Time global stability of the
Lax-Friedrichs scheme

Kohei SOGA
(Waseda University)

% 5 A AR HFERRRES
2012.6.14



Introduction

Let ¢,h(c) € R be given constants and consider
( w4+ H(x,t,c+u) =0in T x (0, 7],

(CL) ¢ w(z,0) =u%=) € L™(T) on T := R/Z,
wdr =0, || ub ||fee< 7.
T
v + H(x,t,c+ vy) = h(c) in T x (0,T],
(HJ) o

v(z,0) =v%(x) € Lip(T) on T, || v ||fo< 7.

\
If u9 =29, then

3/u € CO((0,T]; L*): entropy sol.,

3/ v € Lip(T x [0,T]): viscosity sol. s.t. v, = u.

(CL) is well-studied with the variational structures of (HJ).



Consider discretization of (CL) and (HJ) by the L-F scheme:

( Dtuk_'_l + D H (%42, tk, ¢+ um_|_2) =0

(CL)A < k k 0 _

| Yma2N T UYmo Um = up (zm).

/

Dyl 4 H(xm,ty, c + Dwvﬁl_H) = h(c)

HJ X k .k 0 _ .0
(H)a Um—+142N — Y410 “m+1—”A(f’7m+1)-

\
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Dkl .= m YN vam_|_1 = m+21AUm L (Lax-Friedrichs scheme)

(CL)A and (HJ) A are equivalent: uf, = D ov” y o if ud = 02,
We want to show under hyperbolic scaling O < \g < A = At/Azx < \q
e Stability of (CL)A for k£ — oo with fixed A = (Ax, At),

e Error estimate between u% and u for A — 0,

e Asymptotic behavior of (CL)A for £ — oo with fixed A.



Known Results on (CL)A

(i) The case of H(x,t,p) = f(p)

Huge literature on
time global stability,  Ll-convergence,
Ll-error estimates, long time behavior.

(ii) The case of H(x,t,p) = f(p) + F(x,t)
[T] Takeno ('01): stability within [0, 1] for existence of periodic sol.
[NS] Nishida-S ('12): time global stability, L1-convergence, long time
behavior.

(iii) The case of H(xz,t,p)
[O] Oleinik ('57): stability within a restricted time interval, L1-
convergence.
[S] S (submitted): stability within arbitrary time intervals, pointwise
convergence, approximation of characteristic curves.

e All, except [S], are based on Ll-framework.

e [S] is based on stochastic and variational methods
with the theory of viscosity sol. of Hamilton-Jacobi eq.



Main Results
Suppose that the C2-flux function H(z,t,p) : T2 x R — R satisfies

H 7t7
Hpp >0, lim (@6D) _ o Lal < a1+ |L) (L= H*).
pl—oo P
un: the step function given by uf
va . the linear interpolation of ”fn,+1'

e N
Thm. 3X; > 0 such that if 0 < A\g < XA 1= At/Ax < X, the
following hold:

1. The L-F scheme (CL) A is globally stable: For all k> 0 and m

| Hp(xm, tg, ¢ +ul)| < A7t < A1 (CFL-condition).

2. For each t > 0, Ja(t) > 0 independent of Az, At and initial
1
datas s.t. ||ua(,t) —u(-,t) ||L1('IF)§ a(t)Aza.

3. For each ¢, H!aCA: periodic difference entropy sol., which ab-

8 sorbs any other difference entropy sol. exponentially as t — oo. )




Idea of Proof.
1. Use variational techniques, not usual Ll-framework,

2. Convert the equation into the Hamilton-Jacobi type with the
theory of viscosity solutions,

3. Use Variational characterization of (CL), (HJ), (CL)A, (HDA:
Let LC:= L(xz,t,&) — cE.

t
W@ =__ it [ [ L), 57()ds+0((0)] +h(o)

YEAC(t)=x
(2) If (x,t): regular point of v (i.e. Jvz(x,t)) and ~*: minimizer,

t
w(z,t) = /O LE (v (5), 5,7*'(5))ds + uO(7*(0)),

(3) Stochastic variational problems for va, ua ([S]).
4. Necessary boundedness is derived from calculus of variations,

5. Due to periodic setting, iteration of time-1 analysis yields time-
global properties.



Stability
e Due to calculus of variations, velocity of every minimizing curve
~* for v(-,t) is uniformly bounded: For each t > 0

v ()] < B1(t).  (B1(t) is indep. of r,
e Since u(x,t) = vg(x,t) = Lg(:c,t,’y*’(t)) a.e. x €T, uis uniformly
bounded: For each t >0
| u(,t) [|pee=|| vz (-, t) [[Leo< B2(2).
e un(-,1) = u(-,1) (A — 0) in LI(T) is uniform w.r.t. initial datas
bounded by r (|| u® ||fo< 7).

e JE(t) > 0 indep. of initial datas bounded by r s.t.
un(z,t) —un(y,t)

L —Y
e By [S], stability holds in [0, 1] for all initial datas bounded by r.

| Vg [lLoo< 7)

< E(t). (entropy condition)

Therefore, 46 > 0 s.t. if Ax, At < ¢

| ua( 1) ||po< B2(1) + 1.
Otherwise the entropy condition is violated. Take r > 6>(1) + 1.



Error Estimate
e Due to stochastic and variational approach [S]

|| UA('7t) _ ’U(',t) ||CO§ O{]_(t) VAz.
e Due to the entropy condition, ua (-, t),u(-,t) is B.V. In Particular
for ’UJ() L= U’A(7t) — ’U,(,t)
S fw(ay) —w(zj_1)| < AE().
J

e let 0 =g < x1 < a0 < - < xp, =1 be sit. w() >0 on
12]' = [:UQj,:UQj_|_1] and < 0 on IQj_|_1. Define

. 1 ~ . ~ _1
. J = {7l max{|Izj|,|I2j41l} < Az}, J:={j}\J. (4J < Az"4)
en

t) —u(-,t < max I>;| — min I
[ua(,t) —ult) [y < erlgjw(xﬂ 251 xGIQij(:U)l 2j+1.
1€J
—I—Z/ w(a;)da:—/ w(x)dx
jeJ I ILYER]
1 - 1
< 4E(t)Az4d 4+ 4J - da1()VAxr < a(t)Axzs.



Long Time Behavior
e Initial datas belong to L®(T) := {u® € L®°(T) | || u® ||f< 7}.

e Take r > (5(t) + 1. Then the time-1 map of (CL)A is
dA(;e) 1 L(T) 3 up = ua(:1) € LE(T).

. ¢1A is essentially a map from B-(0) C RY into itself and a fixed
point & exists.

o uf (-,t) = ¢Z(ﬂ%; c) is a periodic difference entropy sol.
o ¢\ (:;c) is strictly contractive.

T herefore ECA IS unique w.r.t. ¢ and absorbs any other sol.



