Dirac Concentrations in Lotka-Volterra parabolic PDE

TECHNISCHE UNIVERSITÄT DARMSTADT

Stating the problem

Main questions

Main result

References

Benoit Perthame and Guy Barles, *Dirac Concentrations in Lotka-Volterra parabolic PDE*, Indiana University Mathematics Journal, vol. 57, No. 7, 2008
Benoit Perthame, Guy Barles and Sepideh Mirrahimi, *Concentrations in Lotka-Volterra parabolic or integral equations: a general convergence result*, Method. Appl. Ana., Volume 16, No. 3, 2009

Introduction

Darwin's Law

"In the struggle for survival, the fittest win out at the expense of their rivals because they succeed in adapting themselves best to their environment."

Introduction

Darwin's Law

"In the struggle for survival, the fittest win out at the expense of their rivals because they succeed in adapting themselves best to their environment."

Question

Is it possible to support Darwin's Law mathematically?

Stating the problem

$$\begin{cases} \frac{\partial}{\partial t}n_{\varepsilon}(t,x) - \varepsilon \Delta n_{\varepsilon}(t,x) = \frac{n_{\varepsilon}(t,x)}{\varepsilon}R(x,I_{\varepsilon}(t)), & \text{in } \mathbb{R}_{+} \times \mathbb{R}^{d} \\ n_{\varepsilon}(0,x) = n_{\varepsilon}^{0}(x), n_{\varepsilon}^{0}(x) \geq 0, & \text{on } \{t=0\} \times \mathbb{R}^{d}, \end{cases}$$

where $I_{\varepsilon}(t) = \int_{\mathbb{T}^n} n_{\varepsilon}(t, x) \psi(x) dx$.

 $n_{\varepsilon}(t, x)$: density of species x at time t

- $R(x, I_{\varepsilon}(t))$: growth rate of species x
- $I_{\varepsilon}(t)$: environmental state (nutrition available at time t)
- $\psi(x)$: predation of species x
- ε : scaling such that mutation is small

Assumptions

$$\psi \in W^{2,\infty}(\mathbb{R}^d), \ 0 < \psi_m \le \psi \le \psi_M < \infty$$
$$\exists I_m, I_M : \ 0 < I_m \le I_M < \infty \text{ and } \min_{x \in \mathbb{R}^d} R(x, I_m) = 0, \max_{x \in \mathbb{R}^d} R(x, I_M) = 0$$
$$\exists K > 0 \forall x \in \mathbb{R}^d, I \in \mathbb{R} : \ -K \le \frac{\partial R}{\partial I} \le -\frac{1}{K} < 0, \ \sup_{\frac{I_m}{2} \le I \le 2I_M} \|R(\cdot, I)\|_{W^{2,\infty}} \le K$$
$$n_{\varepsilon}^0 \in L^{\infty}(\mathbb{R}^d), \ \nabla n_{\varepsilon}^0 \in L^1(\mathbb{R}^d) \text{ and } I_m \le \int_{\mathbb{R}^d} \psi(x) n_{\varepsilon}^0(x) dx \le I_M$$

Existence result

Theorem

Assume additionally $I_m - C\varepsilon^2 \leq I_{\varepsilon}(0) \leq I_M + C\varepsilon^2$, then there exists a unique weak solution $n_{\varepsilon} \in C(\mathbb{R}_+, L^1(\mathbb{R}^d))$ to the equation above, which satisfies $I_m - C\varepsilon^2 \leq I_{\varepsilon}(t) \leq I_M + C\varepsilon^2$.

Proof.

Banach's fixed point theorem + iteration in time

1. What happens if mutation vanishes, i.e. $\varepsilon \rightarrow 0$?

- 1. What happens if mutation vanishes, i.e. $\varepsilon \rightarrow 0$?
- 2. What equation do we obtain?

- 1. What happens if mutation vanishes, i.e. $\varepsilon \rightarrow 0$?
- 2. What equation do we obtain?
- 3. Does this new equation have a solution?

- 1. What happens if mutation vanishes, i.e. $\varepsilon \rightarrow 0$?
- 2. What equation do we obtain?
- 3. Does this new equation have a solution?
- 4. What structure does this solution have?

