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51. Hyperbolic—Parabolic System

System of viscous conservation laws over R = (0,00),

o)+ fu)y = (G)uy)y, x€Ry, t>0. (HPS)
O CR™ . state space (open & convex).
u=u(t,x) € ¢ : unknown m-vector function.
u) e R™ . smooth, detD, fO(u) #0 forue 0.
f(u) e R™ . flux function, smooth in u € 0.
G(u) € R™" : viscosity matrix, smooth in u € 0.
Assume that m m
0 0 )my

(my +my =m),
) my

G —
W=10 6w
G>(u) : my x mp matrix, detG,(u) #0 foru € 0.

System (HPS) = m-hyperbolic eq. & my-parabolic eq.
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> Motivation To study motion of compressible and viscous gases.

(1) Barotropic model :

P+ (pu)x =0,
(i + (P + p(p)), = (1) o
(I1) Heat-conductive model :
pr+ (pu)x =0,
(pw)i + (pu” +p(p,0)) . = (ury)s, (HCM)
{p (cVG + u;) }t + {pu(cVO + u;) + p(p, G)Lt}x = (Uuuy, + K6y ).
p : Density of fluid u : Fluid velocity 0 : Absolute temperature
p : Pressure U, K,cy : Physical constants

T These models are governed by hyperbolic-parabolic system.
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& Known results (1) ~ Full space R" ~

e Matsumura-Nishida (’80) :
Global existence & asymptotic stability of constant state (stationary sol.)
for (HCM) in R? by energy method.

e Matsumura (’81) :
Optimal convergence rate for (HCM) in R by weighted energy method.

e Umeda-Kawashima—-Shizuta (’84) :
Stability & convergence rate for (HPS) under Condition (K).

e Shizuta—Kawashima (’85) :
Condition (K) <= Stability condition.
T Stability condition is easy to check.
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& Known results (2) ~ Half space R: ~

Barotropic model (BM)

e Kawashima—Nishibata—Zhu (’03) : Outflow problem (u <0) in R

Existence & stability of boundary layer solution.

e Matsumura—Nishihara (°01) : Inflow problem (u > 0) in Ry

Existence & stability of boundary layer solution (in Lagrangian coordinate).

o Kagei—-Kawashima (’06) : Outflow problem (u <0) in R”.

Asymptotic stability of planar boundary layer solution.

Heat-conductive model (HCM)

e Matsumura-Nishida (’83) : In Ri under u|y,—o =0
Stability of constant state (stationary sol.) by energy method.

e Kawashima—-Nishibata—Zhu-N. (’09) : Outflow problem (u <0) in R,.

Existence & stability of boundary layer solution.

e Huang-Li-Shi (to appear), Qin—Wang (’09), Nishibata-N. (2011) :
Inflow problem (u# > 0) in R,. Existence & stability of boundary layer solution.
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¢» Aim General theory on stability of boundary layer solution for (HPS)
under stability condition.

e Application
(
T barotropic model (BM)
T heat-conductive model (HCM)
Outflow problem for e ideal gases
e general constitutive equations
\
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e Boundary layer solution

stationary solution under negative characteristics & viscosity.

i

eigenvalues of D, f(u) for

fo(u)t “|_f(u)x =0.

f Our aims are to show - --

e existence of boundary layer solution,

e nonlinear stability of (non-degenerate & degenerate) boundary layer solu-
tion under stability condition by energy method.

\-

~

y
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§2. Stationary problem

% . :
Let u = [ ] v € R™ ... hyperbolic part, we R ... parabolic part.
w

fi (V,W)

flu) = [fz(v, w)

]' filvyw) eR™, fr(v,w) € R™.

i(x) = [~ ] . stationary solution.
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fl(ﬁ7w)x:()7 ~ .
SE w(0) =wp, Iim(V(x),w(x)) = (vo,wy).
( ){fzw,mx: i, O = L) = ()

Integrate (SE) over (x,) =

fl(ﬁ,W):fl(V+,W+), (1)
G (i)W = (7, W) — fa(vy,wy). (2)

Assumption (A2) : detD, fi(vy,wy) 0.

Solve (1) by implicit function theorem =
HV(W) s.t. filVOW), W) = filve,wy), ve=V(wg).

Substitute ¥ =V (W) in (2) =
System of 1st order ODE for w :
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Wy = G2(V(W)7W)_1(H(W) _H(W—I-))v (3)

et
Aw) = Go(up ) 'D,H(W), DwH=—D,f>-(Dyfi)"'-Dyfi +Dyf.

3) =

- 1
Wy =Awy)(W—wy)+ EGz(u+)_1D3VH(w+)(W —w,)? + (remainder),

w(0) = wp, )}groloW(x) = wy.

