}\mathcal{L}[f](\lambda)](t).$$

Then, there exists a constant $C_{p,q}$ depending on p, q such that

$$||e^{-\gamma t}\Psi f||_{L_p(\mathbf{R},L_q(\Omega))} \le C_{p,q}M||e^{-\gamma t}f||_{L_p(\mathbf{R},L_q(\Omega))} \ (f \in L_p(\mathbf{R}_+,L_q(\Omega)))$$

We give some important lemmas and ideas to estimate the solution.

Key lemma (To estimate the solution of (SP))

Let $1 < p, q < \infty, 0 < \varepsilon < \pi/2$ and $\gamma_0 > 0$. Let Φ_{λ} be a C^1 function of $\tau \in \mathbf{R} \setminus \{0\}$, where $\lambda = \gamma + i\tau$, with its value in $\mathcal{B}(L_q(\Omega))$. Assume that the sets $\{\Phi_{\lambda} \mid \lambda \in \Sigma_{\varepsilon,\gamma_0}\}$ and $\{\tau\partial_{\tau}\Phi_{\lambda} \mid \lambda \in \Sigma_{\varepsilon,\gamma_0}\}$ are \mathcal{R} -bounded families in $\mathcal{B}(L_q(\Omega))$. For $f \in C_0^{\infty}(\mathbf{R}_+, L_q(\Omega))$, we define the following operator:

$$(\Psi f)(t) = \mathcal{L}_{\lambda}^{-1}[\Phi_{\lambda}\mathcal{L}[f](\lambda)](t).$$

Then, there exists a constant $C_{p,q}$ depending on p, q such that

$$||e^{-\gamma t}\Psi f||_{L_p(\mathbf{R},L_q(\Omega))} \le C_{p,q}M||e^{-\gamma t}f||_{L_p(\mathbf{R},L_q(\Omega))} \quad (f \in L_p(\mathbf{R}_+,L_q(\Omega)))$$

We give some important lemmas and ideas to estimate the solution.

Key lemma (To estimate the solution of (SP))

Let $1 < p, q < \infty, 0 < \varepsilon < \pi/2$ and $\gamma_0 > 0$. Let Φ_{λ} be a C^1 function of $\tau \in \mathbf{R} \setminus \{0\}$, where $\lambda = \gamma + i\tau$, with its value in $\mathcal{B}(L_q(\Omega))$. Assume that the sets $\{\Phi_{\lambda} \mid \lambda \in \Sigma_{\varepsilon,\gamma_0}\}$ and $\{\tau\partial_{\tau}\Phi_{\lambda} \mid \lambda \in \Sigma_{\varepsilon,\gamma_0}\}$ are \mathcal{R} -bounded families in $\mathcal{B}(L_q(\Omega))$. For $f \in C_0^{\infty}(\mathbf{R}_+, L_q(\Omega))$, we define the following operator:

$$(\Psi f)(t) = \mathcal{L}_{\lambda}^{-1}[\Phi_{\lambda}\mathcal{L}[f](\lambda)](t).$$

Then, there exists a constant $C_{p,q}$ depending on p, q such that

$$||e^{-\gamma t}\Psi f||_{L_p(\mathbf{R},L_q(\Omega))} \le C_{p,q}M||e^{-\gamma t}f||_{L_p(\mathbf{R},L_q(\Omega))} \quad (f \in L_p(\mathbf{R}_+,L_q(\Omega)))$$

We give some important lemmas and ideas to estimate the solution.