Ansatz

We make the following ansatz. We set

$$\varphi_{\varepsilon}(t, x) = \varepsilon \log(n_{\varepsilon}(t, x)),$$

which is equivalent to

$$n_{\varepsilon}(t,x) = e^{\frac{\varphi_{\varepsilon}(t,x)}{\varepsilon}}$$

Heuristic approach

Suppose

$$\varphi_{\varepsilon}(t, x) \leq 0 \ \forall (t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{d},$$

then we can obtain the following limit

$$\lim_{\varepsilon \to 0} n_{\varepsilon}(t, x) = \lim_{\varepsilon \to 0} e^{\frac{\varphi_{\varepsilon}(t, x)}{\varepsilon}} = \begin{cases} 1, & \varphi_{\varepsilon}(t, x) = 0\\ 0, & else \end{cases} = \sum_{i} \delta(x - x_{i}(t))$$

Transformed equation

Inserting $n_{\varepsilon}(t, x) = e^{\frac{\varphi_{\varepsilon}(t, x)}{\varepsilon}}$ into the equation yields

$$\begin{cases} \frac{\partial}{\partial t}\varphi_{\varepsilon}(t,x) = |\nabla\varphi_{\varepsilon}(t,x)|^{2} + R(x,I_{\varepsilon}(t)) + \varepsilon\Delta\varphi_{\varepsilon}(t,x), & \text{in } \mathbb{R}_{+} \times \mathbb{R}^{d}, \\ \varphi_{\varepsilon}(0,x) = \varphi_{\varepsilon}^{0}(x) = \varepsilon\log(n_{\varepsilon}^{0}(x)), & \text{on } \{t=0\} \times \mathbb{R}^{d}. \end{cases}$$

Viscosity solutions

Definition

Assume *u* is bounded and uniformly continuous on $\mathbb{R}^d \times [0, T]$, for each T > 0. We say *u* is a viscosity solution of the initial value problem

$$\begin{cases} u_t + H(\nabla u, x) = 0, & in \quad \mathbb{R}^d \times (0, \infty) \\ u = g, & on \quad \mathbb{R}^d \times \{t = 0\} \end{cases}$$

if

- i) u = g on $\mathbb{R}^d \times \{t = 0\}$
- ii) for each $v \in C^{\infty} (\mathbb{R}^d \times (0, \infty))$, if u v has a local maximum at a point $(t_0, x_0) \in \mathbb{R}^d \times (0, \infty)$, then

Viscosity solution

$$v_t(t_0, x_0) + H(\nabla v(t_0, x_0), x_0) \leq 0.$$

and if u - v has a local minimum at a point $(t_0, x_0) \in (0, \infty) \times \mathbb{R}^d$, then

 $v_t(t_0, x_0) + H(\nabla v(t_0, x_0), x_0) \ge 0.$

Main result

Theorem

Assume additionally $n_{\varepsilon}^{0}(x) \leq e^{\frac{-A|x|+B}{\varepsilon}}$. Let $\varphi_{\varepsilon}(t, x) = \varepsilon \log(n_{\varepsilon}(t, x))$, then after extraction of a subsequence, φ_{ε} converges locally uniformly to a Lipschitz-continuous viscosity solution $\varphi \in C((0, \infty) \times \mathbb{R}^{d})$ of

$$\begin{cases} \frac{\partial}{\partial t}\varphi(t,x) = |\nabla\varphi(t,x)|^2 + R(x,l(t)), & \text{in } \mathbb{R}_+ \times \mathbb{R}^d, \\ \max_{x \in \mathbb{R}^d} \varphi(t,x) = 0, \\ \varphi(0,x) = \varphi^0(x), & \text{on } \{t = 0\} \times \mathbb{R}^d, \end{cases}$$

where $I_{\varepsilon} \stackrel{\varepsilon \to 0}{\longrightarrow} I$ a.e. In particular supp $\{n\} \subset \{\varphi = 0\}$.

Thank you for your attention!

June 14, 2012 | TU Darmstadt | Jan-Erik Stecher | 14