Consider solvability of this ODE system under following assumption.

Assumption (A3) :

(i) Eigenvalues of A(w) are distinct : t(w) > o (W) > -+ > Uy, (W).
(ii) ui(w) <0 holds.
o Uj(wy)<O0 --- non-degenerate case.

e uj(wy)=0 --- degenerate case.
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> Existence of stationary solution

1-d center mfd

0:=|wp—wyl,

ri(w) : eigenvector of A(w) corresponding to ;(w).

.
P
.
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.
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<
<
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<
.
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- .

Th 1 [Nishibata—N.] (m2 —1)—d stable mfd
corem ISnipata—IN.
g )

Assume 6 < 1.

(I) Non-degenerate case : uj(wy) <0

Jstationary solution di(x), s.t., |0%(i(x) —uy )| < Ce .

(II) Degenerate case : uj(wy) =0

If wo € 4 & Dypty(wy)-ri(wy) #0 =
Sk+1

TEr G
g J

Jstationary solution ii(x), s.t., |0%(i(x) —uy )| < C
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33. Stability of non-degenerate stationary solution

> Entropy & Symmetrization

Def. 11(z) €R (z= fO(u) €R™) is entropy <=
(i) 1(z) is smooth and strictly convex, i.e., D?1(z) > 0 for z € fO(0).
(ii) “entropy flux g(u) € R s.t. Dyq(u) =D, n(f°u))D.f(u).

(iii) B(u) :=TD,f'(u)D2n(f°(u))G(u) is real symmetric and non-negative.

Assumption (A4) : Entropy 1(z) exists.

)+ fu)y = (G(u)uy)x. (HPS)

|} Friedrichs & Lax ('71), Kawashima ('83)

Symmetric system

Ao(u)u; +A(u)uy = B(u) iy, + g(u, uy),

A’>0, A, B>0: real symmetric.
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Decompose symmetric system into hyperbolic part and parabolic part =

A(l)vt +Anvx +A1wy = 81,
Adwr + TA 12V +Appwy = Bawy, + g2,

Al A

A(l)>0, A(2)>O, A= [TA A ], By >0 : real symmetric.
12 A2

V . .
U= [ ] , veR™...hyperbolic, we&R"...parabolic.
w

Assumption (AS) : A(u) <0 and Aj;(«) <0 hold.

e Initial condition

e Boundary condition
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> Dissipative property

e Condition (K) 7K : m x m real matrix, s.t.,

KA®(uy) is skew-symmetric & [KA(us)]+B(uy) > 0. (K)

[A] ;= 2(A+TA) : symmetric part of A.
e Stability condition
AA%(u)p =A(us)¢ and Buy)g =0 (CAeR & 79 € R™)

— ¢ = 0.

(SK)

T Shizuta—Kawashima ('85) : Condition (K) <= Condition (SK).
T Kawashima ('83) : Asymptotic stability of constant state in full space R”
under condition (SK) (or (K)).

Aim : To show the stability of stationary solution in half space R
under stability condition (SK).

Assumption (A6) : Stability condition (SK) holds.
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> Asymptotic stability of non-degenerate stationary solution

Theorem 2 [Nishibata—N.
- | |

Let ii be a non-degenerate stationary solution.

Assume that
Hu()—ftHHz—i—S < 1.

— Jltime global solution u(t,x) to (HPS), s.t.,

u—ii € C([0,00); HA(RL)),

fim [u(r) — ] - 0.

\_

T We essentially use the condition A;; < 0. (A <0 is not necessary.)

T Stability of degenerate stationary solution is also proved under suitable

conditions.
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34. Outline of proof
> Problem for perturbation

() V—V . . .
v = _| --- perturbation from stationary station.
w—Ww

@ € R™ ... hyperbolic part, y & R™ ... parabolic part.

e Equation

AlQ, 4+ A1+ Ay, = 61,

A(z)llft +TARQ+An VY, =By, + 2.

e Initial condition

M

i
=0 Yo . wo —w .

Vlx=0 = 0.

e Boundary condition

(PE1)
(PEy)
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< A priori estimate

N(t):= sup [[(@,¥)(?)|ly2, (@,¥):=(v,w)—(V,W) : perturbation

0<t<¢

Proposition 4
4 )

N+ 1=

@ W)OI: + [ (o) + WD) de < Cligo, o)l 3 )
N y

t—voo

T Local existence @ Estimate (A) = Global existence & ||(@,y)(¢)||z~ —— 0

Proof --- | energy method

e basic L? estimate by using energy form.

e estimate for higher order derivatives by using Matsumura-
Nishida’s method in half space.

e dissipative estimate of ¢, under stability condition.
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Thank you for your attention!
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