Key lemma (To estimate the solution of (SP))

Let $1 < p, q < \infty, 0 < \varepsilon < \pi/2$ and $\gamma_0 > 0$. Let Φ_{λ} be a C^1 function of $\tau \in \mathbf{R} \setminus \{0\}$, where $\lambda = \gamma + i\tau$, with its value in $\mathcal{B}(L_q(\Omega))$. Assume that the sets $\{\Phi_{\lambda} \mid \lambda \in \Sigma_{\varepsilon,\gamma_0}\}$ and $\{\tau\partial_{\tau}\Phi_{\lambda} \mid \lambda \in \Sigma_{\varepsilon,\gamma_0}\}$ are \mathcal{R} -bounded families in $\mathcal{B}(L_q(\Omega))$. For $f \in C_0^{\infty}(\mathbf{R}_+, L_q(\Omega))$, we define the following operator:

$$(\Psi f)(t) = \mathcal{L}_{\lambda}^{-1}[\Phi_{\lambda}\mathcal{L}[f](\lambda)](t).$$

Then, there exists a constant $C_{p,q}$ depending on p, q such that

$$||e^{-\gamma t}\Psi f||_{L_p(\mathbf{R},L_q(\Omega))} \le C_{p,q}M||e^{-\gamma t}f||_{L_p(\mathbf{R},L_q(\Omega))} \ (f \in L_p(\mathbf{R}_+,L_q(\Omega)))$$

Definition (\mathcal{R} -boundedness)

Let X and Y be Banach spaces, and $\|\cdot\|_X$ and $\|\cdot\|_Y$ denote their norms, respectively. A family of operators $\mathcal{T}\subset\mathcal{B}(X,Y)$ is called \mathcal{R} -bounded, if there exist a constant C>0 and $p\in[1,\infty)$ such that for $m\in\mathbb{N}$, $\{T_j\}_{j=1}^m\subset\mathcal{T}$, $\{x_j\}_{j=1}^m\subset X$ and for all sequences $\{r_j(u)\}_{j=1}^m$ of independent symmetric, $\{1,-1\}$ -valued random variables on [0,1] there holds the inequality:

$$\Big\{\int_0^1 \Big\| \sum_{j=1}^m r_j(u) T_j(x_j) \Big\|_Y^p du \Big\}^{\frac{1}{p}} \le C \Big\{ \int_0^1 \Big\| \sum_{j=1}^m r_j(u) x_j \Big\|_X^p du \Big\}^{\frac{1}{p}}.$$

The smallest C is called \mathcal{R} -bound of \mathcal{T} .

We give a sufficient condition to prove R-boundedness.

Lemma (Sufficient condition of R-boundedness)

Let $1 \leq q < \infty, 0 < \varepsilon < \pi/2$ and $\gamma_0 > 0$. Consider a family $\mathcal{T} = \{T_\lambda \mid \lambda \in \Sigma_{\varepsilon,\gamma_0}\}$, which belongs to $\mathcal{B}(L_q(\Omega))$, of kernel operators:

$$(T_{\lambda}f)(x) = \int_{\Omega} k_{\lambda}(x, y)f(y)dy \quad (x \in \Omega, \lambda \in \Sigma_{\varepsilon, \gamma_0}),$$

which are dominated by a kernel k_0 , *i.e.*,

$$|k_{\lambda}(x,y)| \le k_0(x,y)$$
 (a.e. $x,y \in \Omega, \lambda \in \Sigma_{\varepsilon,\gamma_0}$).

We set

$$(T_0 f)(x) = \int_{\Omega} k_0(x, y) f(y) dy \quad (x \in \Omega).$$

If T_0 is bounded in $L_q(\Omega)$, then \mathcal{T} is \mathcal{R} -bounded in $\mathcal{B}(L_q(\Omega))$ whose \mathcal{R} -bound is bounded by $||T_0||$.

Lemma

Let $1 < q < \infty, 0 < \varepsilon < \pi/2$ and $\gamma_0 > 0$. Let $S(\lambda)$ and $T(\lambda)$ be the solution operators defined for (RP). Then, for any d = 0, 1 and i, k = 1, ..., N $\{(\tau \partial_{\tau})^d (\lambda S(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_0} \},$ $\{(\tau \partial_{\tau})^d (\gamma S(\lambda)) \mid \lambda \in \Sigma_{\varepsilon \gamma_0} \},$ $\{(\tau \partial_{\tau})^d (|\lambda|^{\frac{1}{2}} D_i \mathcal{S}(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_0} \}, \{(\tau \partial_{\tau})^d (D_i D_k \mathcal{S}(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_0} \}$ are \mathcal{R} -bounded in $\mathcal{B}(L_a(\Omega)^{2N+N^2}, L_a(\Omega)^N)$ and $\{(\tau \partial_{\tau})^d \mathcal{T}(\lambda) \mid \lambda \in \Sigma_{\varepsilon, \gamma_0}\}, \{(\tau \partial_{\tau})^d (D_k \mathcal{T}(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_0}\}$ are \mathcal{R} -bounded in $\mathcal{B}(L_a(\Omega)^{2N+N^2}, L_a(\Omega))$.

Example

$$\begin{split} u &= \mathcal{L}_{\lambda}^{-1}[\mathcal{S}(\lambda)\mathcal{L}(f,\Lambda_{\gamma}^{\frac{1}{2}}g,\nabla g)] \Rightarrow \\ \partial_{t}u &= \mathcal{L}_{\lambda}^{-1}[\lambda\mathcal{S}(\lambda)\mathcal{L}(f,\Lambda_{\gamma}^{\frac{1}{2}}g,\nabla g)], \, \nabla^{2}u = \mathcal{L}_{\lambda}^{-1}[\nabla^{2}\mathcal{S}(\lambda)\mathcal{L}(f,\Lambda_{\gamma}^{\frac{1}{2}}g,\nabla g)]. \end{split}$$

Lemma

Let $1 < q < \infty, 0 < \varepsilon < \pi/2$ and $\gamma_0 > 0$. Let $S(\lambda)$ and $T(\lambda)$ be the solution operators defined for (RP). Then, for any d = 0, 1 and $j, k = 1, \ldots, N$ $\{(\tau \partial_{\tau})^{d}(\lambda S(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_0}\}, \qquad \{(\tau \partial_{\tau})^{d}(\gamma S(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_0}\},$

$$\{(\tau\partial_{\tau})^{d}(|\lambda|^{\frac{1}{2}}D_{j}\mathcal{S}(\lambda)) \mid \lambda \in \Sigma_{\varepsilon,\gamma_{0}}\}, \quad \{(\tau\partial_{\tau})^{d}(D_{j}D_{k}\mathcal{S}(\lambda)) \mid \lambda \in \Sigma_{\varepsilon,\gamma_{0}}\},$$

are $\mathcal{R}\text{-bounded}$ in $\mathcal{B}(L_q(\Omega)^{2N+N^2},L_q(\Omega)^N)$ and

$$\{(\tau \partial_{\tau})^{d} \mathcal{T}(\lambda) \mid \lambda \in \Sigma_{\varepsilon, \gamma_{0}}\}, \quad \{(\tau \partial_{\tau})^{d} (D_{k} \mathcal{T}(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_{0}}\}$$

are \mathcal{R} -bounded in $\mathcal{B}(L_q(\Omega)^{2N+N^2}, L_q(\Omega))$.

Example

$$u=\mathcal{L}_{\lambda}^{-1}[\mathcal{S}(\lambda)\mathcal{L}(f,\Lambda_{\gamma}^{\frac{1}{2}}g,\nabla g)]\Rightarrow$$

 $\partial_t u = \mathcal{L}_{\lambda}^{-1}[\lambda \mathcal{S}(\lambda) \mathcal{L}(f, \Lambda_{\gamma}^{\frac{1}{2}}g, \nabla g)], \nabla^2 u = \mathcal{L}_{\lambda}^{-1}[\nabla^2 \mathcal{S}(\lambda) \mathcal{L}(f, \Lambda_{\gamma}^{\frac{1}{2}}g, \nabla g)].$

Lemma

Let $1 < q < \infty, 0 < \varepsilon < \pi/2$ and $\gamma_0 > 0$. Let $S(\lambda)$ and $T(\lambda)$ be the solution operators defined for (RP). Then, for any d = 0, 1 and $j, k = 1, \ldots, N$ $\{(\tau \partial_{\tau})^{d}(\lambda S(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_0}\}, \qquad \{(\tau \partial_{\tau})^{d}(\gamma S(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_0}\},$

$$\{(\tau \partial_{\tau})^{d}(|\lambda|^{\frac{1}{2}}D_{j}\mathcal{S}(\lambda)) \mid \lambda \in \Sigma_{\varepsilon,\gamma_{0}}\}, \quad \{(\tau \partial_{\tau})^{d}(D_{j}D_{k}\mathcal{S}(\lambda)) \mid \lambda \in \Sigma_{\varepsilon,\gamma_{0}}\}$$

are $\mathcal{R}\text{-bounded}$ in $\mathcal{B}(L_q(\Omega)^{2N+N^2},L_q(\Omega)^N)$ and

$$\{(\tau \partial_{\tau})^{d} \mathcal{T}(\lambda) \mid \lambda \in \Sigma_{\varepsilon, \gamma_{0}}\}, \quad \{(\tau \partial_{\tau})^{d} (D_{k} \mathcal{T}(\lambda)) \mid \lambda \in \Sigma_{\varepsilon, \gamma_{0}}\}$$

are \mathcal{R} -bounded in $\mathcal{B}(L_q(\Omega)^{2N+N^2}, L_q(\Omega))$.

Example

$$\begin{split} u &= \mathcal{L}_{\lambda}^{-1}[\mathcal{S}(\lambda)\mathcal{L}(f,\Lambda_{\gamma}^{\frac{1}{2}}g,\nabla g)] \Rightarrow \\ \partial_{t}u &= \mathcal{L}_{\lambda}^{-1}[\lambda\mathcal{S}(\lambda)\mathcal{L}(f,\Lambda_{\gamma}^{\frac{1}{2}}g,\nabla g)], \, \nabla^{2}u = \mathcal{L}_{\lambda}^{-1}[\nabla^{2}\mathcal{S}(\lambda)\mathcal{L}(f,\Lambda_{\gamma}^{\frac{1}{2}}g,\nabla g)]. \end{split}$$

Theorem (L_p - L_q maximal regularity)

Let $1 < p, q < \infty$ and $\gamma_0 > 0$. Then, for any $f \in L_{p,\gamma_0,0}(\mathbf{R}, L_q(\Omega))^N$, $g \in L_{p,\gamma_0,0}(\mathbf{R}, W_q^1(\Omega))^N \cap H_{p,\gamma_0,0}^{1/2}(\mathbf{R}, L_q(\Omega))^N$ (SP) admits a unique solution (u,θ) such that

$$u \in L_{p,\gamma_0,0}(\mathbf{R}, W_q^2(\Omega))^N \cap W_{p,\gamma_0,0}^1(\mathbf{R}, L_q(\Omega))^N,$$

$$\theta \in L_{p,\gamma_0,0}(\mathbf{R}, W_q^1(\Omega))$$

satisfying with the estimate:

$$||e^{-\gamma t}(u_t, \gamma u, \Lambda_{\gamma}^{\frac{1}{2}} \nabla u, \nabla^2 u, \theta, \nabla \theta)||_{L_p(\mathbf{R}, L_q(\Omega))} \leq C||e^{-\gamma t}(f, \Lambda_{\gamma}^{\frac{1}{2}} g, \nabla g)||_{L_p(\mathbf{R}, L_q(\Omega))}$$

for any $\gamma \geq \gamma_0$ with some constant C independent of γ .

$$\begin{split} V_{1,\ell}^{j}(t,x) &= -\sum_{n=1}^{2} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{m_{1,\ell}^{j}}{B^{2}}) A e^{-A(d_{\ell}(\mathbf{x}_{N}) + d_{n}(\mathbf{y}_{N}))} \widehat{f}_{h}(\lambda,\xi',\mathbf{y}_{N})] d\mathbf{y}_{N} \Big] \\ &+ \sum_{n=1}^{2} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{A}{B}) (\frac{m_{1,\ell}^{j}}{B^{2}}) A e^{-Ad_{\ell}(\mathbf{x}_{N})} e^{-Bd_{n}(\mathbf{y}_{N})} \widehat{f}_{h}(\lambda,\xi',\mathbf{y}_{N})] d\mathbf{y}_{N} \Big] \\ &- \sum_{n=1}^{2} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{m_{1,\ell+2}^{j}}{B^{2}}) A e^{-Bd_{\ell}(\mathbf{x}_{N})} e^{-Ad_{n}(\mathbf{y}_{N})} \widehat{f}_{h}(\lambda,\xi',\mathbf{y}_{N})] d\mathbf{y}_{N} \Big] \\ &+ \sum_{n=1}^{2} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{A}{B}) (\frac{m_{1,\ell+2}^{j}}{B^{2}}) A e^{-Bd_{\ell}(\mathbf{x}_{N})} e^{-Ad_{n}(\mathbf{y}_{N})} \widehat{f}_{h}(\lambda,\xi',\mathbf{y}_{N})] d\mathbf{y}_{N} \Big] \\ &+ \sum_{n=1}^{2} (-1)^{n} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{i\xi'}{A}) (\frac{m_{1,\ell+2}^{j}}{B^{2}}) A e^{-Ad_{\ell}(\mathbf{x}_{N}) + d_{n}(\mathbf{y}_{N})} \cdot \widehat{f'}(\lambda,\xi',\mathbf{y}_{N})] d\mathbf{y}_{N} \Big] \\ &+ \sum_{n=1}^{2} (-1)^{n} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{i\xi'}{A}) (\frac{m_{1,\ell+2}^{j}}{B^{2}}) A e^{-Ad_{\ell}(\mathbf{x}_{N})} e^{-Bd_{n}(\mathbf{y}_{N})} \cdot \widehat{f'}(\lambda,\xi',\mathbf{y}_{N})] d\mathbf{y}_{N} \Big] \\ &- \sum_{n=1}^{2} (-1)^{n} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{i\xi'}{A}) (\frac{m_{1,\ell+2}^{j}}{B^{2}}) A e^{-Ad_{\ell}(\mathbf{x}_{N})} e^{-Bd_{n}(\mathbf{y}_{N})} \cdot \widehat{f'}(\lambda,\xi',\mathbf{y}_{N})] d\mathbf{y}_{N} \Big] \\ &+ \sum_{n=1}^{2} (-1)^{n} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{i\xi'}{A}) (\frac{m_{1,\ell+2}^{j}}{B^{2}}) A e^{-Bd_{\ell}(\mathbf{x}_{N})} e^{-Ad_{n}(\mathbf{y}_{N})} \cdot \widehat{f'}(\lambda,\xi',\mathbf{y}_{N})] d\mathbf{y}_{N} \Big] \\ &+ \sum_{n=1}^{2} (-1)^{n} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{i\xi'}{A}) (\frac{m_{1,\ell+2}^{j}}{B^{2}}) A e^{-Bd_{\ell}(\mathbf{x}_{N})} e^{-Bd_{\ell}(\mathbf{x}_{N})} e^{-Ad_{n}(\mathbf{y}_{N})} \cdot \widehat{f'}(\lambda,\xi',\mathbf{y}_{N})] d\mathbf{y}_{N} \Big] \\ &+ \sum_{n=1}^{2} (-1)^{n} \mathcal{L}_{\lambda}^{-1} \Big[\int_{0}^{h} \mathcal{T}_{\xi'}^{-1} [\varphi_{h}(\mathbf{y}_{N}) (\frac{i\xi'}{A}) (\frac{m_{1,\ell+2}^{j}}{B^{2}}) A e^{-Bd_{\ell}(\mathbf{x}_{N})} e^{-Ad_{\ell}(\mathbf{x}_{N})} e^{-Ad_{\ell}(\mathbf{x}_{N})} \cdot \widehat{f'}(\lambda,\xi',\mathbf{y}_{N}) \Big] d\mathbf{$$